Weighted Representation Asymptotic Basis of Integers

Yujie WANG, Min TANG*
School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China

Abstract

Let k_{1}, k_{2} be nonzero integers with $\left(k_{1}, k_{2}\right)=1$ and $k_{1} k_{2} \neq-1$. Let $R_{k_{1}, k_{2}}(A, n)$ be the number of solutions of $n=k_{1} a_{1}+k_{2} a_{2}$, where $a_{1}, a_{2} \in A$. Recently, Xiong proved that there is a set $A \subseteq \mathbb{Z}$ such that $R_{k_{1}, k_{2}}(A, n)=1$ for all $n \in \mathbb{Z}$. Let $f: \mathbb{Z} \longrightarrow \mathbb{N}_{0} \cup\{\infty\}$ be a function such that $f^{-1}(0)$ is finite. In this paper, we generalize Xiong's result and prove that there exist uncountably many sets $A \subseteq \mathbb{Z}$ such that $R_{k_{1}, k_{2}}(A, n)=f(n)$ for all $n \in \mathbb{Z}$.

Keywords additive basis; representation function
MR(2010) Subject Classification 11B34

1. Introduction

For sets A and B of integers and integers k_{1}, k_{2}, let

$$
k_{1} A+k_{2} B=\left\{k_{1} a+k_{2} b: a \in A, b \in B\right\} .
$$

The counting function for the set A is

$$
A(y, x)=\operatorname{card}\{a \in A: y \leqslant a \leqslant x\} .
$$

For $A \subseteq \mathbb{Z}$ and $n \in \mathbb{Z}$, let $R_{k_{1}, k_{2}}(A, n)$ be the number of solutions of $n=k_{1} a_{1}+k_{2} a_{2}$, where $a_{1}, a_{2} \in A$. We call A a weighted representation asymptotic basis if $R_{k_{1}, k_{2}}(A, n) \geqslant 1$ for all $n \in \mathbb{Z}$ with at most finite exceptions. In 2003, Nathanson [2] constructed a family of arbitrarily sparse bases $A \subseteq \mathbb{Z}$ satisfying $R_{1,1}(A, n)=1$ for all $n \in \mathbb{Z}$. Let $f: \mathbb{Z} \longrightarrow \mathbb{N}_{0} \cup\{\infty\}$ be any function such that $f^{-1}(0)$ is finite. In 2004, Nathanson [3] constructed a family of arbitrarily sparse bases $A \subseteq \mathbb{Z}$ satisfying $R_{1,1}(A, n)=f(n)$ for all $n \in \mathbb{Z}$. In 2005, Nathanson [4] proved that there exists a family of arbitrarily sparse bases of $A \subset \mathbb{Z}$ such that $R_{A, h}(n)=f(n)$ for all $n \in \mathbb{Z}$, where $R_{A, h}(n)=\sharp\left\{\left(a_{1}, \ldots, a_{h}\right) \in A^{h}: n=a_{1}+\cdots+a_{h}, a_{1} \leqslant a_{2} \leqslant \cdots \leqslant a_{h}\right\}$. In 2011, Tang et al. [5] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{1,-1}(A, n)=1$ for all $n \neq 0$. In 2014, Xiong [7] proved that there exists a family of bases of $A \subseteq \mathbb{Z}$ satisfying $R_{l_{1}, l_{2}}(A, n)=1$ for all $n \in \mathbb{Z}$, where l_{1}, l_{2} are nonzero integers with $\left(l_{1}, l_{2}\right)=1$ and $l_{1} l_{2} \neq-1$. We refer to $[1,6,8,9]$ for related problems.

In this paper, we obtain the following result.

[^0]Theorem 1.1 Let k_{1}, k_{2} be nonzero integers with $\left(k_{1}, k_{2}\right)=1, k_{1} k_{2} \neq-1$ and $f: \mathbb{Z} \longrightarrow \mathbb{N}_{0} \cup\{\infty\}$ such that

$$
\triangle=\operatorname{card}\left(f^{-1}(0)\right)<\infty
$$

Then there exist uncountably many weighted representation asymptotic bases $A \subset \mathbb{Z}$ such that

$$
R_{k_{1}, k_{2}}(A, n)=f(n) \text { for all } n \in \mathbb{Z}
$$

and

$$
A(-x, x) \geqslant\left(\frac{x}{c}\right)^{1 / 3}
$$

where

$$
c=M\left\{16+\left[\frac{\triangle+1}{2}\right]\right\}
$$

and M is a constant depending on integers k_{1} and k_{2}.

2. Proof of Theorem 1.1

To prove Theorem 1.1, we need the following Lemma:
Lemma 2.1 ([3, Lemma 1]) Let $f: \mathbb{Z} \longrightarrow \mathbb{N}_{0} \cup\{\infty\}$ be a function such that $f^{-1}(0)$ is finite. Let \triangle denote the cardinality of the set $f^{-1}(0)$. Then there exists a sequence $U=\left\{\mu_{l}\right\}_{l=1}^{\infty}$ of integers such that, for every $n \in \mathbb{Z}$ and $l \in \mathbb{N}, f(n)=\operatorname{card}\left\{l \geqslant 1: \mu_{l}=n\right\}$, and $\left|\mu_{l}\right| \leqslant\left[\frac{l+\triangle}{2}\right]$.

Proof of Theorem 1.1 By Lemma 2.1, we know there exists a sequence $U=\left\{\mu_{l}\right\}_{l=1}^{\infty}$ of integers such that

$$
\begin{equation*}
f(n)=\operatorname{card}\left\{i \in \mathbb{N}: \mu_{i}=n\right\} \text { for all integers } n \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\mu_{l}\right| \leqslant \frac{l+\triangle}{2} \text { for all } l \geqslant 1 \tag{2}
\end{equation*}
$$

We shall construct a strictly increasing sequence $\left\{i_{l}\right\}_{l=1}^{\infty}$ of positive integers and an sequence $\left\{A_{l}\right\}_{l=1}^{\infty}$ of finite sets of integers such that
(i) $\left|A_{l}\right|=2 l$;
(ii) there exists a positive number c such that $A_{l} \subseteq\left[-c l^{3}, c l^{3}\right]$;
(iii) $R_{k_{1}, k_{2}}\left(A_{l}, n\right) \leqslant f(n)$ for all $n \in \mathbb{Z}$;
(iv) $R_{k_{1}, k_{2}}\left(A_{l}, \mu_{j}\right) \geqslant \operatorname{card}\left\{i \leqslant i_{l}: \mu_{i}=\mu_{j}\right\}$ for $j=1, \ldots, l$.

We shall show that the infinite set

$$
A=\bigcup_{l=1}^{\infty} A_{l}
$$

is a (k_{1}, k_{2})-weighted representation asymptotic basis of \mathbb{Z} satisfying Theorem 1.1.
We construct A_{l} by induction. Since $\left(k_{1}, k_{2}\right)=1$, there exist integers x_{1}, x_{2} such that $k_{1} x_{1}+k_{2} x_{2}=1$. Let $i_{1}=1$. Let $A_{1}=\left\{k_{2} a_{1}+x_{1} \mu_{i_{1}},-k_{1} a_{1}+x_{2} \mu_{i_{1}}\right\}$, where integer a_{1} is chosen to satisfy the following conditions
(a) $\left(k_{1} A_{1}+k_{2} A_{1}\right) \cap f^{-1}(0)=\varnothing$,
(b) $k_{2} a_{1}+x_{1} \mu_{i_{1}} \neq-k_{1} a_{1}+x_{2} \mu_{i_{1}}$,
(c) $\mu_{i_{1}},\left(k_{2}^{2}-k_{1}^{2}\right) a_{1}+\left(k_{2} x_{1}+k_{1} x_{2}\right) \mu_{i_{1}},\left(k_{1}+k_{2}\right)\left(k_{2} a_{1}+x_{1} \mu_{i_{1}}\right),\left(k_{1}+k_{2}\right)\left(-k_{1} a_{1}+x_{2} \mu_{i_{1}}\right)$ are pairwise distinct.

The conditions (a)-(c) exclude at most $7+3 \triangle$ integers, so there exist more than one choice for the number a_{1} such that $\left|a_{1}\right| \leqslant 2 \triangle+3$, and a_{1} satisfies (a)-(c).

Since $\left|\mu_{i_{1}}\right|=\left|\mu_{1}\right| \leqslant(1+\triangle) / 2$ and

$$
\begin{array}{r}
\left|k_{2} a_{1}+x_{1} \mu_{i_{1}}\right| \leqslant\left|k_{2}\right|\left|a_{1}\right|+\left|x_{1}\right|\left|\mu_{i_{1}}\right| \leqslant M_{1} \cdot \frac{5 \triangle+7}{2} \\
\left|-k_{1} a_{1}+x_{2} \mu_{i_{1}}\right| \leqslant\left|k_{1}\right|\left|a_{1}\right|+\left|x_{2}\right|\left|\mu_{i_{1}}\right| \leqslant M_{2} \cdot \frac{5 \triangle+7}{2}
\end{array}
$$

where $M_{1}=\max \left\{\left|k_{2}\right|,\left|x_{1}\right|\right\}, M_{2}=\max \left\{\left|k_{1}\right|,\left|x_{2}\right|\right\}$.
It follows that $A_{1} \subseteq[-c, c]$ for any $c \geqslant \max \left\{M_{1}(5 \triangle+7) / 2, M_{2}(5 \triangle+7) / 2\right\}$, and A_{1} satisfies conditions (i)-(iv).

Assume that for some l, we have constructed $A_{1} \subseteq \cdots \subseteq A_{l-1}$ satisfying (i)-(iv). Now we construct A_{l}. Let $i_{l}>i_{l-1}$ be the least integer such that

$$
R_{k_{1}, k_{2}}\left(A_{l-1}, \mu_{i_{l}}\right)<f\left(\mu_{i_{l}}\right)
$$

Then if $n=\mu_{i_{l-1}+1}, \ldots, \mu_{i_{l}-1}$, by (iii) and (1) we have

$$
\begin{equation*}
R_{k_{1}, k_{2}}\left(A_{l-1}, n\right)=f(n) \geqslant 1 . \tag{3}
\end{equation*}
$$

Thus by the fact that $A_{1} \subseteq \cdots \subseteq A_{l-1}$ and (3), we have

$$
\begin{aligned}
i_{l}-1 & \leqslant R_{k_{1}, k_{2}}\left(A_{1}, \mu_{i_{1}}\right)+\sum_{j=2}^{l} \sum_{n \in\left\{\mu_{i_{j-1}+1}, \ldots, \mu_{i_{j}-1}\right\}} R_{k_{1}, k_{2}}\left(A_{j-1}, n\right) \\
& \leqslant \sum_{n \in\left\{\mu_{1}, \ldots, \mu_{i_{l}-1}\right\}} R_{k_{1}, k_{2}}\left(A_{l-1}, n\right) \leqslant \sum_{n \in \mathbb{Z}} R_{k_{1}, k_{2}}\left(A_{l-1}, n\right) \\
& =\binom{2 l-1}{2}<2 l^{2} .
\end{aligned}
$$

Therefore $i_{l} \leqslant 2 l^{2}$, and $\mu_{i_{l}} \leqslant l^{2}+\frac{\Delta}{2}$. Let

$$
A_{l}=A_{l-1} \cup\left\{k_{2} a_{l}+x_{1} \mu_{i_{l}},-k_{1} a_{l}+x_{2} \mu_{i_{l}}\right\} .
$$

So

$$
k_{1} A_{l}+k_{2} A_{l}=\bigcup_{i=1}^{6} T_{i}
$$

where

$$
\begin{aligned}
T_{1}= & k_{1} A_{l-1}+k_{2} A_{l-1}, \quad T_{2}=k_{1} A_{l-1}+k_{2}\left(k_{2} a_{l}+x_{1} \mu_{i_{l}}\right), \\
T_{3}= & k_{1} A_{l-1}+k_{2}\left(-k_{1} a_{l}+x_{2} \mu_{i_{l}}\right), \quad T_{4}=k_{2} A_{l-1}+k_{1}\left(k_{2} a_{l}+x_{1} \mu_{i_{l}}\right), \\
T_{5}= & k_{2} A_{l-1}+k_{1}\left(-k_{1} a_{l}+x_{2} \mu_{i_{l}}\right), \\
T_{6}= & \left\{\mu_{i_{l}},\left(k_{2}^{2}-k_{1}^{2}\right) a_{l}+\left(k_{2} x_{1}+k_{1} x_{2}\right) \mu_{i_{l}},\right. \\
& \left.\left(k_{1}+k_{2}\right)\left(k_{2} a_{l}+x_{1} \mu_{i_{l}}\right),\left(k_{1}+k_{2}\right)\left(-k_{1} a_{l}+x_{2} \mu_{i_{l}}\right)\right\} .
\end{aligned}
$$

The set A_{l} satisfies (i) if $k_{2} a_{l}+x_{1} \mu_{i_{l}} \notin A_{l-1},-k_{1} a_{l}+x_{2} \mu_{i_{l}} \notin A_{l-1}$ and $k_{2} a_{l}+x_{1} \mu_{i_{l}} \neq-k_{1} a_{l}+$ $x_{2} \mu_{i_{l}}$, and we exclude at most $4 l-3$ integers as possible choices a_{l}.

The set A_{l} satisfies (iii), (iv) if

$$
\left(k_{1} A_{l}+k_{2} A_{l}\right) \cap f^{-1}(0)=\emptyset
$$

and

$$
R_{k_{1}, k_{2}}\left(A_{l}, n\right)= \begin{cases}R_{k_{1}, k_{2}}\left(A_{l-1}, n\right), & \text { if } n \in\left(k_{1} A_{l-1}+k_{2} A_{l-1}\right) \backslash\left\{\mu_{i_{l}}\right\}, \\ R_{k_{1}, k_{2}}\left(A_{l-1}, n\right)+1, & \text { if } n=\mu_{i_{l}} \\ 1, & \text { if } n \in\left(k_{1} A_{l}+k_{2} A_{l}\right) \backslash\left(\left(k_{1} A_{l-1}+k_{2} A_{l-1}\right) \cup\left\{\mu_{i_{l}}\right\}\right) .\end{cases}
$$

Since $k_{1} A_{l}+k_{2} A_{l}=\bigcup_{i=1}^{6} T_{i}$, it suffices to require that
(d) $\left(k_{1} A_{l}+k_{2} A_{l}\right) \cap f^{-1}(0)=\varnothing$,
(e) $T_{i} \cap T_{j}=\varnothing, 1 \leqslant i, j \leqslant 5, i \neq j$,
(f) $T_{i} \cap\left(T_{6} \backslash\left\{\mu_{i_{l}}\right\}\right)=\varnothing, 1 \leqslant i \leqslant 5$,
(g) $\mu_{i_{l}},\left(k_{2}^{2}-k_{1}^{2}\right) a_{l}+\left(k_{2} x_{1}+k_{1} x_{2}\right) \mu_{i_{l}},\left(k_{1}+k_{2}\right)\left(k_{2} a_{l}+x_{1} \mu_{i_{l}}\right),\left(k_{1}+k_{2}\right)\left(-k_{1} a_{l}+x_{2} \mu_{i_{l}}\right)$ are pairwise distinct.

Noting that $k_{1} k_{2} \neq-1$, we know that the numbers of integers excluded as possible choices for a_{l} satisfying conditions (d), (e), (f), and (g) are at most $8(l-1) \triangle+3 \triangle, 32(l-1)^{3}+24(l-1)^{2}$, $12(l-1)^{2}+24(l-1), 6$, respectively.

Case $1 l=2$. Then it excludes at most $103+11 \triangle$ integers, so there exist more than one choice for the number $\left|a_{2}\right| \leqslant 6 \triangle+51$ to satisfy conditions (d)-(g). So there exist integers c (depending on integers k_{1} and k_{2}) such that $A_{2} \subseteq\left[-c l^{3}, c l^{3}\right]$.

Case $2 l \geqslant 3$. Then

$$
\begin{aligned}
& 32(l-1)^{3}+36(l-1)^{2}+24(l-1)+8(l-1) \triangle+3 \triangle+6+4 l-3 \\
& \quad=32 l^{3}-60 l^{2}+(52+8 \triangle) l-5 \triangle-17 \\
& \quad \leqslant(32+\triangle) l^{3}-8 l^{2}-52 l(l-1)-5 \triangle-17
\end{aligned}
$$

Write $M=\max \left\{\left|k_{1}\right|,\left|k_{2}\right|,\left|x_{1}\right|,\left|x_{2}\right|\right\}$ and let

$$
c=M\left\{16+\left[\frac{\triangle+1}{2}\right]\right\} .
$$

Then the number of integers a with $|a| \leqslant\left(16+\left[\frac{\Delta+1}{2}\right]\right) l^{3}-l^{2}-\left[\frac{\Delta+1}{2}\right]$ is

$$
2\left(16+\left[\frac{\triangle+1}{2}\right]\right) l^{3}-2 l^{2}-2\left[\frac{\triangle+1}{2}\right]+1 \geqslant(32+\triangle) l^{3}-2 l^{2}-\triangle
$$

So there exists an integer a such that

$$
\begin{gathered}
\left|k_{2} a_{l}+x_{1} \mu_{i_{l}}\right| \leqslant\left|k_{2}\right|\left|a_{l}\right|+\left|x_{1}\right|\left|\mu_{i_{l}}\right| \leqslant M\left(\left|a_{l}\right|+\left|\mu_{i_{l}}\right|\right) \leqslant c l^{3} \\
\left|-k_{1} a_{l}+x_{2} \mu_{i_{l}}\right| \leqslant\left|k_{1}\right|\left|a_{l}\right|+\left|x_{2}\right|\left|\mu_{i_{l}}\right| \leqslant M\left(\left|a_{l}\right|+\left|\mu_{i_{l}}\right|\right) \leqslant c l^{3}
\end{gathered}
$$

and it follows that there exists an integer a_{l} such that the set A_{l} satisfies conditions (i)-(iv). Since this is true at each step of the induction, there are uncountably many sequences $\left\{A_{l}\right\}_{l=1}^{\infty}$ that satisfy conditions (i)-(iv).

Let $x \geqslant 8 c$, and let l be the unique positive integer such that $c l^{3} \leqslant c<c(l+1)^{3}$. Conditions (i) and (ii) imply that

$$
A(-x, x) \geqslant\left|A_{l}\right|=2 l>2\left(\frac{x}{c}\right)^{1 / 3}-2 \geqslant\left(\frac{x}{c}\right)^{1 / 3}
$$

By (iv), we have

$$
\begin{equation*}
R_{k_{1}, k_{2}}\left(A_{l}, \mu_{j}\right) \geqslant \lim _{l \rightarrow \infty} \operatorname{card}\left\{i \leqslant i_{l}: \mu_{i}=\mu_{j}\right\}, \quad j=1, \ldots, l . \tag{4}
\end{equation*}
$$

Since $U=\left\{\mu_{l}\right\}_{l=1}^{\infty}$ is a sequence of integers such that $f(n)=\operatorname{card}\left\{i \in \mathbb{N}: \mu_{i}=n\right\}$ for all integers n, it follows that $n \in U=\left\{\mu_{l}\right\}_{l=1}^{\infty}$. By (4) we have

$$
\begin{equation*}
\lim _{l \rightarrow \infty} R_{k_{1}, k_{2}}\left(A_{l}, n\right) \geqslant \lim _{l \rightarrow \infty} \operatorname{card}\left\{i \leqslant i_{l}: \mu_{i}=n\right\} . \tag{5}
\end{equation*}
$$

Since

$$
f(n)=\lim _{l \rightarrow \infty} \operatorname{card}\left\{i \leqslant i_{l}: \mu_{i}=n\right\}
$$

by (iii) and (5), we have

$$
R_{k_{1}, k_{2}}(A, n)=\lim _{l \rightarrow \infty} R_{k_{1}, k_{2}}\left(A_{l}, n\right)=f(n)
$$

for all $n \in \mathbb{Z}$. This completes the proof of Theorem 1.1.
Acknowledgement We would like to thank the referee for his/her helpful comments.

References

[1] Yonggao CHEN. On the Erdös-Turán conjecture, C. R. Math. Acad. Sci. Paris, 2012, 350(21-22): 933-935.
[2] M. B. NATHANSON. Unique representation bases for integers. Acta Arith., 2003, 108(1): 1-8.
[3] M. B. NATHANSON. The Inverse Problem for Representation Functions of Additive Bases. Springer, New York, 2004.
[4] M. B. NATHANSON. Every function is the representation function of an additive basis for the integers. Port. Math. (N.S.), 2005, 62(1): 55-72.
[5] C. W. TANG, Min TANG, Lei WU. Unique difference bases of \mathbb{Z}. J. Integer Seq., 2011, 14(1): 1-6.
[6] Min TANG, On the Erdős-Turán. J. Number Theory, 2015, 150(5): 74-80.
[7] Ran XIONG. Unique weighted representation basis of integers. J. Math. Res. Appl., 2014, 34(3): 332-336.
[8] Ran XIONG, Min TANG. Unique representation bi-basis for the integers. Bull. Aust. Math. Soc., 2014, 89(3): 460-465.
[9] Quanhui YANG. A generalization of Chen's theorem on the Erdös-Turán conjecture. Int. J. Number Theory, 2013, 9(7): 1683-1686.

[^0]: Received December 26, 2014; Accepted March 20, 2015
 Supported by the National Natural Science Foundation of China (Grant No. 11471017).

 * Corresponding author

 E-mail address: tmzzz2000@163.com (Min TANG)

