
Journal of Mathematical Research with Applications

Jan., 2016, Vol. 36, No. 1, pp. 1–8

DOI:10.3770/j.issn:2095-2651.2016.01.001

Http://jmre.dlut.edu.cn

The Signless Laplacian Spectral Characterization of
Strongly Connected Bicyclic Digraphs

Weige XI, Ligong WANG∗

Department of Applied Mathematics, School of Science, Northwestern Polytechnical University,

Shaanxi 710072, P.R.China

Abstract Let
−→
G be a digraph and A(

−→
G) be the adjacency matrix of

−→
G . Let D(

−→
G) be the

diagonal matrix with outdegrees of vertices of
−→
G and Q(

−→
G) = D(

−→
G) + A(

−→
G) be the signless

Laplacian matrix of
−→
G . The spectral radius of Q(

−→
G) is called the signless Laplacian spectral

radius of
−→
G . In this paper, we determine the unique digraph which attains the maximum (or

minimum) signless Laplacian spectral radius among all strongly connected bicyclic digraphs.

Furthermore, we prove that any strongly connected bicyclic digraph is determined by the

signless Laplacian spectrum.
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1. Introduction

All digraphs considered in this paper are finite simple strongly connected digraphs, i.e.,

without loops and multiple arcs. In the following, we just define some terminologies and notations

which will be used then, for other terminology and notation, we refer the reader to [1] for an

extensive treatment of digraphs.

Let
−→
G = (V (

−→
G), E(

−→
G)) be a digraph with vertex set V (

−→
G) = {v1, v2, . . . , vn} and arc set

E(
−→
G). For a digraph

−→
G , if two vertices are connected by an arc, then they are called adjacent.

If there is an arc from vi to vj , we indicate this by writing (vi, vj), call vj the head of (vi, vj),

and vi the tail of (vi, vj), respectively. The digraph
−→
G is strongly connected if for every pair of

vertices vi, vj ∈ V (
−→
G), there exists a directed path from vi to vj and a directed path from vj

to vi. For any vertex vi, let N+
i = {vj ∈ V (

−→
G) | (vi, vj) ∈ E(

−→
G)} and N−

i = {vj ∈ V (
−→
G) |

(vj , vi) ∈ E(
−→
G)} denote the out-neighbors and in-neighbors of vi, respectively. Let d+i = |N+

i |
denote the outdegree of the vertex vi, and d−i = |N−

i | denote the indegree of the vertex vi in

the digraph
−→
G . Let

−→
Pn and

−→
Cn denote the directed path and the directed cycle on n vertices,

respectively. Suppose
−→
Pk = v1v2 . . . vk. We call v1 the initial vertex of the directed path

−→
Pk ,

vk the terminal vertex of the directed path
−→
Pk , respectively. A digraph

−→
G is called a strongly

connected bicyclic digraph if
−→
G is strongly connected and |E(

−→
G)| = |V (

−→
G |+ 1.
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For a digraph
−→
G , let A(

−→
G) = (aij)n×n be the adjacency matrix of

−→
G , where aij = 1 if

(vi, vj) ∈ E(
−→
G) and aij = 0 otherwise. Let D(

−→
G) be the diagonal matrix with outdegrees of the

vertices of
−→
G . Then the matrix Q(

−→
G) = D(

−→
G) + A(

−→
G) is called the signless Laplacian matrix

of
−→
G . The matrix Q(

−→
G) is nonnegative and irreducible when

−→
G is strongly connected. The

spectral radius of Q(
−→
G), i.e., the largest modulus of the eigenvalues of Q(

−→
G), is called the signless

Laplacian spectral radius of
−→
G , denoted by q(

−→
G). The polynomial ϕ(

−→
G,λ) = det(λIn −Q(

−→
G)),

where In is an n × n identity matrix, is defined as the characteristic polynomial with respect

to the signless Laplacian matrix Q(
−→
G). The collection of eigenvalues of Q(

−→
G) together with

multiplicates is called the Q-spectrum of
−→
G . Two nonisomorphic digraphs are said to be Q-

cospectral if they have the same signless Laplacian spectrum. A digraph is said to be determined

by Q-spectrum if there is no other nonisomorphic digraph with the same signless Laplacian

spectrum, we denote these digraphs as DQS digraphs. There are many articles on the topic

which undirected graphs are DQS [2–4]. For additional remarks on this topic we refer the reader

to see two excellent surveys [5] and [6]. However, there is not much known about digraphs.

It follows from the Perron-Frobenius Theorem [7] that q(
−→
G) is an eigenvalue of the signless

Laplacian matrix Q(
−→
G) and there is a positive unit eigenvector corresponding to q(

−→
G) when

−→
G is strongly connected. The positive unit eigenvector corresponding to q(

−→
G) is called the

Perron vector of Q(
−→
G). The signless Laplacian spectral radius of digraphs has been studied in

the literature [8–10]. So far, which digraphs have the maximum or minimum signless Laplacian

spectral radius among all the strongly connected bicyclic digraphs has not been determined.

The rest of this paper is organized as follows. In Section 2, we characterize the extremal

digraphs which attain the maximum and minimum signless Laplacian spectral radius among

θ-digraphs. In Section 3, we characterize the extremal digraphs which attain the maximum and

minimum signless Laplacian spectral radius among ∞-digraphs. In Section 4, we determine the

extremal digraphs which attain the maximum and minimum signless Laplacian spectral radius

among all the strongly connected bicyclic digraphs. Furthermore, we prove that any strongly

connected bicyclic digraph is determined by the signless Laplacian spectrum, i.e., any strongly

connected bicyclic digraph is DQS.

2. The signless Laplacian spectral radius of θ-digraphs

Let θ-graph be a graph consisting of three paths which have the same end-vertices. In [11],

the authors defined the θ-digraph as follows. The θ-digraph consists of three directed paths Pa+2,

Pb+2, and Pc+2 such that the initial of Pa+2 and Pb+2 is the terminal vertex of Pc+2, and the

initial vertex of Pc+2 is the terminal of Pa+2 and Pb+2, denoted by θ(a, b, c). In the following,

we suppose that a ≤ b and a+ b+ c+ 2 = n.

In this section, we will prove that θ(0, n−2, 0) is the unique digraph which attains the maxi-

mum signless Laplacian spectral radius among all θ(a, b, c)-digraphs on n vertices and θ(0, 1, n−3)

is the unique digraph which attains the minimum signless Laplacian spectral radius among all

θ(a, b, c)-digraphs on n vertices.
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Lemma 2.1 ([12]) Let A be a nonnegative irreducible matrix with the largest eigenvalue ϱ(A)

and row sums s1, s2, . . . , sn. Then

min
1≤i≤n

si ≤ ϱ(A) ≤ max
1≤i≤n

si.

Moreover, one of the equalities holds if and only if the row sums of A are all equal.

Lemma 2.2 If a ≥ 1, then q(θ(a− 1, b+ 1, c) > q(θ(a, b, c)).

Proof Let θ(a, b, c) be a digraph shown in Figure 1. Suppose X = (xu, xv, x1, x2, . . . , xa, y1, y2,

. . . , yb, z1, z2, . . . , zc) is the Perron vector of Q(θ(a, b, c)) corresponding to q(θ(a, b, c)), where xu

and xv correspond to u and v, respectively, and xi, yj and zk (i = 1, 2, . . . , a; j = 1, 2, . . . , b; k =

1, 2, . . . , c) correspond to wi, w
1
j and w2

k, respectively.

u
v

w
1

w
2

w
a

w
1 w

2
w
b

w
1w

c-1
w
c

Figure 1 The digraph θ(a, b, c).

Since Q(θ(a, b, c))X = q(θ(a, b, c))X, one can easily see that

q(θ(a, b, c))xi = xi + xi+1, i = 1, 2, . . . , a− 1,

q(θ(a, b, c))yj = yj + yj+1, j = 1, 2, . . . , b− 1,

q(θ(a, b, c))zk = zk + zk+1, k = 1, 2, . . . , c− 1,

q(θ(a, b, c))xu = 2xu + x1 + y1,

q(θ(a, b, c))xv = xv + z1,

q(θ(a, b, c))xa = xa + xv,

q(θ(a, b, c))yb = yb + xv,

q(θ(a, b, c))zc = zc + xu.

Then 
xa = (q(θ(a, b, c))− 1)a−1x1,

yb = (q(θ(a, b, c))− 1)b−1y1,

zc = (q(θ(a, b, c))− 1)c−1z1,

xv = (q(θ(a, b, c))− 1)ax1 = (q(θ(a, b, c))− 1)by1.

Furthermore,

xu = (q(θ(a, b, c))− 1)cz1 = (q(θ(a, b, c))− 1)c+1xv = (q(θ(a, b, c))− 1)c+b+1y1.

Thus we deduce that

(q(θ(a, b, c))− 2)(q(θ(a, b, c))− 1)c+b+1y1 = (q(θ(a, b, c))− 1)b−ay1 + y1.
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By Perron-Frobenius Theorem, we have y1 > 0, therefore

(q(θ(a, b, c))− 2)(q(θ(a, b, c))− 1)n−1 = (q(θ(a, b, c))− 1)b + (q(θ(a, b, c))− 1)a.

Similarly, we have

(q(θ(a− 1, b+ 1, c))− 2)(q(θ(a− 1, b+ 1, c))− 1)n−1

= (q(θ(a− 1, b+ 1, c))− 1)b+1 + (q(θ(a− 1, b+ 1, c))− 1)a−1.

Let f(x) = (x−2)(x−1)n−1−(x−1)b−(x−1)a and g(x) = (x−2)(x−1)n−1−(x−1)b+1−(x−1)a−1.

It is not difficult to see that q(θ(a, b, c)) is the largest real root of f(x) = (x−2)(x−1)n−1− (x−
1)b−(x−1)a = 0. Similarly, q(θ(a−1, b+1, c)) is the largest real root of g(x) = (x−2)(x−1)n−1−
(x−1)b+1− (x− 1)a−1 = 0. f(x)− g(x) = (x− 2)((x−1)b− (x− 1)a−1) > 0, for all x > 2. Since

the minimum row sum of Q(θ(a, b, c)) is 2, and the row sums of Q(θ(a, b, c)) are not all equal,

then by Lemma 2.1, we have q(θ(a, b, c)) > 2. Then we have q(θ(a, b, c)) < q(θ(a− 1, b+ 1, c)).

Lemma 2.3 ([9]) Let
−→
G = (V (

−→
G), E(

−→
G)) be a simple digraph on n vertices, u, v, w distinct

vertices of V (
−→
G), (u, v) ∈ E(

−→
G) and X = (x1, x2, . . . , xn) be the unique positive unit eigenvector

corresponding to the signless Laplacian spectral radius q(
−→
G), where xi corresponds to the vertex

i. Let H =
−→
G − {(u, v)} + {(u,w)} (Noting that if (u,w) ∈ E(

−→
G), then H has multiple arc

(u,w)). If xw ≥ xv, then q(H) ≥ q(
−→
G). Furthermore, if H is strongly connected and xw > xv,

then q(H) > q(
−→
G).

Lemma 2.4 If c ≥ 1, b ≥ 1, then q(θ(a, b+ 1, c− 1) > q(θ(a, b, c)) > q(θ(a, b− 1, c+ 1)).

Proof Let θ(a, b, c) be a digraph shown in Figure 1 and X = (xu, xv, x1, x2, . . . , xa, y1, y2, . . . , yb,

z1, z2, . . . , zc) be the Perron vector of Q(θ(a, b, c)) corresponding to q(θ(a, b, c)), where xu and

xv correspond to u and v, respectively, and xi, yj and zk (i = 1, 2, . . . , a; j = 1, 2, . . . , b; k =

1, 2, . . . , c) correspond to wi, w
1
j and w2

k, respectively. It is not difficult to see that θ(a, b+1, c−
1) = θ(a, b, c) − {(wa, v)} + {(wa, w

2
1)}. Since (q(θ(a, b, c)) − 1)xv = z1, q(θ(a, b, c)) > 2, we

have z1 > xv. By Lemma 2.3, we have q(θ(a, b + 1, c − 1)) > q(θ(a, b, c)). Similarly, we have

q(θ(a, b, c)) > q(θ(a, b− 1, c+ 1)). �

Lemma 2.5 If c ≥ 1, a ≥ 1, then q(θ(a+ 1, b, c− 1) > q(θ(a, b, c)) > q(θ(a− 1, b, c+ 1)).

Proof Let θ(a, b, c) be a digraph shown in Figure 1 and X = (xu, xv, x1, x2, . . . , xa, y1, y2, . . . , yb,

z1, z2, . . . , zc) be the Perron vector of Q(θ(a, b, c)) corresponding to q(θ(a, b, c)), where xu and

xv correspond to u and v, respectively, and xi, yj and zk (i = 1, 2, . . . , a; j = 1, 2, . . . , b; k =

1, 2, . . . , c) correspond to wi, w
1
j and w2

k, respectively. It is not difficult to see that θ(a+1, b, c−
1) = θ(a, b, c) − {(w1

b , v)} + {(w1
b , w

2
1)}. Since (q(θ(a, b, c)) − 1)xv = z1, q(θ(a, b, c)) > 2, we

have z1 > xv. By Lemma 2.3, we have q(θ(a + 1, b, c − 1)) > q(θ(a, b, c)). Similarly, we have

q(θ(a, b, c)) > q(θ(a− 1, b, c+ 1)). �
Combining Lemmas 2.2, 2.4, and 2.5, we have the following theorem.

Theorem 2.6 Among all θ-digraphs, the digraph θ(0, n − 2, 0) is the unique digraph which
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attains the maximum signless Laplacian spectral radius and the digraph θ(0, 1, n − 3) is the

unique digraph which attains the minimum signless Laplacian spectral radius.

3. The signless Laplacian spectral radius of ∞-digraphs

Let an ∞-digraph be a digraph on n vertices obtained from two directed cycles
−→
Ck and

−→
Cl

by identifying a vertex of
−→
Ck with a vertex of

−→
Cl , denoted by ∞(k, l), k ≤ l and k + l = n+ 1.

In this section, we will prove that ∞(2, n− 1) attains the maximum signless Laplacian spectral

among all digraphs in ∞(k, l) and ∞(⌊n+1
2 ⌋, ⌈n+1

2 ⌉) attains the minimum signless Laplacian

spectral among all ∞(k, l)-digraphs for fixed n (see Figure 2).

v
k-1

v
1

u
1

w

u
l-1

Figure 2 The digraph ∞(k, l).

Lemma 3.1 If k ≥ 3, then q(∞(k − 1, l + 1)) > q(∞(k, l)).

Proof Suppose thatX = (xw, x1, x2, . . . , xk−1, y1, y2, . . . , yl−1) is the Perron vector ofQ(∞(k, l))

corresponding to q(∞(k, l)), where xw corresponds to w, xi and yj (i = 1, 2, . . . , k − 1; j =

1, 2, . . . , l− 1) correspond to vi and uj , respectively. Since Q(∞(k, l))X = q(∞(k, l))X, it is not

difficult to see that 

q(∞(k, l))xi = xi + xi+1, i = 1, 2, . . . , k − 2,

q(∞(k, l))yj = yj + yj+1, j = 1, 2, . . . , l − 2,

q(∞(k, l))xk−1 = xw + xk−1,

q(∞(k, l))yl−1 = xw + yl−1,

q(∞(k, l))xw = 2xw + x1 + y1.

Then {
xw = (q(∞(k, l))− 1)xk−1 = (q(∞(k, l))− 1)k−1x1,

xw = (q(∞(k, l))− 1)yl−1 = (q(∞(k, l))− 1)l−1y1.

Thus we have

(q(∞(k, l))− 2)(q(∞(k, l))− 1)l−1y1 = (q(∞(k, l))− 1)l−ky1 + y1.

By Perron-Frobenius Theorem, we have y1 > 0, therefore

(q(∞(k, l))− 2)(q(∞(k, l))− 1)n−1 = (q(∞(k, l))− 1)l−1 + (q(∞(k, l))− 1)k−1.

Similarly, we have

(q(∞(k − 1, l + 1))− 2)(q(∞(k − 1, l + 1))− 1)n−1
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= (q(∞(k − 1, l + 1))− 1)l + (q(∞(k − 1, l + 1))− 1)k−2.

Let f(x) = (x−2)(x−1)n−1−(x−1)l−1−(x−1)k−1 and g(x) = (x−2)(x−1)n−1−(x−1)l−(x−
1)k−2. One can easily see that q(∞(k, l)) is the largest real root of f(x) = 0 and q(∞(k−1, l+1))

is the largest real root of g(x) = 0. f(x) − g(x) = (x − 2)((x − 1)l−1 − (x − 1)k−2) > 0, for all

x > 2. Since the minimum row sum of Q(∞(k, l)) is 2, and the row sums of Q(∞(k, l)) are not

all equal, by Lemma 2.1, we have q(∞(k, l)) > 2. Then we have q(∞(k − 1, l+ 1)) > q(∞(k, l)).

Thus the proof is complete. �
By Lemma 3.1, we immediately get the following theorem.

Theorem 3.2 Among all ∞(k, l)-digraphs on n vertices, the digraph ∞(2, n − 1) is the u-

nique digraph which attains the maximum signless Laplacian spectral radius, and the digraph

∞(⌊n+1
2 ⌋, ⌈n+1

2 ⌉) is the unique digraph which attains the minimum signless Laplacian spectral

radius.

4. The maximum (or minimum) signless Laplacian spectral radius and
the signless Laplacian spectral characterization of strongly connected
bicyclic digraphs

We can know that each strongly connected bicyclic digraph is either a θ-digraph or an

∞-digraph. In the following, we will first determine the digraphs which attain the maximum

and minimum signless Laplacian spectral radius among all strongly connected bicyclic digraphs,

respectively.

Lemma 4.1 Let θ(a, b, c) and ∞(k, l)-digraph be a θ-digraph as shown in Figure 1 and an

∞-digraph as shown in Figure 2, respectively. Then q(θ(a, b, c)) < q(∞(b+ 1, a+ c+ 2)).

Proof Suppose X = (xu, xv, x1, x2, . . . , xa, y1, y2, . . . , yb, z1, z2, . . . , zc) is the Perron vector of

Q(θ(a, b, c)) corresponding to q(θ(a, b, c)), where xu and xv correspond to u and v, respectively,

and xi, yj and zk (i = 1, 2, . . . , a; j = 1, 2, . . . , b; k = 1, 2, . . . , c) correspond to wi, w1
j and

w2
k, respectively. By the proof of Lemma 2.2, we know that xu > xv. One can easily see

that ∞(b + 1, a + c + 2) = θ(a, b, c) − {(w1
b , v)} + {(w1

b , u)}. Then by Lemma 2.3, we have

q(θ(a, b, c)) < q(∞(b+ 1, a+ c+ 2)).

By Lemma 4.1, we know that the digraph that attains the maximum signless Laplacian

spectral radius among all the strongly connected bicyclic digraphs must be in ∞-digraphs, and

the digraph that attains the minimum signless Laplacian spectral radius among all the strongly

connected bicyclic digraphs must be in θ-digraphs. Combining Theorems 2.6 and 3.2, we get the

following theorem.

Theorem 4.2 Among all the strongly connected bicyclic digraphs with order n, the digraph

∞(2, n−1)) is the unique digraph which attains the maximum signless Laplacian spectral radius,

and the digraph θ(0, 1, n− 3) attains the minimum signless Laplacian spectral radius.

Next, we will prove that each strongly connected bicyclic digraph is determined by their
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signless Laplacian spectrum. By Lemmas 2.2 and 3.1, it is not difficult to see that

ϕ(θ(a, b, c), λ) = (λ− 2)(λ− 1)n−1 − (λ− 1)b − (λ− 1)a,

ϕ(∞(k, l), λ) = (λ− 2)(λ− 1)n−1 − (λ− 1)l−1 − (λ− 1)k−1.

Lemma 4.3 ([5]) For n× n matrices A and B, the following are equivalent:

(i) A and B are cospectral;

(ii) A and B have the same characteristic polynomial;

(iii) tr(Ai) = tr(Bi) for i = 1, 2, . . . , n.

Let
−→
G1 and

−→
G2 be two digraphs. If the signless Laplacian spectrum of them are the same,

i.e., SpecQ(
−→
G1) = SpecQ(

−→
G2), then the number of vertices and arcs in

−→
G1 and

−→
G2 are equal,

respectively.

Lemma 4.4 A digraph Q-cospectral to a θ-digraph is either a θ-digraph or an ∞-digraph.

Proof Let D be Q-cospectral to θ(a, b, c). Then by Lemma 4.3, they have the same number of

vertices and arcs. Therefore D is a strongly connected bicyclic digraph. Note that each strongly

connected bicyclic digraph is either a θ-digraph or an ∞-digraph. So D is either a θ-digraph or

an ∞-digraph.

Lemma 4.5 No two nonisomorphic θ-digraphs are Q-cospectral.

Proof Suppose that
−→
G1 = θ(a, b, c) and

−→
G2 = θ(a′, b′, c′) are Q-cospectral. By convection, a ≤ b

and a′ ≤ b′. Since
−→
G1 and

−→
G2 have the same number of vertices, we have

a+ b+ c = a′ + b′ + c′,

and ϕ(
−→
G1, λ) = ϕ(

−→
G2, λ), that is

(λ− 2)(λ− 1)n−1 − (λ− 1)a − (λ− 1)b = (λ− 2)(λ− 1)n−1 − (λ− 1)a
′
− (λ− 1)b

′
.

Therefore, we have either a = a′ and b = b′, or a = b′ and b = a′.

If a = a′ and b = b′, then c = c′. Thus
−→
G1

∼=
−→
G2.

If a = b′ and b = a′, then b = a′ ≤ b′ = a. Since a ≤ b, we have b′ = a = b = a′. Then we

also have a = a′, b = b′ and c = c′, thus
−→
G1

∼=
−→
G2. Therefore the proof is completed. �

Lemma 4.6 No two nonisomorphic ∞-digraphs are Q-cospectral.

Proof Suppose that
−→
G1 = ∞(k, l) and

−→
G2 = ∞(k′, l′) are Q-cospectral. By convention, k ≤ l

and k′ ≤ l′. Since
−→
G1 and

−→
G2 have the same number of vertices, we have

k + l = k′ + l′,

and ϕ(
−→
G1, λ) = ϕ(

−→
G2, λ), that is

(λ− 2)(λ− 1)n−1 − (λ− 1)l−1 − (λ− 1)k−1 = (λ− 2)(λ− 1)n−1 − (λ− 1)l
′−1 − (λ− 1)k

′−1.

Therefore, we have either k = k′ and l = l′, or k = l′ and l = k′.
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If k = k′ and l = l′, then we have
−→
G1

∼=
−→
G2.

If k = l′ and l = k′, then l = k′ ≤ l′ = k. Since k ≤ l, we have l′ = k = l = k′. Then we

also have k = k′ and l = l′, thus
−→
G1

∼=
−→
G2. Therefore the proof is completed. �

Lemma 4.7 There is no θ-digraph Q-cospectral with an ∞-digraph.

Proof Suppose that
−→
G1 = θ(a, b, c) and

−→
G2 = ∞(k, l) are Q-cospectral. By convention, a ≤ b

and k ≤ l. Since they have the same signless Lpalacian characteristic polynomials, that is

ϕ(
−→
G1, λ) = ϕ(

−→
G2, λ), therefore a = k − 1 and b = l − 1 or a = l − 1 and b = k − 1.

If a = k − 1 and b = l− 1, then a+ b = k + l− 2 = n− 1. Since a+ b+ c+ 2 = n, we have

n− 1 + 2 + c = n+ 1 + c = n, a contradiction.

If a = l− 1 and b = k − 1, then a+ b = k + l− 2 = n− 1. Since a+ b+ c+ 2 = n, we have

n− 1+2+ c = n+1+ c = n, a contradiction. Therefore there is no θ-digraph Q-cospectral with

an ∞-digraph. Thus the proof is completed. �
By Lemmas 4.4–4.7, we finally get our main result in this section.

Theorem 4.8 Any strongly connected bicyclic digraph is DQS.
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