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1. Introduction

Because of the important role of Hopf algebras in the theory of quantum groups and related

notions in mathematical physics, along with the deepening of the research, the meanings of some

weaker concepts within Hopf-algebra theory have come under closer attention and are becoming

better understood. A well-known example is the weak Hopf algebra, which was introduced in

[1] in studying the non-invertible solution of the Yang-Baxter Equation based on this class of

bialgebras. One has only two ways to produce examples, through semigroup algebras of regular

monoids (in particular, Clifford monoids) and the weak quantum algebras wslq(2) and vslq(2) (see

[2]). The term “weak Hopf algebra” was also used as another generalization of Hopf algebras in

[3–5] where comultiplication is no longer required to preserve the unit (equivalently, the counit is

not required to be an algebra homomorphism). We must point out that these two generalizations

are completely distinct as the only common subclass just consists of Hopf algebras [6]. The initial

motivation of the latter was its connection with the theory of algebra extensions.

Semilattice graded weak Hopf algebras were introduced in [7] and a singular solution of the

quantum Yang-Baxter equation has been obtained by the quantum G-double. The necessary

and sufficient conditions for two crossed products to be isomorphic was shown by Doi in [8]. Our

focus here is to characterize the isomorphism of G-crossed products, which were introduced in

[9]. To do this, we first need some definitions.

Definition 1.1 ([7]) A weak Hopf algebra H with weak antipode T is called a semilattice graded

weak Hopf algebra if H =
⊕

α∈Y Hα is a semilattice grading sum where Hα are Hopf subalgebras

of H with antipodes T |Hα for all α ∈ Y and there are Hopf-algebra homomorphisms φα,β from
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Hα to Hβ if αβ = β, such that for any a ∈ Hα and b ∈ Hβ , the multiplication a ∗ b in H can be

given by a ∗ b = φα,αβ(a)φβ,αβ(b).

Similarly to the discussion on semilattice graded weak Hopf algebras, we obtain the following

results for semilattice graded algebras A:

(1) {1Aα}α∈Y ⊂ C(A), the center of A;

(2) A is a semilattice graded algebra if and only if A =
⊕

α∈Y Aα and AαAβ ⊆ Aαβ for

any α, β ∈ Y .

Definition 1.2 ([9]) Let H =
⊕

α∈Y Hα be a semilattice graded weak Hopf algebra and

A =
⊕

α∈Y Aα be a semilattice graded algebra with the same semilattice Y . Then B =⊕
α∈Y (Aα#σHα) is called a G-crossed product if it satisfies:

(1) There is a k-linear map H ⊗A→ A, given by h⊗ a 7→ h · a, such that for any h ∈ Hα,

a ∈ Aβ , b ∈ Aγ , h·a ∈ Aαβ , h·1Aβ
= ε(h)1Aαβ

and h·(ab) =
∑

(h)(h
′·a)(h′′·b) ∈ AαβAαγ ∈ Aαβγ ,

where ∆(h) =
∑

(h) h
′⊗h′′, and a map σ from H ⊗H to A which satisfies σ(h, k) ∈ Aαβ for any

h ∈ Hα and k ∈ Hβ ;

(2) For any α ∈ Y , Hα measures Aα and σ|Hα⊗Hα is a (convolution) invertible map from

Hα ⊗Hα to Aα; for any α ∈ Y , Aα is a twisted Hα-module and σ|Hα⊗Hα is a cocycle.

Definition 1.3 ([9]) Let A =
⊕

α∈Y Aα ⊂ B =
⊕

α∈Y Bα be semilattice graded k-algebras

and H =
⊕

α∈Y Hα a semilattice graded weak Hopf algebra with the same semilattice Y .

(1) A ⊂ B is a (right)H-G-extension if B is a rightH-comodule algebra with ρ : B → B⊗H
such that Bα is a right Hα-comodule algebra with ρ|Bα = ρα : Bα → Bα ⊗Hα and BcoHα

α = Aα

for any α ∈ Y .

(2) TheH-G-extension A ⊂ B is anH-G-cleft if there exists a rightH-comodule graded map

γ : H → B which is regular (convolution) invertible with γ−1 : H → B satisfies: γ(Hα) ⊂ Bα

and γα = γ|Hα : Hα → Bα is an invertible right Hα-comodule map with inverse γ−1
α = γ−1|Hα .

2. G-inner actions

Before looking at the general case of isomorphism of G-crossed products, we consider the

special case of the so-called G-inner actions. In this situation the G-crossed product can be

replaced by another one in which the action becomes trivial but the cocycle has been changed.

Definition 2.1 Let H =
⊕

α∈Y Hα be a semilattice graded weak Hopf algebra and B =⊕
α∈Y Bα ⊂ A =

⊕
α∈Y Aα be semilattice graded algebras with the same semilattice Y . Con-

sider an action H ⊗B → A given by h⊗ b 7→ h · b which satisfies:

(1) h · (ab) =
∑

(h)(h
′ · a)(h′′ · b) for h ∈ H, a, b ∈ B;

(2) hα · 1Aβ
= ε(h)1Aαβ

for h ∈ Hα, α ∈ Y .

Then this action is called G-inner if there exists a convolution regular invertible map µ ∈
Hom(H,A) and µ|Hα ∈ Hom(Hα, Aα) is invertible for any α ∈ Y , such that for all h ∈ H, b ∈ B,

h · b =
∑
(h)

µ(h′)bµ−1(h′′),

where µ−1 is the unique regular inverse of µ.
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Proposition 2.2 Let
⊕

α∈Y (Aα#σHα) be a G-crossed product such that the action of H on

A is G-inner via some regular invertible µ ∈ Hom(H,A). Define τ ∈ Hom(H ⊗H,A) by

τ(h, k) =
∑

(h),(k)

µ−1(k′)µ−1(h′)σ(h′′, k′′)µ(h′′′k′′′)

for any h ∈ Hα, k ∈ Hβ . Then τ is a cocycle for anyHα and
⊕

α∈Y (Aα#σHα) ∼=
⊕

α∈Y Aατ [Hα]

and A#σH ∼= Aτ [H], a twist product with trivial action, via an algebra isomorphism which is

also a left A-module and right H-comodule map.

Proof For any h ∈ Hα, k ∈ Hβ , µ
−1(k′) ∈ Aβ , µ

−1(h′) ∈ Aα, σ(h
′′, k′′) ∈ Aαβ and µ(h′′′k′′′) ∈

Aα, hence τ(h, k) ∈ Aαβ . Moreover, if α = β, then τ(h, k) ∈ Aα, that is τ |Hα⊗Hα ∈ Hom(Hα ⊗
Hα, Aα).

Define ϕ :
⊕

α∈Y (Aα#σHα) →
⊕

α∈Y Aατ [Hα] by a#h 7→
∑

(h) aµ(h
′)⊗h′′. Then ϕ has an

inverse ψ :
⊕

α∈Y Aατ [Hα] →
⊕

α∈Y (Aα#σHα) by a⊗ h 7→
∑

(h) aµ
−1(h′)#h′′ for any a ∈ Aα

and h ∈ Hα with α ∈ Y . It is straightforward to check that ϕ and ψ are inverse. For any a ∈ Aα

and h ∈ Hα with α ∈ Y ,

ϕψ(a⊗ h) = ϕ(
∑
(h)

aµ−1(h′)#h′′) =
∑
(h)

aµ−1(h′)µ(h′′)⊗ h′′′

=
∑
(h)

aε(h′)1Aα ⊗ h′′ = a1Aα ⊗ h = a⊗ h

and

ψϕ(a#h) = ψ(
∑
(h)

aµ(h′)⊗ h′′) =
∑
(h)

aµ(h′)µ−1(h′′)#h′′′

=
∑
(h)

aε(h′)1Aα#h
′′ = a#h.

Then, ϕ and ψ are inverses and ϕ(Aα#σHα) ⊂ Aατ [Hα], that is, ϕ is a semilattice graded

isomorphism.

Next, we check that ϕ is an algebra map: for a#h ∈ Aα#σHα, b#k ∈ Aβ#σHβ with

α, β ∈ Y ,

ϕ((a#h)(b#k)) = ϕ(
∑

(h),(k)

a(h′ · b)σ(h′′, k′)#h′′′k′′) =
∑

(h),(k)

a(h′ · b)σ(h′′, k′)µ(h′′′k′′)⊗ h(4)h′′′

=
∑

(h),(k)

aµ(h′)bµ−1(h′′)σ(h′′′, k′)µ(h(4)k′′)⊗ h(5)k′′′

=
∑

(h),(k)

aµ(h′)b1Aβ
µ−1(h′′)σ(h′′′, k′)µ(h(4)k′′)⊗ h(5)k′′′

=
∑

(h),(k)

aµ(h′)bµ(k′)µ−1(k′′)µ−1(h′′)σ(h′′′, k′′′)µ(h(4)k(4))⊗ h(5)k(5)

=
∑

(h),(k)

aµ(h′)bµ(k′)τ(h′′, k′′)⊗ h′′′k′′′

= (
∑
(h)

aµ(h′)⊗ h′′)(
∑
(k)

bµ(k′)⊗ k′′) = ϕ(a#h)ϕ(b#k).
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Since,
⊕

αAατ [Hα] ∼=
⊕

α∈Y (Aα#σHα) as algebras, and
⊕

αAατ [Hα] is an associative algebra,

thus τ is a cocycle.

Next, we define the left A-module action on
⊕

α∈Y (Aα#σHα) via a·(b#h) = (a#1Hα)(b#h)

for any a ∈ Aα and b#h ∈ Aβ#Hβ with α, β ∈ Y , the left A-module action on
⊕

α∈Y Aατ [Hα]

can be defined similarly. It is clear that ϕ is a left A-module, right H-comodule map since for

any a ∈ Aα and b#h ∈ Aβ#Hβ with α, β ∈ Y ,

ϕ(a · (b#h)) = ϕ((a#1Hα)(b#h)) = ϕ(a#1Hα)ϕ(b#h) = (aµ(1Hα)⊗ 1Hα)ϕ(b#h)

= (a⊗ 1Hα)ϕ(b#h) = a · ϕ(b#h)

and

ρ(ϕ(a#h)) = ρ(
∑
(h)

aµ(h′)⊗ h′′) =
∑
(h)

aµ(h′)⊗ h′′ ⊗ h′′′ = (ϕ⊗ id)(
∑
(h)

a#h′ ⊗ h′′)

= (ϕ⊗ id) ◦ (id⊗∆)(a#h). �

The converse of this proposition is also true: that is, if
⊕

α∈Y (Aα#σHα) ∼= Aατ [Hα] for

some as semilattice graded algebras by an isomorphism ϕ which is a left A-module and right

H-comodule map, then the original action must have been G-inner via some µ ∈ Hom(H,A)

such that ϕ is given by the above proposition.

More generally, one can give necessary and sufficient conditions for two G-crossed products

to be isomorphic.

Theorem 2.3 Let A =
⊕

α∈Y Aα be a semilattice graded algebra and H =
⊕

α∈Y Hα be a

semilattice graded weak Hopf algebra with the same semilattice Y , with two G-crossed product

actions h ⊗ a 7→ h · a and h ⊗ a 7→ h ·′ a with respect to two cocycles σ, σ′ : H ⊗ H → A,

respectively. Assume that

ϕ :
⊕
α∈Y

(Aα#σHα) →
⊕
α∈Y

(Aα#
′
σ′Hα)

is a semilattice graded algebra isomorphism, which is also a left A-module and right H-comodule

map. Then, there exists an regular invertible map µ ∈ Hom(H,A) and µ|Hα ∈ Hom(Hα, Aα) for

any α ∈ Y is invertible, such that for all a ∈ Aα, h ∈ Hα and k ∈ Hβ with α, β ∈ Y ,

(1) ϕ(a#h) =
∑

(h) aµ(h
′)#′h′′;

(2) h ·′ a =
∑

(h) µ
−1(h′)(h′′ · a)µ(h′′′);

(3) σ′(h, k) =
∑

(h),(k) µ
−1(h′)(h′′ · µ−1(k′))σ(h′′′, k′′)µ(h(4)k′′′).

Conversely, given a map µ ∈ Hom(H,A) with µα = µ|Hα ∈ Hom(Hα, Aα) for any α ∈ Y

such that (2) and (3) hold, then the map ϕ in (1) is a semilattice graded isomorphism.

Proof (1) Define µ ∈ Hom(H,A) by µ(h) = (id⊗ ε)ϕ(1Aα#h) for all h ∈ Hα with α ∈ Y , then

µ ∈ Hom(H,A) and µα = µ|Hα ∈ Hom(Hα, Aα). Since ϕ is a left A-module map, we have for

any a ∈ Aα,

(a#′1Hα)ϕ(1Aα#h) = ϕ((a#1Aα)(1Aα#h)) = ϕ(
∑
(h)

a(1Hα · 1Aα)σ(1Hα , h
′)#1Hαh

′′)
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= ϕ(
∑
(h)

aε(h′)1Aα#h
′′) = ϕ(a#h).

Then, (id⊗ ε)ϕ(a#h) = (id⊗ ε)[(a#′1Hα)ϕ(1Aα#h)] = (id⊗ ε)(a#′1Hα)(id⊗ ε)(ϕ(1Hα#h)) =

aε(1Hα)µ(h). Since ϕ is a right H-comodule map, we have

(id⊗∆) ◦ ϕ = (ϕ⊗ id) ◦ (id⊗∆).

Apply id⊗ε⊗ id to both sides of the equation. The left side becomes (id⊗ε⊗ id)◦(id⊗∆)◦ϕ = ϕ

and the right side becomes

(id⊗ ε⊗ id) ◦ ((ϕ⊗ id) ◦ (id⊗∆))(a#h) = (id⊗ ε⊗ id) ◦ (ϕ⊗ id)(
∑
(h)

a#h′ ⊗ h′′)

= (id⊗ ε⊗ id)(
∑
(h)

ϕ(a#h′)⊗ h′′) =
∑
(h)

(id⊗ ε)ϕ(a#h′)⊗ h′′ =
∑
(h)

aµ(h′)#′h′′

for any a#h ∈
⊕

α∈Y (Aα#σHα). Hence, ϕ(a#h) =
∑

(h) aµ(h
′)#′h′′.

(2) Similarly, as ϕ−1 :
⊕

α∈Y (Aα#
′
σ′Hα) →

⊕
α∈Y (Aα#σHα) is an isomorphism satisfying

the same hypothesis as ϕ, we may set ν(h) = (id⊗ε)ϕ−1(1Aα#
′h) for all h ∈ Hα with any α ∈ Y

and conclude as above that ϕ−1(a#′h) =
∑

(h) aν(h
′)#h′′ for any a ∈ Aα and h ∈ Hα with

α ∈ Y . We claim that ν|Hα = να = µ−1
α and ν is a regular inverse of µ. Since for any h ∈ Hα

with α ∈ Y ,

1Aα#h = (ϕ−1 ◦ ϕ)(1Aα#h) = ϕ−1(
∑
(h)

1Aαµ(h
′)#′h′′) = ϕ−1(

∑
(h)

µ(h′)#′h′′)

=
∑
(h)

µ(h′)ν(h′′)#h′′′.

Applying id⊗ε to both sides, we see that the left side becomes (id⊗ε)(1Aα#h) = ε(h)1Aα , and the

right side becomes (id ⊗ ε)(
∑

(h) µ(h
′)ν(h′′)#h′′′) =

∑
(h) µ(h

′)ν(h′′)ε(h′′′) =
∑

(h) µ(h
′)ν(h′′),

hence,
∑

(h) µ(h
′)ν(h′′) = ε(h)1Aα for any h ∈ Hα with α ∈ Y . Similarly, we see

∑
(h) ν(h

′)µ(h′′) =

ε(h)1Aα , and thus for any α ∈ Y , να = µ−1
α . Moreover,

(µ ∗ ν ∗ µ)(h) =
∑
(h)

µ(h′)ν(h′′)µ(h′′′) =
∑
(h)

ε(h′)1Aαµ(h
′′) = µ(h)

and

(ν ∗ µ ∗ ν)(h) =
∑
(h)

ν(h′)µ(h′′)ν(h′′′) =
∑
(h)

ε(h′)1Aαν(h
′′) = ν(h).

Hence, ν ∗ µ ∗ ν = ν and µ ∗ ν ∗ µ = µ, thus ν is a regular inverse of µ such that να = µ−1
α .

Now for any a#′h ∈ Aα#
′
σ′Hα, b#

′k ∈ Aβ#
′
σ′Hβ with α, β ∈ Y , the equation ϕ−1((a#′h)(b#′k))

= ϕ−1(a#′h)ϕ−1(b#k) becomes

ϕ−1(
∑

(h),(k)

a(h′ ·′ b)σ′(h′′, k′)#′h′′′k′′) =
∑

(h),(k)

a(h′ ·′ b)σ′(h′′, k′)ν(h′′′k′′)#h(4)k′′′

=
∑

(h),(k)

aν(h′)(h′′ · (bν(k′)))σ(h′′′, k′′)#h(4)k′′′

= (
∑
(h)

aν(h′)#h′′)(
∑
(k)

bν(k′)#k′′).
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Setting a = 1Aα , b = 1Aβ
and applying id⊗ ε to both sides yields

(id⊗ ε)(
∑

(h),(k)

1Aα(h
′ ·′ 1Aβ

)σ′(h′′, k′)ν(h′′′k′′)#h(4)k′′′)

=
∑

(h),(k)

1Aαε(h
′)1Aαβ

σ′(h′′, k′)ν(h′′′k′′)#ε(h(4))ϵ(k′′′)

=
∑

(h),(k)

σ′(h′, k′)ν(h′′k′′)#1Hαβ

=
∑

(h),(k)

ν(h′)(h′′ · ν(k′))σ(h′′′, k′′)#1Hαβ

=
∑

(h),(k)

1Aαν(h
′)(h′′ · ν(k′))σ(h′′′, k′′)#ε(h(4))ε(k′′′)

= (id⊗ ε)(
∑

(h),(k)

1Aαν(h
′)(1′′ · (1Aβ

ν(k′)))σ(h′′′, k′′)#h(4)k′′′).

Hence, ∑
(h),(k)

σ′(h′, k′)ν(h′′k′′) =
∑

(h),(k)

ν(h′)(h′′ · ν(k′))σ(h′′′k′′).

Then

σ′(h, k) =
∑

(h),(k)

ν(h′)(h′′ · ν(k′))σ(h′′′, k′′)ν−1(h(4)k′′′)

=
∑

(h),(k)

µ−1(h′)(h′′ · µ−1(k′))σ(h′′′, k′′)µ(h(4)k′′′)

by using να = µ−1
α for any α ∈ Y . This proves (3).

(3) Using the above equation again with a = 1Aα , k = 1Hα and applying id ⊗ ε to both

sides gives

(id⊗ ε)(
∑
(h)

1Aα(h
′ ·′ b)σ′(h′′, 1Hα)ν(h

′′′1Hα))#h
(4)1Hα

=
∑
(h)

(h′ ·′ b)ε(h′′)1Aαν(h
′′′)#ε(h(4))1Hα

=
∑
(h)

(h′ ·′ b)ν(h′′)#1Hα

and

(id⊗ ε)(
∑
(h)

1Aαν(h
′)(h′′ · (bν(1Hα)))σ(h

′′′, 1Hα)#h
(4)1Hα)

=
∑
(h)

1Aαν(h
′)(h′′ · b1Aα)ε(h

′′′)1Aα#ε(h
(4))1Hα

=
∑
(h)

ν(h′)(h′′ · b)#1Hα .

Hence, ∑
(h)

(h′ ·′ b)ν(h′′) =
∑
(h)

ν(h′)(h′′ · b),
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thus

h ·′ b =
∑
(h)

ν(h′)(h′′ · b)ν−1(h′′′) =
∑
(h)

µ−1(h′)(h′′ · b)µ(h′′′).

The converse follows as in the proof of Proposition 2.2. �

Corollary 2.4 Let H =
⊕

α∈Y Hα be a semilattice graded weak Hopf algebra and A =⊕
α∈Y Aα ⊂ B =

⊕
α∈Y Bα be a right H-G-extension which is H-G-cleft via γ, γ′ : H → B with

γ(1Hα) = γ′(1Hα) = 1Aα for any α ∈ Y . Let
⊕

α∈Y (Aα#σHα) and
⊕

α∈Y (Aα#
′
σ′Hα) be the

two representations of B as G-crossed products over A and H with the two cocycles σ, σ′ and

actions as defined in Proposition 2.4.5 and define µ = γ ∗ (γ′)−1 in Hom(H,B). Then the actions

and cocycles are related as in the above proposition (2) and (3).

Proof Let

Φ :
⊕
α∈Y

(Aα#σHα) → B by a#h 7→ aγ(h)

and

Φ :
⊕
α∈Y

(Aα#
′
σ′Hα) → B by a#′h 7→ aγ′(h).

Since Φ and Φ′ are semilattice graded algebra isomorphisms, left A-module and rightH-comodule

maps, so is

Θ = (Φ′)−1Φ :
⊕
α∈Y

(Aα#σHα) →
⊕
α∈Y

(Aα#
′
σ′Hα)

a#h 7→
∑
(h)

aµ(h′)#′h′′.

Applying Φ′ to both sides, we see that aγ(h) =
∑

(h) aµ(h
′)γ′(h′′). Setting a = 1Aα gives

γ = µ ∗ γ′. The result follows. �
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