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Abstract The problem of decomposing a complete 3-uniform hypergraph into Hamilton

cycles was introduced by Bailey and Stevens using a generalization of Hamiltonian chain

to uniform hypergraphs by Katona and Kierstead. Decomposing the complete 3-uniform

hypergraphs K
(3)
n into k-cycles (3 ≤ k < n) was then considered by Meszka and Rosa. This

study investigates this problem using a difference pattern of combinatorics and shows that

K
(3)
n·5m can be decomposed into 5-cycles for n ∈ {5, 7, 10, 11, 16, 17, 20, 22, 26} using computer

programming.
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1. Introduction

The problem of decomposing a graph into Hamiltonian cycles is a long-standing and well-

known issue in graph theory. Decomposing the graph G = (V,E) is a partition of the edge-set

E and the Hamiltonian decomposition of G is a type of decomposition into Hamiltonian cycles.

Hypergraphs are subset systems of a finite set that can be regarded as one of the most general

structures in discrete mathematics. With the emergence of informational science, hypergraphs

serve as useful mathematical models for a broad range of applications such as networks, database

theory, clustering, and chemistry. As a natural generalization of the Hamiltonian decomposition

of graphs, the Hamiltonian decomposition of hypergraphs has emerged. The definition of a

Hamiltonian cycle was provided in [1]. A Hamiltonian cycle in a complete k-uniform hypergraph

is a cyclic ordering of its vertices such that each consecutive k-tuple of vertices is an edge. A

Hamiltonian decomposition of a complete k-uniform hypergraph is a partition of the set of its

edges into disjoint Hamiltonian cycles.

Many scholars have considered the decomposition into cycles (not Hamiltonian) of some

fixed length in recent decades, but this problem has not been fully resolved. The case where
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all the cycles have the same length has been completely solved by Alspach and Gavlas in [2].

This problem can also be generalized into hypergraphs. In particular, the decomposition of a

complete k-uniform hypergraphs into Hamiltonian cycles has been described in detail in [3,4] and

[8,9]. This paper mainly investigates the decomposition of complete 3-uniform hypergraphs into

5-cycles. A necessary condition for the existence of the decomposition of a complete 3-uniform

hypergraphs into 5-cycles is that n ≡1,2,5,7,10 or 11 (mod 15). The decomposition of K
(3)
n into

5-cycles occurs for all admissible n ≤ 17, and for all n = 4m + 1, m is a positive integer. This

study investigates the decomposition of the complete 3-uniform hypergraph K
(3)
n into 5-cycles.

Results show that K
(3)
n·5m can be decomposed into 5-cycles for n ∈ {5, 7, 10, 11, 16, 17, 20, 22, 26}.

2. Preliminaries

We present some definitions and lemmas.

Definition 2.1 ([5]) A hypergraph H = (V,E) is a set of vertices V = V (H) = {v1, v2, . . . , vn}
and a set of (hyper)edges E = E(H) = {e1, e2, . . . , em}, where ei ⊆ V and |ei| ≥ 0, 1 ≤ i ≤ m.

Definition 2.2 ([1]) A hypergraph H = (V,E) consists of a finite set V = {v1, v2, . . . , vn} of

vertices. If each (hyper)edge has size k, we say that H is a k-uniform hypergraph. In particular,

the complete k-uniform hypergraph on n vertices has all k-subsets of V as edges, denoted by

K
(k)
n .

Definition 2.3 ([6]) Let H = (V,E) be a k-uniform hypergraph. A cycle of ℓ in H is referred

to as ℓ-cycle. An ℓ-cycle in H is an ordered cyclic sequence (v0, v1, . . . , vℓ−1) of V where each

consecutive k-tuple of vertices is an edge of H.

Definition 2.4 ([6]) An ℓ-cycle decomposition of H is a partition of the set of (hyper)edges of

H into mutually-disjoint ℓ-cycles.

Definition 2.5 Let CS = {(ci,0, ci,1, ci,2, ci,3, ci,4) | i ∈ Zn(n−1)(n−2)
30

} be a 5-cycles decomposi-

tion of K
(3)
n . If cycle Ct,i = {k⌊ ct,0

k ⌋ + (ct,0 + i) (mod k), k⌊ ct,1
k ⌋ + (ct,1 + i) (mod k), k⌊ ct,2

k ⌋ +
(ct,2 + i) (mod k), k⌊ ct,3

k ⌋+ (ct,3 + i) (mod k), k⌊ ct,4
k ⌋+ (ct,4 + i) (mod k)} ∈ CS for all i ∈ Zk,

then Ct = {ct,0, ct,1, ct,2, ct,3, ct,4} is called a k-base 5-cycle.

Lemma 2.6 ([3]) K
(3)
7 can be decomposed into 5-cycles.

Proof The edges of K
(3)
7 can be decomposed into 7 5-cycles.

(0, 1, 2, 3, 4), (0, 1, 3, 4, 5), (0, 2, 3, 5, 6), (0, 3, 6, 2, 5), (0, 4, 2, 1, 6), (1, 3, 6, 4, 5), (1, 5, 2, 4, 6). �

Lemma 2.7 ([3]) K
(3)
11 can be decomposed into 5-cycles.

Proof The edges of K
(3)
11 can be decomposed into 33 5-cycles produced by 3 11-base 5-cycles as

follows:

(0, 2, 1, 7, 4), (0, 5, 3, 6, 7), (0, 6, 8, 5, 4). �
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Lemma 2.8 ([3]) K
(3)
16 can be decomposed into 5-cycles.

Proof The edges of K
(3)
16 can be decomposed into 112 5-cycles produced by 7 16-base 5-cycles

as follows:
(0, 1, 2, 4, 5), (0, 2, 4, 7, 8), (0, 3, 5, 6, 9), (0, 4, 6, 15, 9),

(0, 5, 11, 4, 8), (0, 6, 1, 14, 5), (0, 7, 14, 6, 12). �

Lemma 2.9 ([6]) K
(3)
20 can be decomposed into 5-cycles.

Proof The edges of K
(3)
20 can be decomposed into 220 5 -cycles produced by 11 20-base 5-cycles

as follows:

(0, 2, 8, 12, 18), (0, 6, 4, 16, 14), (0, 1, 4, 16, 19), (0, 3, 18, 2, 17),

(0, 5, 12, 8, 15), (0, 7, 6, 14, 13), (0, 9, 2, 18, 11), (0, 19, 2, 11, 5),

(0, 19, 8, 3, 10), (0, 15, 9, 18, 1), (0, 10, 17, 12, 1),

and 8 5-cycles as follows:

(0, 4, 8, 12, 16), (1, 5, 9, 13, 17), (2, 6, 10, 14, 18), (3, 7, 11, 15, 19),

(0, 8, 16, 4, 12), (1, 9, 17, 5, 13), (2, 10, 18, 6, 14), (3, 11, 19, 7, 15). �

Lemma 2.10 ([7]) K
(3)
22 can be decomposed into 5-cycles.

Proof The edges of K
(3)
22 can be decomposed into 308 5-cycles produced by 14 22-base 5-cycles

as follows:

(0, 1, 4, 18, 21), (0, 3, 10, 12, 19), (0, 5, 12, 10, 17), (0, 9, 10, 12, 13), (0, 9, 6, 13, 5),

(0, 6, 8, 16, 4), (0, 9, 8, 2, 19), (0, 16, 21, 20, 9), (0, 4, 2, 14, 8), (0, 18, 6, 14, 16),

(0, 13, 2, 1, 6), (0, 17, 9, 16, 13), (0, 3, 20, 14, 13), (0, 7, 18, 4, 15). �

3. Main results

In this section, we shall prove the following theorems.

Theorem 3.1 K
(3)
17 can be decomposed into 5-cycles.

Proof We can decompose the edges of K
(3)
17 into 136 5-cycles produced by 8 17-base 5-cycles as

follows:
(0, 1, 2, 8, 11), (0, 1, 3, 5, 6), (0, 2, 6, 10, 2), (0, 3, 4, 7, 12),

(0, 2, 11, 1, 8), (0, 3, 6, 1, 5), (0, 6, 12, 2, 10), (0, 4, 12, 3, 7). �

Theorem 3.2 K
(3)
26 can be decomposed into 5-cycles.

Proof We can decompose the edges of K
(3)
26 into 520 5-cycles produced by 20 26-base 5-cycles

as follows:

(0, 1, 2, 4, 5), (0, 1, 4, 5, 10), (0, 1, 7, 3, 9), (0, 1, 8, 3, 11), (0, 1, 12, 3, 13),

(0, 1, 14, 3, 16), (0, 1, 15, 3, 18), (0, 1, 19, 9, 21), (0, 2, 4, 7, 9), (0, 2, 8, 5, 12),

(0, 2, 10, 5, 18), (0, 4, 21, 9, 16), (0, 3, 19, 9, 15), (0, 3, 20, 6, 12), (0, 4, 12, 8, 17),

(0, 4, 14, 21, 11), (0, 4, 15, 21, 10), (0, 4, 18, 12, 16), (0, 2, 20, 13, 17), (0, 5, 20, 13, 7). �
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Theorem 3.3 If K
(3)
n can be decomposed into 5-cycles, then K

(3)
5n can also be decomposed into

5-cycles.

Proof For i ∈ Zn, let V (K
(3)
5n ) =

∪
i∈Zn

Vi =
∪

i∈Zn
{5i + j|j ∈ Z5} be a partition of the set of

vertices of K
(3)
5n . Let E(K

(3)
5n ) = E1 ∪ E2 ∪ E3 be a partition of the set of edges of K

(3)
5n , where

E1 = {(vt1 , vt2 , vt3) | vt1 , vt2 , vt3 ∈ Vi, i ∈ Zn},

E2 = {(vt1 , vt2 , vt3) | vt1 , vt2 ∈ Vi, vt3 ∈ Vj , i, j ∈ Zn, i ̸= j},

E3 = {(vt1 , vt2 , vt3) | vt1 ∈ Vi, vt2 ∈ Vj , vt3 ∈ Vk, i < j < k ∈ Zn}.

Let C1
0 = (0, 1, 2, 3, 4), C1

1 = (0, 2, 4, 1, 3). Then K
(3)
5 can be decomposed into two 5-cycles,

namely C1
0 and C1

1 . For t = 0, 1, let C1
t = (c1t,0, c

1
t,1, c

1
t,2, c

1
t,3, c

1
t,4), C

1
t,i = (5i+ c1t,0, 5i+ c1t,1, 5i+

c1t,2, 5i + c1t,3, 5i + c1t,4) for i ∈ Zn. Then E1 can be decomposed into 2n 5-cycles, namely C1
t,i

(t = 0, 1 and i ∈ Zn) (See Table 1 for n=5).

i C1
0,i C1

1,i

0 ( 0, 1, 2, 3, 4) ( 0, 2, 4, 1, 3)

1 ( 5, 6, 7, 8, 9) ( 5, 7, 9, 6, 8)

2 (10, 11, 12, 13, 14) (10, 12, 14, 11, 13)

3 (15, 16, 17, 18, 19) (15, 17, 19, 16, 18)

4 (20, 21, 22, 23, 24) (20, 22, 24, 21, 23)

Table 1 A list of C1
t,i for n = 5, t = 0, 1, i ∈ Z5

For t ∈ Z20, let

C2
0 = (0, 1, 5, 2, 6), C2

1 = (1, 2, 6, 3, 7), C2
2 = (2, 3, 7, 4, 8), C2

3 = (3, 4, 8, 0, 9),

C2
4 = (4, 0, 9, 1, 5), C2

5 = (0, 2, 5, 3, 7), C2
6 = (1, 3, 6, 4, 8), C2

7 = (2, 4, 7, 0, 9),

C2
8 = (3, 0, 8, 1, 5), C2

9 = (4, 1, 9, 2, 6), C2
10 = (0, 6, 3, 5, 8), C2

11 = (1, 7, 4, 6, 9),

C2
12 = (2, 8, 0, 7, 5), C2

13 = (3, 9, 1, 8, 6), C2
14 = (4, 5, 2, 9, 7), C2

15 = (0, 6, 4, 5, 9),

C2
16 = (1, 7, 0, 6, 5), C2

17 = (2, 8, 1, 7, 6), C2
18 = (3, 9, 2, 8, 7), C2

19 = (4, 5, 3, 9, 8).

Then K
(3)
(5,5) can be decomposed into twenty 5-cycles, namely c2t , t ∈ Z20. Let

C2
t = (c2t,0, c

2
t,1, c

2
t,2, c

2
t,3, c

2
t,4),

C2
t,i,j = (c2t,i,j,0, c

2
t,i,j,1, c

2
t,i,j,2, c

2
t,i,j,3, c

2
t,i,j,4), 0 ≤ i < j ≤ n− 1,

where

c2t,i,j,s =

{
c2t,s, (mod 5) + 5i;

c2t,s, (mod 5) + 5j

for t ∈ Z20, 0 ≤ i < j ≤ n− 1, s ∈ Z5. Then E2 can be decomposed into 20(n2 ) 5-cycles, namely

C2
t,i,j(t ∈ Z20, 0 ≤ i < j ≤ n− 1) (See Table 2 for n = 5, t = 0).
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i j C2
0,i,j

0 1 ( 0, 1, 5, 2, 6)

0 2 ( 0, 1, 10, 2, 11)

0 3 ( 0, 1, 15, 2, 16)

0 4 ( 0, 1, 20, 2, 21)

1 2 ( 5, 6, 10, 7, 11)

1 3 ( 5, 6, 15, 7, 16)

1 4 ( 5, 6, 20, 7, 21)

2 3 (10, 11, 15, 12, 16)

2 4 (10, 11, 20, 12, 21)

3 4 (15, 16, 20, 17, 21)

Table 2 A list of C2
t,i,j for n = 5, t = 0, 0 ≤ i < j ≤ 4

Let C3
t = (c3t,0, c

3
t,1, c

3
t,2, c

3
t,3, c

3
t,4), (t ∈ Zn(n−1)(n−2)

30
) be the n(n−1)(n−2)

30 5-cycles K
(3)
n decomposed,

and C3
t,i,j,k = (i + 5c3t,0, (i + j) (mod 5) + 5c3t,1, (i + k) (mod 5) + 5c3t,2, (i + 2j + 2) (mod 5) +

5c3t,3, (i + j + k + 1) (mod 5) + 5c3t,4), where i < j < k ∈ Z5. Then E3 can be decomposed

into 125 × n(n−1)(n−2)
30 5-cycles, namely C3

t,i,j,k (t ∈ Zn(n−1)(n−2)
30

, i, j, k ∈ Z5) (For n = 5,

C3
0 = (0, 1, 2, 3, 4), C3

1 = (0, 2, 4, 1, 3). C3
t,i,j,k for n = 5, t = 0, i = 0 are listed in Table 3).

j k C3
0,0,j,k

0 0 (0, 5, 10, 17, 21)

0 1 (0, 5, 11, 17, 22)

0 2 (0, 5, 12, 17, 2)

0 3 (0, 5, 13, 17, 24)

0 4 (0, 5, 14, 17, 20)

1 0 (0, 6, 10, 19, 22)

1 1 (0, 6, 11, 19, 23)

1 2 (0, 6, 12, 19, 24)

1 3 (0, 6, 13, 19, 20)

1 4 (0, 6, 14, 19, 21)

2 0 (0, 7, 10, 16, 23)

2 1 (0, 7, 11, 16, 24)

2 2 (0, 7, 12, 16, 20)

2 3 (0, 7, 13, 16, 21)
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2 4 (0, 7, 14, 16, 22)

3 0 (0, 8, 10, 18, 24)

3 1 (0, 8, 11, 18, 20)

3 2 (0, 8, 12, 18, 21)

3 3 (0, 8, 13, 18, 22)

3 4 (0, 8, 14, 18, 23)

4 0 (0, 9, 10, 15, 20)

4 1 (0, 9, 11, 15, 21)

4 2 (0, 9, 12, 15, 22)

4 3 (0, 9, 13, 15, 23)

4 4 (0, 9, 14, 15, 24)

Table 3 A list of C3
t,i,j,k for n = 5, t = 0, i = 0, j, k ∈ Z5

Corollary 3.4 K
(3)
n·5m can be decomposed into 5-cycles for n ∈ {5, 7, 10, 11, 16, 17, 20, 22, 26}.
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