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Abstract We discuss the properties of causal LTI operators on weighted ℓ2 spaces for different

choices of the weighting sequence {w(t)}t∈Z. Problems of closability of unstable causal LTI

convolution operators are also discussed. We shall provide a new type of argument concerning

causal LTI operators and robust design that can be applied to a large class of weighted ℓ2
spaces on Z.
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1. Introduction

Much of modern robust control is focused on the use of the graph of a system as a means of

understanding its fundamental properties, especially those related to feedback stabilization. This

approach is operator-theoretic method in order to study systems from an input-output point of

view.

The basic input-output plant model is often taken to be the operator model y = Pu, where

P is the linear plant convolution operator, y is the output and u is the input. Georgiou and Smith

[1] have studied the properties such as causality and stabilizability of the systems over the signal

space ℓ2(Z) and they discovered intrinsic difficulties: A causal system could have a noncausal

closure and a well-known stabilizable system seemed not to be stabilizable. The problem was

analysed further by Mäkilä [2,3] in a series of papers. He was interested in the question of

whether the graphs of linear systems are in fact closable (Operator closedness is well-known to

be a minimum requirement in stabilization theory. Operator closures are studied extensively in

various signal setting in [4]). Papers [5,6] have developed an input-output stabilization theory

on ℓ2(Z)n for multi-input, multi-output systems based on the use of operator closures. In [7],

transfer functions and symbols were studied and equivalent conditions for causality were given.

The two-operator, input-output model Ay = Bu, where A and B are bounded linear oper-

ators, avoids the intrinsic limitations of the one-operator model y = Pu on the full time axis.
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Such models were popular in time series analysis on Z. Paper [8] indicated that input-output

model definition Ay = Bu was convenient if A and B were chosen as bounded linear operators

on ℓ∞(Z). Paper [9] discussed the stabilization of linear system specified by an input-output

relationship Ay = Bu on the whole set of integers Z. The two-operator approach is shown to

lead to a generalization of robust H∞ input-output control theory to a large class of L2(R, w)
spaces [10]. In [11], a two-operator approach is used to study robust stabilization of discrete time

linear systems in a specific weighted ℓ∞ space on Z.
In this paper, we discuss some properties of causal LTI operators defined on the whole set of

integers Z of linear systems which are specified by an input-output (I/O) relationship Ay = Bu.

Our primary interest is in ℓ2 signal spaces, which lead to H∞ optimization in addition to avoiding

the Georgiou-Smith paradox. We also discuss some signal setups in which unstable causal LTI

convolution operators are not closable. This is achieved by weighted ℓ2 spaces. So we cannot

use the closure approach on ℓ2(Z, w).
This paper is organized as follows. In Section 2, we briefly describe mathematical back-

ground and notation. In Section 3, we discuss the weighted ℓ2 signal spaces, which lead to H∞

optimization in addition to avoiding the Georgiou-Smith paradox. Summable weights on Z are

discussed in Section 4. Some conclusions are drawn in Section 5.

2. Mathematical preliminaries and notations

We use the standard notations C, R, Z, Z+, Z−, N for the complex numbers (or the

complex plane), the reals, the integers, the positive integers, the negative integers and the non-

negative numbers, respectively. Furthermore, Rn denotes the linear space of all real n-tuples

v = [v1, . . . , vn]
′ equipped with the norm |v| = (

∑n
i=1 v

2
i )

1
2 . The superscript ′ denotes vector

transpose.

Let ℓq(Z) denote the linear normed space of all sequences x = {x(t) ∈ R}t∈Z such that

∥ x ∥q= (
∑
t∈Z

|x(t)|q)
1
q < ∞.

For q = ∞, the space ℓ∞(Z) is defined analogously using the ∞-norm defined as

∥x∥∞ = sup
t∈Z

|x(t)|.

We define T := {z ∈ C : |z| = 1} and D := {z ∈ C : |z| < 1}. H∞(D) denotes the space of

bounded analytic functions on the unit disc D.
Let X and Y be real linear spaces. Then for an operator A mapping from a subspace of X

into Y , D(A;X) denotes the domain of A. R(A;Y ) = {y = Ax : x ∈ D(A;X)} ⊂ Y denotes the

image of A. The kernel space N(A;X) of A is defined as N(A;X) = {x ∈ D(A;X) : Ax = 0}.
Let V ⊂ D(A;X). We denote AV = {Av : v ∈ V } ⊂ Y . Denote by ∥ · ∥X the norm of the linear

normed spaces X.

We say that the operator A : X → Y is bounded if there exists K > 0 such that

∥Ax∥Y ≤ K∥x∥X , ∀x ∈ X.
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For a bounded operator A : X → Y , the quantity

∥A∥ = sup
x ̸=0

∥Ax∥Y
∥x∥X

is called the induced norm of A.

The graph of A is defined as G(A) = {(u,Au) : u ∈ D(A;X)}. An operator AE is called an

extension of A if D(A;X) ⊂ D(AE ;X) ⊆ X and AEu = Au for any u ∈ D(A;X). An operator

A is called closed if its graph G(A) is a closed set. An operator A is called closable if it has

a minimal closed extension. The (minimal) closed extension of A is called the closure of the

operator A.

Proposition 2.1 A is closable if and only if the following condition holds: If xn ∈ D(A;X),

xn → 0 and Axn → y, then y = 0.

Let s(Z) denote the linear space of double-sided real sequences x = {x(t) ∈ R}t∈Z.

By ·̂, we denote the z-transform which is given by

û(z) =
∑
n∈Z

u(n)zn, u ∈ l2(Z).

The z-transform is a linear, bounded mapping from l2(Z) to L2(T).

Definition 2.2 The quadruple (A,B, Y,X), where

A : D(A;Y ) → Y

B : D(B;X) → Y

are linear operators, is called a discrete linear system, consisting of the set of trajectories

T (A,B, Y,X) ≡ {(u y)′ ∈ D(B;X)×D(A;Y ) : Ay = Bu}.

Here Y ⊆ s(Z) and X ⊆ s(Z) are linear spaces.

For each k ∈ Z, denote the truncation operator Pk : s(Z) → s(Z), k ∈ Z by

(Pkx)(t) =

{
x(t), t ≤ k,

0, t > k.

Definition 2.3 The linear operator P : D(P ;X) → Y is said to be causal if

Pk(Y )P = Pk(Y )PPk(X), for k ∈ Z,

where Pk(Y ) and Pk(X) denote the truncation operators on Y and X, respectively.

Definition 2.4 Let P : D(P ; s(Z)) → s(Z) denote the linear operator

(Px)(t) ≡
∑
k∈Z

H(t, k)x(t− k) = lim
K,L→∞

∑
−K≤k≤L

H(t, k)x(t− k),

where the H(t, k) are real matrices. The operator P is called a linear convolution operator.

The convolution operator P is causal if H(t, k) = 0 for all k < 0. The operator P is called

anti-causal if H(t, k) = 0 for all k > 0. If H(t, k) = G(k) for some sequence of real matrices
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{G(k)}k∈Z, then the linear convolution operator

(Px)(t) ≡
∑
k∈Z

G(k)x(t− k) = lim
K,L→∞

∑
−K≤k≤L

G(k)x(t− k),

is called an LTI convolution operator.

3. Weighted ℓ2 spaces on Z

Let ℓ2(Z) denote the space of all square summable sequences on the whole set of integers

Z, ℓ2(k,∞) ∩ Z denote the space of all square summable sequences on (k,∞) ∩ Z. The ℓ2(Z)
signal space setup is that here unstable causal LTI convolution operators may have noncausal

closures. This phenomenon is called the Georgiou-Smith paradox [4,5,12]. We shall discuss

among other signal setups in which unstable causal LTI convolution operators are not closable.

This is achieved by weighted ℓ2 spaces.

3.1. ℓ2 spaces with decreasing weights

We shall consider a class of weighted ℓ(Z) spaces which lead to H∞ optimization in addition

to avoiding the Georgiou-Smith paradox. Let {w(t)}t∈Z be a positive decreasing sequences on Z.

ℓ2(Z, w) = {{x(t)}t∈Z|{x(t)
√

w(t)}t∈Z ∈ ℓ2(Z)}

with

∥x∥w = (
∞∑

t=−∞
x2(t)w(t))

1
2 < ∞.

Suppose u ∈ ℓ2(Z, w). Then for each k ∈ N, the shifted sequence Sku defined by (Sku)(t) =

u(t− k) also belongs to ℓ2(Z, w) and ∥Sku∥w ≤ ∥u∥w.
An operator P on ℓ2(Z, ω) is shift-invariant if PSk = SkP for all k > 0. If P is shift-invariant

and both u and S−ku belong to ℓ2(Z, ω) for some k > 0, then PS−ku = S−kPu.

Note that, for w decreasing, each unweighted space l2(k,∞) ∩ Z for k ∈ Z embeds as a

subspace of l2(Z, w). The following result shows that in many cases the use of the space ℓ2(Z, w)
leads to an H∞ norm.

Lemma 3.1 ([10]) Let {w(t)}t∈Z be a positive decreasing sequence such that either (i) w is

bounded or (ii) w is bounded below. Let P denote the causal convolution operator defined by

(Pu)(t) =

∞∑
k=0

g(k)u(t− k),

where {g(k)}k∈N is a real sequence. Then P can extend to a bounded operator defined on the

whole of ℓ2(Z, w) if and only if the function G defined by

G(z) =

∞∑
k=0

g(k)zk

belongs to H∞(D). In this case ∥P∥ = ∥G∥∞.
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A condition such as boundedness or boundedness away from zero is necessary here if we

wish the induced norm to be the standard H∞ norm. Define the function

we(k) =

{
1, if k ∈ Z−,

e−k2

, if k ∈ N.

We write ℓe2(Z) for the space ℓ2(Z, we) and ∥ · ∥e for the norm ∥ · ∥we .

Corollary 3.2 Let P : D(P ; ℓe2(Z)) → ℓe2(Z) be the causal LTI convolution operator defined by

(Pu)(t) =

∞∑
k=0

g(k)u(t− k),

{g(k)}k∈N is a real sequence on Z with g(k) = 0 for k ∈ Z−. Then D(P ; ℓe2(Z)) = ℓe2(Z) if and

only if ∥G∥∞ < ∞, where the function G defined by G(z) =
∑∞

k=0 g(k)z
k lies in H∞(D). In this

case, ∥P∥ = ∥G∥∞.

Proof This result can be treated as a special case of Lemma 3.1.

Another interesting weight that leads to H∞ optimization is the function

ws(k) =

{
ek

2

, if k ∈ Z−,

1, if k ∈ N.

The use of this weighted signal space also allows to avoid the Georgiou-Smith paradox discussed

in [1].

The sequence {g(k)}k∈Z is exponentially bounded if there exist M , a > 0 such that |g(k)| ≤
Meak for k ∈ Z. �

Theorem 3.3 Let {g(k)}k∈Z be an exponentially bounded sequence and let P be the convolution

operator defined on ℓ2(Z, ws) by

(Pu)(t) =
∞∑
k=0

g(k)u(t− k). (3.1)

Then P is a closed operator.

Proof Suppose that {u(t)}t≥1 is a sequence in ℓ2(Z, ws) with yn = Pun also lying in ℓ2(Z, ws),

and that ∥u(t) − u∥ → 0 and ∥y(t) − y∥ → 0 for some u, y ∈ ℓ2(Z, ws). We show that y = Pu

and hence the graph of P is closed.

For n ∈ Z, we have ŷn(z) = ĝ(z)ûn(z), where x̂(z) =
∑

n∈z x(n)z
n. Now it is easily verified

that ∥un − u∥ → 0 implies that ûn(s) → u(s) for n ∈ Z. Thus ŷ(s) = ĝ(s)û(s).

Now, (3.1) converges for all t ∈ Z, since g is exponentially bounded and u has rapid decrease

at −∞, although (3.1) does not a priori define a function in u ∈ ℓ2(Z, ws). However, the

uniqueness of the z transform implies that indeed y = pu, as required. �

Theorem 3.4 Let a > 0, b ̸= 0 and Pa denote the causal convolution operator

(Pau)(t) =
∞∑
k=0

beaku(t− k)
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defined on a subdomain of the space ℓ2(Z, w), where w is a positive bounded weight. Suppose

that ea(t) = eat lies in ℓ2(Z, w). Then Pa is not closable.

Proof We construct a sequence {u(t)}t∈N of inputs such that ∥u(t)∥w → 0 and ∥Pau(t)−bea∥w →
0. This is sufficient to show that Pa is not closable. To do this, take

u(t) =


0, if t < −n− 1,

hn, if − n− 1 ≤ t ≤ −n,

0, if t > −n.

Now Pau(t) = 0 for t < −n− 1. For −n− 1 ≤ t ≤ −n, we have

(Pau)(t) =

t+n+1∑
k=0

beakhn =
ea(t+n+2) − 1

ea − 1
· bhn.

Then for t > −n we have

(Pau)(t) =

t+n+1∑
k=t+n

beakhn =
ea(t+n)(e2a − 1)

ea − 1
· bhn.

We now choose hn = ea−1
ean(e2a−1) . Since {w(t)} is bounded, there exists M > 0 such that |w(t)| ≤

M for all t ∈ Z, so we have

∥u(t)∥2w =
∑
t∈Z

u2(t)w(t) =
−n∑

t=−n−1

(
ea − 1

ean(e2a − 1)
)2w(t) ≤ 2M

(ea + 1)2
· 1

e2an
→ 0, for n → ∞.

Moreover

∥Pau− bea∥2w =
∑
t∈Z

(Pau− beat)2w(t)

=

−(n+2)∑
t=−∞

(−beat)2w(t) +

−n∑
t=−(n+1)

(
ea(t+n+2) − 1

ea − 1
· bhn − beat)2w(t)+

+∞∑
t=−n+1

(
ea(t+n)(e2a − 1)

ea − 1
· bhn − beat)2w(t)

≤Mb2e2a

e2a − 1
· 1

e2a(n+2)
+

Mb2(1− ea)2

e2a(e2a − 1)2
· 1

e2an
→ 0 for n → ∞.

Example 3.5 We consider the causal convolution operator P : DP ⊆ l2(Z, w) → l2(Z, w) given
by

(Pu)(t) =
∞∑
k=0

3ku(t− k), u ∈ DP ,

DP := {u|u ∈ l2(Z, w), Pu ∈ l2(Z, w)},

where w(t) is bounded. We construct a sequence {u(t)}t∈N

u(t) =


0, if t < −n− 1,
1

3n
, if − n− 1 ≤ t ≤ −n,

0, if t > −n.
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by Theorem 3.4, the LTI system P is not closable. In fact, it is easy to see that ∥ u(t) ∥2w→ 0,

but ∥ (Pu)(t) ∥2w9 0.

3.2. Closed systems on ℓ2(Z, w)

Let {w(t)}t∈Z be a positive decreasing sequence on Z. Then a closed LTI system on ℓ2(Z, w)
is a causal operator P with D(P ) ⊆ ℓ2(Z, w) and closed graph G(P ) such that if (u, Pu) ∈ G(P )

and τ ∈ Z+, then

(1) (Sτu, SτPu) ∈ G(P ); (2) (S−τu, S−τPu) ∈ G(P ) whenever (Sτu, SτPu) ∈ ℓ2(Z, w)×ℓ2(Z, w).

Proposition 3.6 Let {w(t)}t∈Z be a positive decreasing sequence on Z and let P be a closed

LTI system on ℓ2(Z, w). Then the restriction of G(P ) to ℓ2(k,∞) × ℓ2(k,∞) defines a closable

operator.

Proof Suppose that (u(t), y(t)) ∈ G(P ) ∩ ℓ2(k,∞) × ℓ2(k,∞) and that ∥u(t)∥w → 0 whereas

∥y(t)−y∥w → 0 (all in the norm of ℓ2(k,∞)). Then we also have ∥u(t)∥w → 0 and ∥y(t)−y∥w → 0

in the norm of ℓ2(Z, w), since {w(t)}t∈Z is bounded. Hence (0, y) ∈ G(P ). Since G(P ) is closed

and we include that y = 0. This implies closability of the operator obtained by restricting the

graph of P . �

4. ℓ2 space with summable weights on Z

In this section, we shall study what happens when at least bilaterally bounded, persistent,

signals are included.

Theorem 4.1 Let {w(t)}t∈Z be a positive weight on Z such that∑
t∈Z

w(t) < ∞. (4.1)

Let the operator PL : D(PL; ℓ2(Z, w)) → ℓ2(Z, w) be given by

(PLu)(t) =
+∞∑
n=0

u(t− L− n),

where L ≥ 0 is a non-negative number (a delay). Then PL is not closable.

Proof Take the sequence of input signals {u(t)}t≥1, where

u(t) =

{
1, t = −i,

0, otherwise.

From (4.1), we have that

∥u(t)∥2w =
∑
t∈Z

(u(t))2w(t) =
−i−1∑
t=−∞

(u(t))2w(t) + (u(−i))2w(−i) +
+∞∑

t=−i+1

(u(t))2w(t)

= w(−i) → 0,

when i → ∞ and u(t) ∈ D(PL) for all i ∈ N.
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Define y(t) = (PLu)(t). Clearly, y(t) = 0 for t ≤ −i + L − 1 and y(t) = 1 for t ≥ −i + L.

From (4.1), we see that

∥y(t)− u∥2w =
∑
t∈N

(y(t)− u(t))2w(t)

=
+∞∑

t=−i+L

(1− u(t))2w(t) +
−i+L−1∑
t=−∞

(0− u(t))2w(t))

≤
+∞∑

t=−i+L

w(t) +
−i+L−1∑
t=−∞

w(t) → 0,

for i → ∞. So Pu(t) → u(t) ̸= 0 while w(t) → 0, we can get pL is not closable. �

Theorem 4.2 Let {w(t)}t∈Z be a positive weight on Z such that
∑

t∈Z w(t) < ∞. Let the

operator FL : D(FL; ℓ2(Z,w)) → ℓ2(Z, w) be given by

(FLu)(t) =
∞∑
k=0

ku(t− L− k),

where L ≥ 0 is a non-negative number (a delay). Then FL is not closable.

Proof Consider the sequence of input signals {u(t)}t≥1, where

u(t) =


1, t = −i− 1,

−1, t = −i,

0, otherwise.

From (4.1), we have that

∥u(t)∥2w =
∑
t∈Z

(u(t))2w(t) =
−i−2∑
t=−∞

(u(t))2w(t) + (u(−i− 1))2w(−i− 1) + (u(−i))2w(−i)+

+∞∑
t=−i+1

(u(−i+ 1))2w(−i+ 1) → 0,

for j → ∞.

Now (FLu)(t) = 0 for t < −i − 2 + L. By computing (FLu)(t), we get (FLu)(t) = 0 for

t = −i+ L− 1 and (FLu)(t) = 1 for t ≥ −i+ L. From (5) we have that

∥(FLu)(t)− u(t)∥2w =
∑
t∈Z

((FLu)(t)− u(t))2w(t)

=
−i+L−2∑
t=−∞

((FLu)(t)− u(t))2w(t)+

((FLu)(−i+ L− 1)− u(−i+ L− 1))2w(−i+ L− 1)+
+∞∑

t=−i+L

((FLu)(t)− u(t))2w(t)

≤
−i+L−2∑
t=−∞

w(t) + w(−i+ L− 1) + 4
+∞∑

t=−i+L

w(t) → 0,
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for i → ∞. So (FLu)(t) → u(t) ̸= 0 while i → ∞. Thus, FL is not closable. �
The operator ML : D(ML; ℓ2(Z, w)) → ℓ2(Z, w) given by

(MLu)(t) =
∞∑

n=0

∞∑
k=0

u(t− L− n− k),

satisfies (MLu)(t) = (FLu)(t) for the input sequence {u(t)}t≥1 used in the proof of the previous

result. Hence, ML is not closable on ℓ2(Z, w).
Note that the operator PL : D(PL; ℓ2(Z, w)) → ℓ2(Z, w) is closed. And FL : D(FL; ℓ2(Z, w))

→ ℓ2(Z, w) is closable with a causal closure on ℓ2(Z).
The above results imply that we cannot use the closure approach on ℓ2(Z, w). A considerable

technical complication follows from the fact that ℓ2(Z, w) allows signals which do not tend to

zero when t → −∞.

5. Conclusions

The two-operator plant model Ay = Bu has been used to develop a robust input-output

stabilization on the full time axis Z. Both plant and controller uncertainty can be handled

within the proposed framework which uses bounded causal LTI operators only in the plant and

controller modeling, the unbounded operator models must be avoided. Robust design can be

applied to weighted ℓ2 spaces on Z. A large class of weighted ℓ2 spaces on Z have been shown

to lead to H∞ optimization. The unstable causal LTI convolution operators are not closable in

weighted ℓ2 spaces.
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