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1. Introduction

The long time behaviour of dynamical systems is one of the most important problems of

modern mathematical physics. By the study of attractor, we can reduce the original system and

capture more information implied in systems. For autonomous system, global attractor is usually

used to study the long time behaviour of dynamical systems [1]. As extension of the concept of

global attractor, in 1986, Haraux [2] provided uniform attractor apt to the asymptotic behaviour

of non-autonomous systems. It is remarkable that the conditions ensuring the existence of the

uniform attractor parallel those for autonomous case. However, one drawback of the uniform

attractor is that it need not be invariant. Moreover, it is well-known that the trajectories may

be unbounded for many non-autonomous systems when time tends to infinity and there does

not exist the uniform attractor for these systems. In order to overcome this drawback, pulback

attractor has been introduced for non-autonomous case. In the recent years, the existence of

pullback attractors has been proved for some partial differential equations [3–5]. Meanwhile,

with new problems and different force terms, pullback D-attractor has been introduced [6].

One of the class of degenerate equations ([7–11]) that has been studied widely in recent

years is the class of equations involving an operator of Grushin type

Gru = △x1u+ |x1|2r△x2u, (x1, x2) ∈ O ⊂ RN1 × RN2 , r > 0,

which was introduced firstly in [12]. As r = 0, then G0 = ∆ and (1) reduces to a semilin-

ear reaction-diffusion equation, and Gr, when r > 0, is not elliptic in domains in RN1 × RN2
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intersecting with the hyperplane {x1 = 0}.
For autonomous system with Grushin operators, that is, the force term is independent of

time, [9,11] considered the long time behaviour of solution. For non-autonomous system, Anh

[8] considered the existence of pullback D-attractor in L2(O) for non-autonomous parabolic

equations involving Grushin operators. Later, Binh [10] proved the regularity and exponential

growth of pullback attractor in the space S1
0 (O)∩L2p−2(O) with force term f ∈ W 1,2

loc (R;L2(O))

satisfying ∫ t

−∞
eλs(|f(s)|22 + |f ′(s)|22)ds < ∞.

But as f ∈ L2
loc(R;L2(O)) with ∫ t

−∞
eλs|f(s)|22ds < ∞,

it is impossible that the weak solution belongs to S1
0 (O) ∩ L2p−2(O), furthermore, we cannot

prove the existence of pullback attractor in S1
0 (O) ∩ L2p−2(O). Then, can we study the higher-

order attraction for non-autonomous parabolic equations? Sun and Yuan [13], Xiao and Sun [14]

considered the results for semi-linear reaction-diffusion equations in non-cylindrical domains. But

for degenerate parabolic equation involving Grushin operators, higher-order attraction remains

open.

In this paper, we consider the following initial boundary value problem for a non-autonomous

parabolic equation involving Grushin operators

∂u

∂t
−Gru+ g(u) = f(t) in Qτ ,

u = 0 on Στ ,

u(τ, x) = uτ (x), x ∈ O,

(1)

where τ ∈ R, uτ : Oτ → R and f : Qτ → R are given, and g ∈ C1(R,R) is also a given function,

for which there exist nonnegative constants α1, α2, β and l, and p > 2, such that

−β + α1|s|p 6 g(s)s 6 β + α2|s|p, ∀ s ∈ R (2)

and

g′(s) > −l, ∀ s ∈ R. (3)

We obtain the following main result:

Theorem 1.1 Under the assumptions (2), (3). Let f ∈ L2
loc(R;L2(O)) satisfy∫ t

−∞
eλs|f(s)|22ds < ∞. (4)

Let U(t, τ) be the process generated by the weak solutions of (1) and Â = {A (t) : t ∈ R} be the

pullback Dλ-attractor of U(t, τ) in L2(O). Then for any δ ∈ [0,∞), any D̂ = {D(t) : t ∈ R} ∈ Dλ,

the following properties hold:
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(i) Â is L2+δ-pullback Dλ-attracting, that is,

lim
τ→−∞

distL2+δ(O)(U(t, τ)D(τ),A (t)) = 0 for all t ∈ R; (5)

(ii) There exist two sequences T (t, δ, D̂, Â ) (which depends only on t, δ, D̂ and Â ) and

Mδ(t) (which depends only on t, δ,N(r) and
∫ t

−∞ eλs|f(s)|22ds), such that∫
O
|U(t, τ)uτ − v(t)|2+δdx 6 Mδ(t) for any t− τ > T (t, δ, D̂, Â ), (6)

where v(τ) ∈ A (τ) (τ ∈ R) is a (arbitrary) fixed complete trajectory of U(t, τ).

The paper is organized as follows. In Section 2, we recall some concepts and results about

pullback D-attractor, and introduce the function spaces, weak solution and known results. To

make the test function used later meaningful, in Section 3, we establish the maximum principle

(Theorem 3.3). Finally, in Section 4, we establish the higher-order integrability of the difference

of weak solutions (Theorem 4.2) and obtain higher-order attraction (Theorem 1.1).

2. Preliminaries

In this section, we recall the notations and related results about pullback attractor, and

introduce the function spaces used later and weak solution of problem (1).

• Pullback D-attractor

We consider a process (also called a two-parameter semigroup) U on a Banach space X,

i.e., a family {U(t, τ);−∞ < τ 6 t < +∞} of continuous mappings U(t, τ) : X → X, such that

U(τ, τ)x = x and U(t, τ) = U(t, r)U(r, τ) for all τ 6 r 6 t.

Suppose D is a nonempty class of parameterized sets D̂ = {D(t) : t ∈ R} ⊂ P(X), where

P(X) denotes the family of all nonempty subsets of X.

Definition 2.1 The process U(·, ·) is said to be pullback D-asymptotically compact if for any

t ∈ R, any D̂ ∈ D , any sequence τn → −∞ and any sequence xn ∈ D(τn), the sequence

{U(t, τn)xn}∞n=1 is precompact in X.

Definition 2.2 It is said that B̂ ∈ D is pullback D-absorbing for the process U(·, ·) if for any
t ∈ R and any D̂ ∈ D , there exists a τ0 = τ0(t, D̂) 6 t such that

U(t, τ)D(τ) ⊂ B(t) for all τ 6 τ0(t, D̂).

Definition 2.3 The family Â = {A (t) : A (t) ∈ P(X), t ∈ R} is said to be a pullback

D-attractor for the process U(·, ·), if:
(1) A (t) is compact in X for all t ∈ R;
(2) Â is pullback D-attracting, i.e.,

lim
τ→−∞

distX(U(t, τ)D(τ),A (t)) = 0 for all D̂ ∈ D and all t ∈ R;

(3) Â is invariant, i.e., U(t, τ)A (τ) = A (t) for any −∞ < τ 6 t < ∞.
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The following abstract result is important to deduce our main result:

Theorem 2.4 ([13]) LetX,Y, Z be three Banach spaces satisfying Z ↪→ Y ↪→ X with continuous

embeddings, respectively. Let U(·, ·) be a process defined on X and W (t, τ) (−∞ < τ 6 t < ∞)

be a family operators defined on X satisfying

U(t, τ) · = v(t) +W (t, τ)
(
· −v(τ)

)
for all τ 6 t.

Moreover, assume further that

(a) U(·, ·) has a pullback D-attractor Â = {A (t)| t ∈ R} in X, and Â ∈ D ;

(b) v̂ = {v(t) : t ∈ R} ∈ D is a complete trajectory of U(t, τ);

(c) there exists B̂0 = {B0(t)| t ∈ R} with B0(t) bounded in Z for each t ∈ R, satisfying
that for any t ∈ R and any D̂ ∈ D , there exists a τ0 = τ0(t, D̂) 6 t such that

W (t, τ)
(
D(τ)− v(τ)

)
⊂ B0(t) for all τ 6 τ0. (7)

Then, the following hold:

(i) B̂ = {v(t)}t∈R + B̂0 := {B(t) = v(t) + B0(t)| t ∈ R} is a D-absorbing set in X for the

process U(·, ·);
(ii) distX

(
Â , B̂

)
= 0, i.e.,

distX
(
A (t), v(t) +B0(t)

)
= distX

(
A (t)− v(t), B0(t)

)
= 0 for all t ∈ R; (8)

(iii) if B0(t) is closed in X for all t ∈ R, then

A (t)− v(t) ⊂ B0(t) for all t ∈ R; (9)

moreover, if assume further that the space Y satisfies ∥ · ∥Y 6 C∥ · ∥θX∥ · ∥1−θ
Z for some θ ∈ (0, 1]

and constant C, then for any D̂ ∈ D and any t ∈ R,

distY
(
U(t, τ)D(τ), A (t)

)
→ 0 as τ → −∞. (10)

• Function spaces

Let O be a bounded domain in RN1 × RN2(N1, N2 > 1) with smooth boundary ∂O,

Qτ :=
∪

t∈(τ,∞)

O × t, Στ :=
∪

t∈(τ,∞)

∂O × t,

Qτ,T :=
∪

t∈(τ,T )

O × t, Στ,T :=
∪

t∈(τ,T )

∂O × t.

For a fixed finite time interval [τ, T ], let (X, ∥ · ∥X) (t ∈ [τ, T ]) be a family of Banach spaces

such that X ⊂ L1
loc(O) for all t ∈ [τ, T ]. For any 1 6 q 6 ∞, we denote by Lq(τ, T ;X) the

vector space of all functions u ∈ L1
loc(Qτ,T ) such that u(t) = u(·, t) ∈ X a.e., t ∈ (τ, T ), and the

function ∥u(·)∥X defined by t 7→ ∥u(t)∥X , belongs to Lq(τ, T ).

By definition, we consider on Lq(τ, T ;X) the norm given by

∥u∥Lq(τ,T ;X) := ∥∥u(·)∥X∥Lq(τ,T ).
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The space S1
0 (O) is defined as the closure of C1

0 (Ō) with respect to the norm

∥u∥ =
(∫

O
(|∇x1u|2 + |x1|2r|∇x2u|2)dx

) 1
2

.

Then S1
0 (O) is a Hilbert space w.r.t. the scalar product

((u, v)) :=

∫
O
(∇x1u∇x1v + |x1|2r∇x2u∇x2v)dx.

We denote by | · |2 (·, ·) the norms and scalar products in L2(O) and by ∥ · ∥, ((·, ·)) the norms

and scalar products in S1
0 (O).

The following lemma is necessary in later work. We can refer to [7] for more details.

Lemma 2.5 Assume that O is a bounded domain in RN1 × RN2(N1, N2 > 1). Then the

following embeddings hold:

(i) S1
0 (O) ↪→ L2∗r (O) continuously,

(ii) S1
0 (O) ↪→ Lp(O) compactly for p ∈ [1, 2∗r), where 2∗r = 2N(r)

N(r)−2 , N(r) = N1 + (r+1)N2.

It is known (see [11]) that there exists a complete orthonormal system of eigenvectors ej

corresponding to the eigenvalues λj , such that

−Grej = λjej , j = 1, 2, . . . , and 0 < λ1 6 λ2 6 λ3 6 · · · ,

where λ1 = inf{∥u∥2

|u|22
, u ∈ S1

0 (O), u ̸= 0}.

• Weak solutions

For the readers’ convenience, we recall the definition of different solutions about equation

(1).

For each T > τ , consider the auxiliary problem

∂u

∂t
−Gru+ g(u) = f(t) in Qτ,T ,

u = 0 on Στ,T ,

u(τ, x) = uτ (x), x ∈ O,

(11)

where τ ∈ R, uτ : O → R.
Let

V := L2(τ, T ;S1
0 (O)) ∩ Lp(τ, T ;Lp(O)), V ∗ := L2(τ, T ;S−1(O)) + Lp′

(τ, T ;Lp′
(O)).

Definition 2.6 ([8]) A function u = u(x, t) defined in Qτ,T is said to be a weak solution of

(11) if u ∈ V , ∂u
∂t ∈ V ∗ and for any φ ∈ V ,∫ T

τ

∫
O

(∂u
∂t

φ+∇x1u∇x1φ+ |x1|2r∇x2u∇x2φ+ g(u)φ
)
dxdt =

∫ T

τ

∫
O
f(t)φdxdt.

Definition 2.7 (Weak solution) A function u : Qτ → R is called a weak solution of (1) if for

any T > τ , the restriction of u on Qτ,T is a weak solution of (11).

Theorem 2.8 ([8]) Assume that (2), (3) and (4) hold, for any τ ∈ R, uτ ∈ L2(O) given. Then
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problem (1) has a unique weak solution u.

Lemma 2.9 ([11]) If u ∈ V and ∂u
∂t ∈ V ∗, then u ∈ C([τ, T ];L2(O)).

According to Theorem 2.8 and Lemma 2.9, we define the process U(t, τ) : L2(O) → L2(O)

for any −∞ < τ 6 t < +∞. And denote by Rλ the set of ρ : R → [0,+∞) such that

eλτρ2(τ) → 0, τ → −∞.

Denote by Dλ the family of set class D̂ := {D(t)|D(t) ⊂ L2(O), ∀ t ∈ R,D(t) ̸= ∅} such that for

each ρD̂ ∈ Rλ, D(t) ⊂ {u ∈ L2(O) : |u(t)|2 6 ρD̂}.

Theorem 2.10 Assume that (2), (3) and (4) hold. Then the process corresponding to (1) has

a pullback Dλ-attractor in L2(O).

3. Maximum principle

The main purpose of this section is to apply the Stampacchia’s truncation method to es-

tablish some L∞ a priori estimates for the weak solution, which will guarantee the test functions

used in next section meaningful.

Throughout this section, let the initial data (uτ , f) ∈
(
H1

0 (O)∩L∞(O), L∞(Qτ,T )
)
. Then,

for the regular data (uτ , f), from Theorem 2.8, we know that there exists a unique weak solution.

Lemma 3.1 For any k > 0 and any ϕ ∈ S1
0 (O) ∩ L∞(O), the following equality holds:∫

O

(
∇x1ϕ∇x1(|ϕ|kϕ) + |x1|2r∇x2ϕ∇x2(|ϕ|kϕ)

)
dx

= (k + 1)
( 2

k + 2

)2 ∫
O

(∣∣∇x1 |ϕ|
k+2
2

∣∣2 + |x1|2r
∣∣∇x2 |ϕ|

k+2
2

∣∣2)dx. (12)

Proof Since ϕ ∈ S1
0 (O)∩L∞(O), we know that |ϕ|kϕ and |ϕ| k+2

2 also belongs to S1
0 (O). Hence,

the integrals in (12) make sense. Then, we need only to show

1

k + 1

∫
O
∇x1ϕ∇x1(|ϕ|kϕ)dx =

∫
O
|ϕ|k|∇x1ϕ|2dx

=

∫
O(ϕ>0)

|ϕ|k|∇x1ϕ|2dx+

∫
O(ϕ60)

|ϕ|k|∇x1ϕ|2dx

=

∫
O(ϕ>0)

|ϕ k
2 ∇x1ϕ|2dx+

∫
O(ϕ60)

|(−ϕ)
k
2 ∇x1(−ϕ)|2dx

=
4

(k + 2)2

(∫
O(ϕ>0)

|∇x1ϕ
k+2
2 |2dx+

∫
O(ϕ60)

|∇x1(−ϕ)
k+2
2 |2dx

)
=

4

(k + 2)2

∫
O

∣∣∇x1 |ϕ|
k+2
2

∣∣2dx. �

Lemma 3.2 ([13]) Let f ∈ L2
loc(R;L2(O)) and satisfy (4). Then, for each T ∈ R, there is a

family {fm} ⊂ L∞
loc(Q−∞,T ) such that

for any (fixed) τ ∈ (−∞, T ), fm → f in L2(τ, T ;L2(O)) (13)
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and for any t ∈ (−∞, T ),∫ t

−∞
eλs|fm(s)|22ds 6 2

∫ t

−∞
eλs|f(s)|22ds+

1

4
for all m = 1, 2, . . . . (14)

Recall Q−∞,T = ∪t∈(−∞,T )O × {t}. The family {fm} may depend on T .

Fix a function H (·) ∈ C1(R) such that
(i) |H ′(s)| 6 M < ∞, ∀ s ∈ R,
(ii) H is strictly increasing on (0,∞),

(iii) H (s) = 0, ∀ s 6 0;

(15)

and define

H(s) =

∫ s

0

H (σ)dσ. (16)

Theorem 3.3 (L∞-estimate) Assume that g satisfies (2). Then, for any −∞ < τ 6 T < ∞
and any initial data (uτ , f) ∈

(
H1

0 (Oτ ) ∩ L∞(Oτ ), L
∞(Qτ,T )

)
, the unique weak solution u of

(11) belongs to L∞(Qτ,T ).

Proof From the assumption (2), we know that there is a positive constant M0 such that

g(s) > 0 as s > M0 and g(s) < 0 as s 6 −M0. (17)

DenoteK ′ := max{∥uτ∥L∞(O), ∥f∥L∞(Qτ,T )}. From the assumption (2), we know that there

is a positive constant M depending on β, α1 and K ′ such that

g(s) > K ′ as s > M and g(s) < −K ′ as s 6 −M. (18)

Define K := max{K ′, M}+ 1.

Since u ∈ L2(τ, T ; S1
0 (O)) ∩ Lp(τ, T ; Lp(O)), we have that

H (u(t)−K) ∈ S1
0 (O) ∩ Lp(O) a.e., t ∈ (τ, T ) (19)

and

H (u(t)−K) ∈ L2(τ, T ; S1
0 (O)) ∩ Lp(τ, T ; Lp(O)), (20)

so, H (u(t)−K) can be selected as a test function.

Hence, from the definition of weak solution, we have∫ T

τ

∫
O
u′(x, s)H (u(s)−K)dxds−

∫ T

τ

∫
O
Gru(s)H (u(s)−K)dxds

= −
∫ T

τ

∫
O
g(u(x, s))H (u(s)−K)dxds+

∫ T

τ

∫
O
f(x, s)H (u(s)−K)dxds, (21)

where for any φ ∈ L2(τ, T ; S1
0 (O)) ∩ Lp(τ, T ; Lp(O)),

−
∫ T

τ

∫
O
Gru(s)φdxds =

∫ T

τ

∫
O
∇x1u∇x1φ+ |x1|2r∇x2u∇x2φdxds

(recall that Gru = △x1u+ |x1|2r△x2u), and from (20) we know that all of integrals above make

sense.

In the following, we will estimate each term in (21) one by one.
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From (19) and the properties of H (·), we have

−
∫ T

τ

∫
O
Gru(s)H (u(s)−K)dxds

=

∫ T

τ

∫
O

H ′(u(s)−K)(|∇x1u(s)|2 + |x1|2r|∇x2u(s)|2)dxds > 0. (22)

Secondly, from the definition of K ′, (20) and the fact that (T − τ)×mes(O) < ∞, we know

that

0 6
∫ T

τ

∫
O
K ′H (u(s)−K)dxds < ∞,

which, combined with (17) and the definition of K, implies that

−
∫ T

τ

∫
O

(
g(u(x, s))−K ′)H (u(s)−K)dxds 6 0.

Similarly, we can deduce that∫ T

τ

∫
O

(
f(x, s)−K ′)H (u(s)−K)dxds 6 0.

Therefore, inserting the above estimates into (21), we obtain that∫ T

τ

∫
O
u′(x, s)H (u(s)−K)dxds 6 0,

that is, ∫
O
H(u(x, t)−K)dx−

∫
O
H(u(x, τ)−K)dx 6 0 a.e., t ∈ [τ, T ].

Consequently, from the definition of K and H(·), we have that∫
O
H(u(x, τ)−K)dx = 0

and H(u(x, t)−K) = 0 a.e., on O, a.e., t ∈ [τ, T ].

Hence,

u(x, t) 6 K a.e., on O, a.e., t ∈ [τ, T ]. (23)

Similarly, defining H̃ (s) = H (−s) and replacing H (u(s) −K) by H̃ (u(s) +K) in (21),

we can deduce that

u(x, t) > −K a.e., on O, a.e., t ∈ [τ, T ]. (24)

Summarizing (23) and (24), we prove the solution is bounded.

4. Higher-order attraction of pullback Dλ-attractors

Throughout this section, let

v̂ := {v(t) : t ∈ R} with v(t) ∈ A (t), ∀ t ∈ R (25)

denote a fixed complete trajectory of U(t, τ), that is

U(t, τ)v(τ) = v(t) for any −∞ < τ 6 t < ∞.



Higher-order attraction of pullback attractors for parabolic equations involving Grushin operators 667

For any D̂ = {D(t) : t ∈ R} ∈ Dλ and uτ ∈ D(τ), set u(t) = U(t, τ)uτ . For any (fixed)

T ∈ R, throughout this subsection, we choose and fix a family {fm} ⊂ L∞
loc(Q−∞,T ) such that

the family {fm} satisfies the conditions (13) and (14) in Lemma 3.2. (26)

Then, for any τ < T , there are two sequences {(uτm, fm)} and {(vτm, fm)} (i = 1, 2)

satisfying

uτm, vτm ∈ S1
0 (O) ∩ L∞(O) and fm ∈ L∞(Qτ,T ), (27)

such that

uτm → uτ , vτm → vτ in L2(O) and fm → f in L2(τ, T ;L2(O)) as m → ∞, (28)

where um and vm are the unique weak solutions of (11) corresponding to (uτm, fm) and (vτm, fm),

respectively.

From (28), we can assume that

|uτm|22 6 2|uτ |22 + 1 and |vτm|22 6 2|vτ |22 + 1 for all m = 1, 2, . . . . (29)

Denote

wm(t) = um(t)− vm(t) for any τ 6 t 6 T, (30)

then wm(t) (m = 1, 2, . . .) is the unique solution of the following equation:

∂wm

∂t
−Grwm + g(um)− g(vm) = 0, in Qτ,T ,

wm = 0, on Στ,T ,

wm(τ, x) = uτm − vτm, x ∈ O.

(31)

Applying Theorem 3.3, we know that um, vm ∈ L∞(Qτ,T ) for each m = 1, 2, . . . , and so

wm = um − vm ∈ L2(τ, T ;S1
0 (O)) ∩ L∞(Qτ,T )

and for any 0 6 θ < ∞, |wm|θwm ∈ L2(τ, T ; S1
0 (O))∩L∞(Qτ,T ). Consequently, we can multiply

(31) by |wm|θwm for any θ ∈ [0,∞), and then applying Lemma 3.1, we obtain that

1

θ + 2

d

dt
∥wm∥θ+2

Lθ+2(O)
+

4(θ + 1)

(θ + 2)2

∫
O

(∣∣∇x1 |wm(t)|
θ+2
2

∣∣2 + |x1|2r
∣∣∇x2 |wm(t)|

θ+2
2

∣∣2)dx
= −

∫
O

(
g(um)− g(vm)

)
|wm|θwmdx 6 l∥wm(t)∥θ+2

Lθ+2(O)
a.e., t ∈ (τ, T ). (32)

The main purpose of this subsection is, based on (32), to deduce some pullback Lq-type a

priori estimates about wm. More precisely, we will prove the following main result of this section:

Theorem 4.1 Let D̂ ∈ Dλ, v̂ be the fixed complete trajectory given in (25) and T be a fixed

time. Assume further that fm, uτm, vτm satisfy (26), (28) and (29). Then, for each t ∈ (τ, T )

and each k = 0, 1, 2, . . . , there exist two positive constant sequences T̃k(t, D̂, v̂) (which depends

only on k, t, λ, D̂ and v̂) and M̃k(t) (which depends only on t, k, λ,N(r) and
∫ t

−∞ eλs|fm(s)|22ds),
such that for any m = 1, 2, . . . , the solution wm of (31) satisfies∫

O
|wm(t)|2(

N(r)
N(r)−2

)kdx 6 M̃k(t) for any t− τ > T̃k(t, D̂, v̂), (Ak)
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and ∫ s+1

s

(∫
O
|wm(σ)|2(

N(r)
N(r)−2

)k+1

dx
)N(r)−2

N(r)

dσ 6 M̃k(t) for any s− τ > T̃k(t, D̂, v̂). (Bk)

Proof At first, since um is a weak solution, by using of (2) we have that

d

ds
|um(s)|22 + ∥um(s)∥2 + 2α1∥um∥pLp(O) 6

1

λ
|fm(s)|22 + 2β|O| a.e., s ∈ (τ, T ),

where λ is the first eigenvalue of −Gr in S1
0 (O). In particular,

d

ds
|um(s)|22 + λ|um(s)|22 + 2α1∥um∥pLp(O) 6

1

λ
|fm(s)|22 + 2β|O| a.e., s ∈ (τ, T ). (33)

Then applying Gronwall lemma to (33), we obtain that

|um(t)|22 6 e−λ(t−τ)|um(τ)|22 +
1

λ
e−λt

∫ t

τ

eλs|fm(s)|22ds+
2β

λ
|O|(T − τ), ∀ t ∈ (τ, T ).

Similarly, about vm we have

|vm(t)|22 6 e−λ(t−τ)|vm(τ)|22 +
1

λ
e−λt

∫ t

τ

eλs|fm(s)|22ds+
2β

λ
|O|(T − τ), ∀ t ∈ (τ, T ).

Therefore, for any t ∈ (τ, T ),

|wm(t)|22 6 2e−λ(t−τ)
(
|um(τ)|2τ + |vm(τ)|2τ

)
+

4

λ
e−λt

∫ t

τ

eλs|fm(s)|22ds+
8β

λ
|O|(T − τ).

For each t ∈ R, we set M̃ ′
0(t) the positive number given by

M̃ ′
0(t) =

8

λ
e−λt

∫ t

−∞
eλs|f(s)|22ds+

8β

λ
|O|(T − τ) +

e−λt

λ
. (34)

Then, from (26) and (29) we have that

|wm(t)|22 6 4e−λ(t−τ)
(
|uτ |22 + |v(τ)|22 + 1

)
+ M̃ ′

0(t). (35)

Therefore, note that uτ ∈ D(τ) with D̂ = {D(t) : t ∈ R} ∈ Dλ and v̂ ∈ Dλ, for each t ∈ R, from
(35) we know that there is a T ′(t, D̂, v̂) such that

|wm(t)|22 6 M̃ ′
0(t) + 1 for all t− τ > T ′(t, D̂, v̂). (36)

Taking θ = 0 in (32) and integrating with respect to time t, we obtain that∫ s+1

s

∫
O

(∣∣∇x1 |wm(t)|
∣∣2 + |x1|2r

∣∣∇x2 |wm(t)|
∣∣2)dxdt 6 (l + 1)(M̃ ′

0(t) + 1) (37)

for all s − τ > T ′(t, D̂, v̂). On the other hand, from the embedding S1
0 (O) ↪→ L

2N(r)
N(r)−2 (O), we

know that there is a constant cN(r) such that

∥ϕ∥
L

2N(r)
N(r)−2 (O)

6 cN(r)∥ϕ∥, ∀ ϕ ∈ S1
0 (O). (38)

Hence, (37) implies that∫ s+1

s

∥wm(t)∥2
L

2N(r)
N(r)−2 (O)

dt 6 c2N(r)(l + 1)(M̃ ′
0(t) + 1) for all s− τ > T ′(t, D̂, v̂). (39)
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Set

M̃0(t) =
(
1 + c2N(r)(l + 1)

)
(M̃ ′

0(t) + 1) and T̃0(t, D̂, v̂) = T ′(t, D̂, v̂), (40)

from (36) and (39) we know that (A0) and (B0) hold.

By induction, we assume (Ak) and (Bk) hold for k > 0.

In the following, we will show that (Ak+1) and (Bk+1) hold.

Taking θ = 2( N(r)
N(r)−2 )

k+1 − 2 in (32), then we obtain that

1

2

(N(r)− 2

N(r)

)k+1 d

dt
∥wm∥

2(
N(r)

N(r)−2
)k+1

L
2(

N(r)
N(r)−2

)k+1

(O)

+

2
( N(r)
N(r)−2

)k+1 − 1( N(r)
N(r)−2

)2(k+1)

∫
O

(∣∣∇x1 |wm(t)|(
N(r)

N(r)−2
)k+1 ∣∣2 + |x1|2r

∣∣∇x2 |wm(t)|(
N(r)

N(r)−2
)k+1 ∣∣2)dx

6 l∥wm(t)∥
2(

N(r)
N(r)−2

)k+1

L
2(

N(r)
N(r)−2

)k+1

(O)

a.e., t ∈ (τ, T ),

that is, we have

d

dt
∥wm∥

2(
N(r)

N(r)−2
)k+1

L
2(

N(r)
N(r)−2

)k+1

(O)

+
(
4(

N(r)

N(r)− 2
)k+1 − 2

)
(
N(r)− 2

N(r)
)k+1·∫

O

(
|∇x1 |wm(t)|(

N(r)
N(r)−2

)k+1

|2 + |x1|2r|∇x2 |wm(t)|(
N(r)

N(r)−2
)k+1

|2
)
dx

6 2l(
N(r)

N(r)− 2
)k+1∥wm(t)∥

2(
N(r)

N(r)−2
)k+1

L
2(

N(r)
N(r)−2

)k+1

(O)

a.e., t ∈ (τ, T ) (41)

and so,

d

dt
∥wm∥

2(
N(r)

N(r)−2
)k

L
2(

N(r)
N(r)−2

)k+1

(O)

6 2l(
N(r)

N(r)− 2
)k∥wm(t)∥

2(
N(r)

N(r)−2
)k

L
2(

N(r)
N(r)−2

)k+1

(O)

a.e., t ∈ (τ, T ). (42)

Applying the uniform Gronwall lemma to (42) and (Bk), we obtain that∫
O
|wm(t)|2(

N(r)
N(r)−2

)k+1

dx 6 CM̃k(t),l,N(r),k for any t− τ > T̃k(t, D̂, v̂) + 1. (43)

And, for any s− τ > T̃k(t, D̂, v̂) + 1, we integrate (41) over [s, s+ 1] and obtain that∫ s+1

s

∥|wm(x, σ)|(
N(r)

N(r)−2
)k+1

∥2dσ 6 C ′
M̃k(t),l,N(r),k

. (44)

On the other hand, from Theorem 3.3 and Lemma 3.1, we know that

|wm(·, t)|(
N(r)

N(r)−2
)k+1

∈ S1
0 (O) for a. e., t ∈ (τ, T ). (45)

Hence, applying (38) to |wm(·, t)|(
N(r)

N(r)−2
)k+1

, we can deduce from (44) that∫ s+1

s

(∫
O
|wm(σ)|2(

N(r)
N(r)−2

)k+1

dx
)N(r)−2

N(r)

dσ 6 c2N(r)C
′
M̃k(t),l,N(r),k

(46)

for any s− τ > T̃k(t, D̂, v̂) + 1. Therefore, set

T̃k+1(t, D̂, v̂) = T̃k(t, D̂, v̂) + 1 and M̃k+1(t) = max{CM̃k(t),l,N(r),k, c
2
N(r)C

′
M̃k(t),l,N(r),k

},

from (43) and (46) we know that (Ak+1) and (Bk+1) hold.
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Based on the a priori estimates Theorem 4.1, we establish the following estimate for the

weak solution of equation (1):

Theorem 4.2 Let D̂ = {D(τ) : τ ∈ R} ∈ Dλ and v̂ be the fixed complete trajectory given in

(25). Then for each t ∈ R and each k = 0, 1, 2 . . . , there exist two positive constants Tk(t, D̂, v̂)

(which depends only on k, t, |D(τ)|τ and |v(τ)|τ ) and M̄k(t) (which depends only on t, k,N(r)

and
∫ t

−∞ eλs|f(s)|22ds) such that∫
O
|U(t, τ)uτ − v(t)|2(

N(r)
N(r)−2

)kdx 6 M̄k(t)

for any t− τ > Tk(t, D̂, v̂) and any uτ ∈ D(τ).

Proof For each fixed t ∈ R and k ∈ {0, 1, 2, . . .}.
Take Tk(t, D̂, v̂) = T̃k(t, D̂, v̂) + 1, where T̃k(t, D̂, v̂) is just the constant given in Theorem

4.1 corresponding to the pair t, k.

Set T = t+ 1 and for any (fixed) τ satisfying τ 6 t− Tk(t, D̂, v̂).

For the interval [τ, T ] defined above, choose two sequences (uτm, fm) and (vτm, fm) satisfying

all of the conditions in (26), (29). Then, it follows from Theorem 4.1 (Ak) that∫
O
|um(t)− vm(t)|2(

N(r)
N(r)−2

)kdx 6 M̃k(t), (47)

where um and vm are the weak solutions of (11) corresponding to the regular data (uτm, fm)

and (vτm, fm) on interval [τ, T ], respectively.

By Lemma 2.9, for weak solutions u(t), v(t) of equation (1), we know that there are two

subsequences {umj (t)} ⊂ {um(t)} and {vmj (t)} ⊂ {vm(t)} satisfying that

vmj (t) → u(t) = U(t, τ)uτ and vmj (t) → v(t) a.e., on O as j → ∞.

Hence, by taking M̄k(t) = M̃k(t) and applying the Fatou’s lemma, we have∫
O
|U(t, τ)uτ − v(t)|2

(
N(r)

N(r)−2

)k

dx 6 lim inf
j→∞

∫
O
|umj (t)− vmj (t)|

2
(

N(r)
N(r)−2

)k

dx.

6 M̄k(t).

We are now ready to prove our main result Theorem 1.1:

Proof For each δ ∈ [0,∞), there is a unique k ∈ {1, 2, 3, . . .} such that

2 + δ + 1 ∈
(
2(

N(r)

N(r)− 2
)k−1, 2(

N(r)

N(r)− 2
)k
]
. (48)

Then, in Theorem 2.4, let X = L2(O), Y = L2+δ(O) and Z = L2(
N(r)

N(r)−2
)k(O), D = Dλ, Â be

the pullback Dλ-attractor in L2(O) obtained in Theorem 2.10, v̂ ∈ Â be the complete trajectory

given in (25), and for each t ∈ R, define

B0(t) =
{
ϕ ∈ L2(

N(r)
N(r)−2

)k(O) : ∥ϕ∥
2(

N(r)
N(r)−2

)k

L
2(

N(r)
N(r)−2

)k

(O)

6 M̄k(t)
}
, (49)

where the constant M̄k(t) is given in Theorem 4.2.
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We know that all of assumptions in Theorem 2.4 are satisfied, consequently, the L2+δ-

pullback Dλ-attraction follows from (10), and the a priori bound (6) follows from (49) with the

constants Mδ(t) := M̄k(t) and T (t, δ, D̂, Â ) := Tk(t, D̂, v̂) (where the constant k is fixed by

(48)).
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