Journal of Mathematical Research with Applications Nov., 2015, Vol. 35, No. 6, pp. 701–705 DOI:10.3770/j.issn:2095-2651.2015.06.012 Http://jmre.dlut.edu.cn

Weighted Representation Asymptotic Basis of Integers

Yujie WANG, Min TANG*

School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract Let k_1, k_2 be nonzero integers with $(k_1, k_2) = 1$ and $k_1k_2 \neq -1$. Let $R_{k_1,k_2}(A, n)$ be the number of solutions of $n = k_1a_1 + k_2a_2$, where $a_1, a_2 \in A$. Recently, Xiong proved that there is a set $A \subseteq \mathbb{Z}$ such that $R_{k_1,k_2}(A, n) = 1$ for all $n \in \mathbb{Z}$. Let $f : \mathbb{Z} \longrightarrow \mathbb{N}_0 \cup \{\infty\}$ be a function such that $f^{-1}(0)$ is finite. In this paper, we generalize Xiong's result and prove that there exist uncountably many sets $A \subseteq \mathbb{Z}$ such that $R_{k_1,k_2}(A, n) = f(n)$ for all $n \in \mathbb{Z}$.

Keywords additive basis; representation function

MR(2010) Subject Classification 11B34

1. Introduction

For sets A and B of integers and integers k_1 , k_2 , let

$$k_1A + k_2B = \{k_1a + k_2b : a \in A, b \in B\}$$

The counting function for the set A is

$$A(y,x) = \operatorname{card}\{a \in A : y \leqslant a \leqslant x\}.$$

For $A \subseteq \mathbb{Z}$ and $n \in \mathbb{Z}$, let $R_{k_1,k_2}(A, n)$ be the number of solutions of $n = k_1a_1 + k_2a_2$, where $a_1, a_2 \in A$. We call A a weighted representation asymptotic basis if $R_{k_1,k_2}(A, n) \ge 1$ for all $n \in \mathbb{Z}$ with at most finite exceptions. In 2003, Nathanson [2] constructed a family of arbitrarily sparse bases $A \subseteq \mathbb{Z}$ satisfying $R_{1,1}(A, n) = 1$ for all $n \in \mathbb{Z}$. Let $f : \mathbb{Z} \longrightarrow \mathbb{N}_0 \cup \{\infty\}$ be any function such that $f^{-1}(0)$ is finite. In 2004, Nathanson [3] constructed a family of arbitrarily sparse bases $A \subseteq \mathbb{Z}$ satisfying $R_{1,1}(A, n) = f(n)$ for all $n \in \mathbb{Z}$. In 2005, Nathanson [4] proved that there exists a family of arbitrarily sparse bases of $A \subset \mathbb{Z}$ such that $R_{A,h}(n) = f(n)$ for all $n \in \mathbb{Z}$, where $R_{A,h}(n) = \sharp\{(a_1, \ldots, a_h) \in A^h : n = a_1 + \cdots + a_h, a_1 \leq a_2 \leq \cdots \leq a_h\}$. In 2011, Tang et al. [5] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n) = 1$ for all $n \in \mathbb{Z}$, where l_1, l_2 are nonzero integers with $(l_1, l_2) = 1$ and

In this paper, we obtain the following result.

Received December 26, 2014; Accepted March 20, 2015

Supported by the National Natural Science Foundation of China (Grant No. 11471017).

* Corresponding author

E-mail address: tmzzz2000@163.com (Min TANG)

Theorem 1.1 Let k_1, k_2 be nonzero integers with $(k_1, k_2) = 1$, $k_1k_2 \neq -1$ and $f : \mathbb{Z} \longrightarrow \mathbb{N}_0 \cup \{\infty\}$ such that

$$\triangle = \operatorname{card}(f^{-1}(0)) < \infty.$$

Then there exist uncountably many weighted representation asymptotic bases $A \subset \mathbb{Z}$ such that

$$R_{k_1,k_2}(A,n) = f(n)$$
 for all $n \in \mathbb{Z}$,

and

$$A(-x,x) \ge (\frac{x}{c})^{1/3},$$

where

$$c=M\{16+[\frac{\bigtriangleup+1}{2}]\}$$

and M is a constant depending on integers k_1 and k_2 .

2. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following Lemma:

Lemma 2.1 ([3, Lemma 1]) Let $f : \mathbb{Z} \longrightarrow \mathbb{N}_0 \cup \{\infty\}$ be a function such that $f^{-1}(0)$ is finite. Let \triangle denote the cardinality of the set $f^{-1}(0)$. Then there exists a sequence $U = \{\mu_l\}_{l=1}^{\infty}$ of integers such that, for every $n \in \mathbb{Z}$ and $l \in \mathbb{N}$, $f(n) = \operatorname{card}\{l \ge 1 : \mu_l = n\}$, and $|\mu_l| \le \lfloor \frac{l+\Delta}{2} \rfloor$.

Proof of Theorem 1.1 By Lemma 2.1, we know there exists a sequence $U = \{\mu_l\}_{l=1}^{\infty}$ of integers such that

$$f(n) = \operatorname{card}\{i \in \mathbb{N} : \mu_i = n\} \text{ for all integers } n \tag{1}$$

and

$$|\mu_l| \leqslant \frac{l+\Delta}{2} \quad \text{for all} \quad l \ge 1.$$
 (2)

We shall construct a strictly increasing sequence $\{i_l\}_{l=1}^{\infty}$ of positive integers and an sequence $\{A_l\}_{l=1}^{\infty}$ of finite sets of integers such that

- (i) $|A_l| = 2l;$
- (ii) there exists a positive number c such that $A_l \subseteq [-cl^3, cl^3]$;
- (iii) $R_{k_1,k_2}(A_l,n) \leq f(n)$ for all $n \in \mathbb{Z}$;
- (iv) $R_{k_1,k_2}(A_l,\mu_j) \ge \operatorname{card}\{i \le i_l : \mu_i = \mu_j\}$ for $j = 1, \dots, l$.

We shall show that the infinite set

$$A = \bigcup_{l=1}^{\infty} A_l$$

is a (k_1, k_2) -weighted representation asymptotic basis of \mathbb{Z} satisfying Theorem 1.1.

We construct A_l by induction. Since $(k_1, k_2) = 1$, there exist integers x_1 , x_2 such that $k_1x_1 + k_2x_2 = 1$. Let $i_1 = 1$. Let $A_1 = \{k_2a_1 + x_1\mu_{i_1}, -k_1a_1 + x_2\mu_{i_1}\}$, where integer a_1 is chosen to satisfy the following conditions

(a) $(k_1A_1 + k_2A_1) \cap f^{-1}(0) = \emptyset$,

702

Weighted representation asymptotic basis of integers

(b) $k_2a_1 + x_1\mu_{i_1} \neq -k_1a_1 + x_2\mu_{i_1}$,

(c) μ_{i_1} , $(k_2^2 - k_1^2)a_1 + (k_2x_1 + k_1x_2)\mu_{i_1}$, $(k_1 + k_2)(k_2a_1 + x_1\mu_{i_1})$, $(k_1 + k_2)(-k_1a_1 + x_2\mu_{i_1})$ are pairwise distinct.

The conditions (a)–(c) exclude at most $7+3\triangle$ integers, so there exist more than one choice for the number a_1 such that $|a_1| \leq 2\triangle + 3$, and a_1 satisfies (a)–(c).

Since $|\mu_{i_1}| = |\mu_1| \le (1 + \triangle)/2$ and

$$|k_2a_1 + x_1\mu_{i_1}| \leq |k_2||a_1| + |x_1||\mu_{i_1}| \leq M_1 \cdot \frac{5\triangle + 7}{2},$$

$$-k_1a_1 + x_2\mu_{i_1}| \leq |k_1||a_1| + |x_2||\mu_{i_1}| \leq M_2 \cdot \frac{5\triangle + 7}{2},$$

where $M_1 = \max\{|k_2|, |x_1|\}, M_2 = \max\{|k_1|, |x_2|\}.$

It follows that $A_1 \subseteq [-c, c]$ for any $c \ge \max\{M_1(5\triangle + 7)/2, M_2(5\triangle + 7)/2\}$, and A_1 satisfies conditions (i)–(iv).

Assume that for some l, we have constructed $A_1 \subseteq \cdots \subseteq A_{l-1}$ satisfying (i)–(iv). Now we construct A_l . Let $i_l > i_{l-1}$ be the least integer such that

$$R_{k_1,k_2}(A_{l-1},\mu_{i_l}) < f(\mu_{i_l}).$$

Then if $n = \mu_{i_{l-1}+1}, \ldots, \mu_{i_l-1}$, by (iii) and (1) we have

$$R_{k_1,k_2}(A_{l-1},n) = f(n) \ge 1.$$
(3)

Thus by the fact that $A_1 \subseteq \cdots \subseteq A_{l-1}$ and (3), we have

$$i_{l} - 1 \leq R_{k_{1},k_{2}}(A_{1},\mu_{i_{1}}) + \sum_{j=2}^{l} \sum_{n \in \{\mu_{i_{j-1}+1},\dots,\mu_{i_{j}-1}\}} R_{k_{1},k_{2}}(A_{j-1},n)$$
$$\leq \sum_{n \in \{\mu_{1},\dots,\mu_{i_{l}-1}\}} R_{k_{1},k_{2}}(A_{l-1},n) \leq \sum_{n \in \mathbb{Z}} R_{k_{1},k_{2}}(A_{l-1},n)$$
$$= \binom{2l-1}{2} < 2l^{2}.$$

Therefore $i_l \leq 2l^2$, and $\mu_{i_l} \leq l^2 + \frac{\Delta}{2}$. Let

$$A_{l} = A_{l-1} \cup \{k_{2}a_{l} + x_{1}\mu_{i_{l}}, -k_{1}a_{l} + x_{2}\mu_{i_{l}}\}.$$

 So

$$k_1 A_l + k_2 A_l = \bigcup_{i=1}^{6} T_i,$$

where

$$T_{1} = k_{1}A_{l-1} + k_{2}A_{l-1}, \quad T_{2} = k_{1}A_{l-1} + k_{2}(k_{2}a_{l} + x_{1}\mu_{i_{l}}),$$

$$T_{3} = k_{1}A_{l-1} + k_{2}(-k_{1}a_{l} + x_{2}\mu_{i_{l}}), \quad T_{4} = k_{2}A_{l-1} + k_{1}(k_{2}a_{l} + x_{1}\mu_{i_{l}}),$$

$$T_{5} = k_{2}A_{l-1} + k_{1}(-k_{1}a_{l} + x_{2}\mu_{i_{l}}),$$

$$T_{6} = \{\mu_{i_{l}}, (k_{2}^{2} - k_{1}^{2})a_{l} + (k_{2}x_{1} + k_{1}x_{2})\mu_{i_{l}}, (k_{1} + k_{2})(k_{2}a_{l} + x_{1}\mu_{i_{l}}), (k_{1} + k_{2})(-k_{1}a_{l} + x_{2}\mu_{i_{l}})\}.$$

The set A_l satisfies (i) if $k_2a_l + x_1\mu_{i_l} \notin A_{l-1}$, $-k_1a_l + x_2\mu_{i_l} \notin A_{l-1}$ and $k_2a_l + x_1\mu_{i_l} \neq -k_1a_l + x_2\mu_{i_l}$, and we exclude at most 4l - 3 integers as possible choices a_l .

The set A_l satisfies (iii), (iv) if

$$(k_1A_l + k_2A_l) \cap f^{-1}(0) = \emptyset$$

and

$$R_{k_1,k_2}(A_l,n) = \begin{cases} R_{k_1,k_2}(A_{l-1},n), & \text{if } n \in (k_1A_{l-1} + k_2A_{l-1}) \setminus \{\mu_{i_l}\}, \\ R_{k_1,k_2}(A_{l-1},n) + 1, & \text{if } n = \mu_{i_l}, \\ 1, & \text{if } n \in (k_1A_l + k_2A_l) \setminus ((k_1A_{l-1} + k_2A_{l-1}) \cup \{\mu_{i_l}\}). \end{cases}$$

Since $k_1A_l + k_2A_l = \bigcup_{i=1}^6 T_i$, it suffices to require that

- (d) $(k_1A_l + k_2A_l) \cap f^{-1}(0) = \emptyset$,
- (e) $T_i \cap T_j = \emptyset, 1 \leq i, j \leq 5, i \neq j,$
- (f) $T_i \cap (T_6 \setminus \{\mu_{i_l}\}) = \emptyset, 1 \le i \le 5,$

(g) μ_{i_l} , $(k_2^2 - k_1^2)a_l + (k_2x_1 + k_1x_2)\mu_{i_l}$, $(k_1 + k_2)(k_2a_l + x_1\mu_{i_l})$, $(k_1 + k_2)(-k_1a_l + x_2\mu_{i_l})$ are pairwise distinct.

Noting that $k_1k_2 \neq -1$, we know that the numbers of integers excluded as possible choices for a_l satisfying conditions (d), (e), (f), and (g) are at most $8(l-1)\triangle + 3\triangle$, $32(l-1)^3 + 24(l-1)^2$, $12(l-1)^2 + 24(l-1)$, 6, respectively.

Case 1 l = 2. Then it excludes at most $103 + 11\triangle$ integers, so there exist more than one choice for the number $|a_2| \leq 6\triangle + 51$ to satisfy conditions (d)–(g). So there exist integers c (depending on integers k_1 and k_2) such that $A_2 \subseteq [-cl^3, cl^3]$.

Case 2 $l \ge 3$. Then

$$32(l-1)^3 + 36(l-1)^2 + 24(l-1) + 8(l-1)\triangle + 3\triangle + 6 + 4l - 3$$

= $32l^3 - 60l^2 + (52 + 8\triangle)l - 5\triangle - 17$
 $\leq (32 + \triangle)l^3 - 8l^2 - 52l(l-1) - 5\triangle - 17.$

Write $M = \max\{|k_1|, |k_2|, |x_1|, |x_2|\}$ and let

$$c = M\{16 + [\frac{\triangle + 1}{2}]\}.$$

Then the number of integers a with $|a| \leq (16 + [\frac{\Delta+1}{2}])l^3 - l^2 - [\frac{\Delta+1}{2}]$ is

$$2(16 + [\frac{\triangle + 1}{2}])l^3 - 2l^2 - 2[\frac{\triangle + 1}{2}] + 1 \ge (32 + \triangle)l^3 - 2l^2 - \triangle.$$

So there exists an integer a such that

$$|k_2a_l + x_1\mu_{i_l}| \leq |k_2||a_l| + |x_1||\mu_{i_l}| \leq M(|a_l| + |\mu_{i_l}|) \leq cl^3,$$

$$|-k_1a_l + x_2\mu_{i_l}| \leq |k_1||a_l| + |x_2||\mu_{i_l}| \leq M(|a_l| + |\mu_{i_l}|) \leq cl^3,$$

and it follows that there exists an integer a_l such that the set A_l satisfies conditions (i)–(iv). Since this is true at each step of the induction, there are uncountably many sequences $\{A_l\}_{l=1}^{\infty}$ that satisfy conditions (i)–(iv).

704

Let $x \ge 8c$, and let l be the unique positive integer such that $cl^3 \le c < c(l+1)^3$. Conditions (i) and (ii) imply that

$$A(-x,x) \ge |A_l| = 2l > 2(\frac{x}{c})^{1/3} - 2 \ge (\frac{x}{c})^{1/3}.$$

By (iv), we have

$$R_{k_1,k_2}(A_l,\mu_j) \geqslant \lim_{l \to \infty} \operatorname{card}\{i \leqslant i_l : \mu_i = \mu_j\}, \quad j = 1,\dots,l.$$

$$(4)$$

Since $U = {\mu_l}_{l=1}^{\infty}$ is a sequence of integers such that $f(n) = \operatorname{card} {i \in \mathbb{N} : \mu_i = n}$ for all integers n, it follows that $n \in U = {\mu_l}_{l=1}^{\infty}$. By (4) we have

$$\lim_{l \to \infty} R_{k_1, k_2}(A_l, n) \ge \lim_{l \to \infty} \operatorname{card}\{i \le i_l : \mu_i = n\}.$$
(5)

Since

$$f(n) = \lim_{l \to \infty} \operatorname{card}\{i \leq i_l : \mu_i = n\},\$$

by (iii) and (5), we have

$$R_{k_1,k_2}(A,n) = \lim_{l \to \infty} R_{k_1,k_2}(A_l,n) = f(n)$$

for all $n \in \mathbb{Z}$. This completes the proof of Theorem 1.1. \Box

Acknowledgement We would like to thank the referee for his/her helpful comments.

References

- [1] Yonggao CHEN. On the Erdös-Turán conjecture, C. R. Math. Acad. Sci. Paris, 2012, 350(21-22): 933–935.
- [2] M. B. NATHANSON. Unique representation bases for integers. Acta Arith., 2003, 108(1): 1-8.
- [3] M. B. NATHANSON. The Inverse Problem for Representation Functions of Additive Bases. Springer, New York, 2004.
- M. B. NATHANSON. Every function is the representation function of an additive basis for the integers. Port. Math. (N.S.), 2005, 62(1): 55–72.
- [5] C. W. TANG, Min TANG, Lei WU. Unique difference bases of Z. J. Integer Seq., 2011, 14(1): 1-6.
- [6] Min TANG, On the Erdős-Turán. J. Number Theory, 2015, 150(5): 74-80.
- [7] Ran XIONG. Unique weighted representation basis of integers. J. Math. Res. Appl., 2014, 34(3): 332–336.
- [8] Ran XIONG, Min TANG. Unique representation bi-basis for the integers. Bull. Aust. Math. Soc., 2014, 89(3): 460-465.
- [9] Quanhui YANG. A generalization of Chen's theorem on the Erdös-Turán conjecture. Int. J. Number Theory, 2013, 9(7): 1683–1686.