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On Skew Strongly Reversible Rings Relative to a Monoid
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Abstract For a monoid M , we introduce the concept of skew strongly M -reversible rings

which is a generalization of strongly M -reversible rings, and investigate their properties. It

is shown that if G is a finitely generated Abelian group, then G is torsion-free if and only if

there exists a ring R with |R| ≥ 2 such that R is skew strongly G-reversible. Moreover, we

prove that if R is a right Ore ring with classical right quotient ring Q, then R is skew strongly

M -reversible if and only if Q is skew strongly M -reversible.
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1. Introduction

Throughout this article, R denotes an associative ring with identity and M denotes a

monoid, respectively. In [1], Cohn introduced the notion of a reversible ring. A ring R is

reversible if a, b ∈ R with ab = 0 implies ba = 0. Anderson and Camillo [2] used the term of ZC2

for what is called reversible. A ring R is called symmetric, whenever abc = 0 implies acb = 0 for

all a, b, c ∈ R. Moreover, a ring R is reduced if a2 = 0 implies a = 0 for all a ∈ R. Huh and Lee

studied a generalization of commutative rings, which is called semicommutative in [3], if ab = 0

implies aRb = 0 for all a, b ∈ R. In general, we have the following implications:

reduced (resp., commutative) rings ⇒ symmetric rings ⇒ reversible rings ⇒ semicommu-

tative rings. But none of them is irreversible.

In [4], Kim and Lee showed that polynomial rings over reversible rings need not be reversible.

Later in 2008, Yang and Liu [5] introduced the notion of strongly reversible rings. A ring R is

called strongly reversible, whenever polynomials f(x), g(x) ∈ R[x] with f(x)g(x) = 0 implies

g(x)f(x) = 0. It is well-known that every reduced ring is strongly reversible and the inverse is

not true. Rage and Chhawchharia [6], presented the concept of an Armendariz ring. They

called a ring R an Armendariz ring, if polynomials f(x) = a0 + a1x + a2x
2 + · · · + anx

n,

g(x) = b0 + b1x + b2x
2 + · · · + bmxm are in R[x] and satisfy f(x)g(x) = 0, then aibj = 0

for all i, j. In the following, we denote by R[M ] the monoid ring constructed from a ring R and

a monoid M , e will always stand for the identity of M . Liu [7] called a ring R an M -Armendariz
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ring (an Armendariz ring relative to a monoid M), if whenever α = a1g1 + a2g2 + · · · + angn,

β = b1h1 + b2h2 + · · ·+ bmgm ∈ R[M ] satisfy αβ = 0, then aibj = 0, for all i, j. As mentioned in

[8], Singh, Juyal and Khan studied a generalization of a strongly reversible ring, which is called

strongly M -reversible, whenever αβ = 0 implies βα = 0 with α, β ∈ R[M ].

Motivated by the results of [5,7,9,10], we propose a unified approach to generalize strongly

reversible rings and strongly M -reversible rings. The idea is to study the reversible condition

defined for the skew monoid ring R ∗ M , where R is a ring and M is a monoid. Assume that

there exists a monoid homomorphism ω : M → End(R). We denote ω(g) by ωg, for each g ∈ M .

According to [11], we can form a skew monoid ring R∗M (induced by the monoid homomorphism

ω) by taking its elements to be finite formal combinations
∑n

i=1 aigi, with multiplication induced

by (ag)(bh) = (aωg(b))(gh). Note that the trivial monoid homomorphism is ω : M → End(R)

defined by ωg(r) = r for each g ∈ M and r ∈ R. We say that R is a skew strongly M -reversible

ring relative to M (or simply skew strongly M -reversible ring), whenever αβ = 0 implies βα = 0,

where α, β ∈ R ∗ M . If M = (N ∪ {0},+) and the monoid homomorphism ω : M → End(R)

is trivial, it is clear that a ring R is skew strongly M -reversible if and only if R is strongly

M -reversible if and only if R is strongly reversible. Therefore, our results will unify some results

on strongly reversible rings and strongly M -reversible rings.

2. Main results

In this section, we introduce the notion of a skew strongly M -reversible ring and investigate

its properties. We begin with the following definition.

Definition 2.1 Let R be a ring, M a monoid and ω : M → End(R) a monoid homomorphism.

A ring R is called skew strongly M -reversible ring relative to M (or simply skew strongly M -

reversible ring), if αβ = 0 implies βα = 0 for all α, β ∈ R ∗M .

Example 2.2 Here are some special cases of skew strongly M -reversible rings:

(1) Let R be an arbitrary ring and M = {e}. Then the trivial monoid homomorphism

ω : M → End(R) is the only monoid homomorphism and clearly R is skew strongly M -reversible

if and only if R is strongly M -reversible.

(2) If M = (N ∪ {0},+) and the monoid homomorphism ω : M → End(R) is trivial, it is

clear that a ring R is skew strongly M -reversible if and only if R is strongly M -reversible if and

only if R is strongly reversible.

(3) Every M -invariant subring S (i.e., ωg(S) ⊆ S for all g ∈ M) of a skew strongly M -

reversible ring is also skew strongly M -reversible.

Proposition 2.3 Let R be a ring, M a monoid and ω : M → End(R) a monoid homomorphism.

If a is a central idempotent of R with ωg(a) = a for each g ∈ M , then the following statements

are equivalent:

(1) R is a skew strongly M -reversible ring.

(2) aR and (1− a)R are skew strongly M -reversible rings.
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Proof (1) ⇒ (2) is straightforward.

(2) ⇒ (1). Let aR and (1−a)R be skew strongly M -reversible rings, and let α =
∑m

i=1 aigi,

β =
∑n

j=1 bjhj be elements in R ∗M with αβ = 0. Suppose α1 =
∑m

i=1 aaigi, β1 =
∑n

j=1 abjhj ,

α2 =
∑m

i=1(1 − a)aigi and β2 =
∑n

j=1(1 − a)bjhj , then α1, β1 ∈ (aR) ∗ M and α2, β2 ∈ ((1 −
a)R) ∗M . This implies that

α1β1 = aa1ωg1 (ab1) g1h1 + · · ·+ aamωgn (abm) gnhm = aαβ = 0,

α2β2 = (1− a) a1ωg1 ((1− a) b1) g1h1 + · · ·+ (1− a) amωgn ((1− a) bm) gnhm

= (1− a)αβ = 0,

it follows that β1α1 = 0 and β2α2 = 0 since aR and (1 − a)R are skew strongly M -reversible.

Therefore, βα = b1ωh1 (a1)h1g1+ · · ·+bnωhn (am)hngm = 0. This shows that R is skew strongly

M -reversible. �
According to Krempa [12], an endomorphism α of a ring R is said to be rigid if aα(a) = 0

implies a = 0, for a ∈ R. A ring R is α-rigid if there exists a rigid endomorphism α of R. Clearly,

every domain D with a monomorphism α is α-rigid. In [13], the authors introduced α-compatible

rings and studied their properties. A ring R is α-compatible if for each a, b ∈ R, ab = 0 if and

only if aα(b) = 0. Clearly, this may only happen when the endomorphism α is injective. Also

by [13, Lemma 2.2], a ring R is α-rigid if and only if R is α-compatible and reduced. For a

ring R and a monoid M with ω : M → End(R) a monoid homomorphism, we say that R is

M -compatible (resp., M -rigid) if ωg is compatible (resp., rigid) for any g ∈ M .

Lemma 2.4 ([11, Lemma 2.11]) Let R be a ring, M a monoid and ω : M → End(R) a monoid

homomorphism. If R is M -compatible, then ωg(a) = a for each idempotent a ∈ R and g ∈ M .

Corollary 2.5 Let R be an M -compatible ring and M a monoid with ω : M → End(R) a

monoid homomorphism. Then R is a skew strongly M -reversible if and only if aR and (1− a)R

are skew strongly M -reversible.

A monoid M is called a u.p.-monoid (unique product monoid) if for any two nonempty finite

subsets A,B ∈ M , there exists an element g ∈ M uniquely in the form of ab with a ∈ A and

b ∈ B. The class of u.p.-monoid is quite large and important [12, 13, 14]. For example, this class

includes the right or left ordered monoids, submonoids of a free group, and torsion-free nilpotent

groups. Every u.p.-monoid M has no nonunity element of finite order.

Lemma 2.6 Let M be a u.p.-monoid and R an M -rigid ring. Then R ∗M is reduced.

Proof Suppose α =
∑n

i=1 aigi inR∗M such that α2 = a1ωg1 (a1) g1g1+· · ·+anωgn (an) gngn = 0,

where ai ∈ R, gi ∈ M for all i. Then R is skew M -Armendariz by [11, Proposition 3.3]. Thus

aiωgi(aj) = 0 for all 1 ≤ i, j ≤ n. Since R is M -rigid, we have that aiaj = 0. In particular

ai
2 = 0 for all 1 ≤ i ≤ n . Since R is M -rigid, then R is reduced. It follows that ai = 0 for all

1 ≤ i ≤ n and therefore R ∗M is reduced. �

Proposition 2.7 Let M be a u.p.-monoid and R an M -rigid ring. Then R is skew strongly
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M -reversible.

Proof Let α =
∑n

i=1 aigi, β =
∑m

j=1 bjhj∈ R ∗ M such that αβ = a1ωg1 (b1) (g1h1) + · · · +
anωgn (bm) (gnhm) = 0. So (βα)2 = (βα)(βα) = β(αβ)α = 0. Since R is M -rigid, we have

βα = 0 by Lemma 2.6. Hence R is a skew strongly M -reversible ring. �

Lemma 2.8 Direct products of skew strongly M -reversible rings are skew strongly M -reversible.

Proposition 2.9 Let R be a ring, M a commutative cancellative monoid with ω : M → End(R)

a monoid homomorphism. Suppose N is an ideal of M such that ωg = idR for every g ∈ N . If

R is skew strongly N -reversible, then R is skew strongly M -reversible.

Proof Let α =
∑n

i=1 aigi, β =
∑m

j=1 bjhj be elements of R ∗M with

αβ = a1ωg1 (b1) (g1h1) + · · ·+ anωgn (bm) (gnhm) = 0.

Take g ∈ N . Note that gg1, . . . , ggn, h1g, . . . , hmg ∈ N and ggi ̸= ggj , hig ̸= hjg for i ̸= j,

respectively. Put α1 =
∑n

i=1 aiggi, β1 =
∑m

j=1 bjhjg, α1, β1 ∈ R ∗N and we have

α1β1 = a1ωgg1 (b1) (gg1h1g) + · · ·+ anωggn (bm) (ggnhmg)

= a1ωg1(b1) (gg1h1g) + · · ·+ anωgn(bm) (ggnhmg) = αβ
(
g2
)
= 0.

Since R is skew strongly N -reversible, we obtain

β1α1 = b1ωh1g (a1) (h1ggg1) + · · ·+ bmωhmg (an) (hmgggn)

= b1ωh1(a1) (h1ggg1) + · · ·+ bmωhm(an) (hmgggn) = βα
(
g2
)
= 0.

Thus

βα = b1ωh1 (a1) (h1g1) + · · ·+ bmωhm (an) (hmgn) = 0.

This implies that R is skew strongly M -reversible. �

Lemma 2.10 Let M be a cyclic group of order n ≥ 2 and R a ring with unity. Then R is not

skew strongly M -reversible.

Proof Suppose that M = {e, g, g2, . . . , gn−1}. Let α =

(
1 0

0 0

)
e +

(
1 0

0 0

)
g + · · · +(

1 0

0 0

)
gn−1, β =

(
0 0

1 0

)
e +

(
0 0

1 0

)
g ∈ R ∗ M , and define ω : M → End(R) by

ωh

((
a b

c d

))
=

(
a −b

c d

)
for all e ̸= h ∈ M . Then αβ = 0. But

(
0 0

1 0

)
ωg

((
1 0

0 0

))
=

(
0 0

1 0

)
̸= 0,

so βα ̸= 0. Thus R is not skew strongly M -reversible. �

Lemma 2.11 LetM be a monoid and N a submonoid ofM . If R is a skew stronglyM -reversible
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ring, then R is skew strongly N -reversible.

Lemma 2.12 ([7, Lemma 1.13]) If M and N are u.p.-monoids, then so is M ×N .

Let T (G) be set of elements of finite order in an Abelian group G. Then T (G) is a fully

invariant subgroup of G. G is said to be torsion-free if T (G) = {e}.

Theorem 2.13 Let G be a finitely generated Abelian group. Then the following conditions on

G are equivalent:

(1) G is torsion-free.

(2) There exists a ring R with |R| ≥ 2 such that R is a skew strongly G-reversible ring.

Proof (2) ⇒ (1). If g ∈ T (G) and g ̸= e, then N = ⟨g⟩ is cyclic group of finite order. If a ring

R ̸= {0} is skew strongly G-reversible. Then R is skew strongly N -reversible by Lemma 2.11, a

contradiction by Lemma 2.10. Thus every ring R ̸= {0} is not skew strongly G-reversible.

(1) ⇒ (2). Let G be a finitely generated Abelian group with T (G) = {e}. Then G =

Z × Z × · · · × Z is a finite direct product of group Z. Clearly, G is u.p.-monoid by Lemma

2.12. Now it is immediate that if R is a commutative M -rigid ring, then R is a skew strongly

G-reversible ring. This completes the proof. �

Let I be an M -invariant ideal of R, M a monoid and ω : M → End(R) a monoid homo-

morphism. We can define ω̄ : M → End(R/I) with ωg(r + I) = ωg(r) + I. One can easily

check that ω̄ is a monoid homomorphism. Also for any α =
∑n

i=1 aigi in R ∗ M , we denote

ᾱ =
∑n

i=1 aigi in (R/I) ∗M , where ai = ai + I, for each 1 ≤ i ≤ n. It is easy to see that the

mapping ϕ : R ∗M → (R/I) ∗M defined by ϕ(α) = ᾱ is a ring homomorphism.

The following example shows that there exists a ring R such that R/I is skew strongly M -

reversible for a non-zero skew strongly M -reversible proper ideal I (as a ring without identity),

but R is not skew strongly M -reversible.

Example 2.14 ([5, Example 3.7]) Let S be a division ring. Consider the ring

R =


 a b c

0 a d

0 0 a

 |a, b, c, d ∈ S

 .

Then R is not skew strongly M -reversible since it is not reversible. Let M be a monoid with

|M | ≥ 2. Take a non-zero proper ideal I =

 0 0 S

0 0 0

0 0 0

, it is easy to see that I is a skew

strongly M -reversible ideal of R. If

α =
n∑

i=1

 ai bi 0

0 ai ci

0 0 ai

 gi, β =
m∑
j=1

 ui vj 0

0 uj wj

0 0 uj

hj
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are in (R/I) ∗M satisfying αβ = 0. Then we have
∑

aigi
∑

bigi 0

0
∑

aigi
∑

cigi

0 0
∑

aigi



∑

ujhj

∑
vjhj 0

0
∑

ujhj

∑
wjhj

0 0
∑

ujhj

 = 0

which implies (
∑n

i=1 aigi)(
∑m

j=1 ujhj) = 0, hence
∑n

i=1 aigi = 0 or
∑m

j=1 ujhj = 0 since S is a

division ring, and it is easy to prove that βα = 0.

However, we have the following affirmative answer to this situation as in the following.

Proposition 2.15 Suppose that R/I is skew strongly M -reversible for some ideal I of a ring

R. If I is M -rigid, then R is skew strongly M -reversible.

Proof Suppose α =
∑n

i=1 aigi, β =
∑m

j=1 bjhj are elements in R ∗ M with αβ = 0, where

ᾱ =
∑n

i=1 aigi, β̄ =
∑m

j=1 bjhj are elements in (R/I) ∗M and ai = ai + I, bj = bj + I. Then we

have

αβ = (

n∑
i=1

aigi)(

m∑
j=1

bjhj) =

n∑
i=1

m∑
j=1

aiωgi(bj)gihj = 0,

αβ = (
n∑

i=1

aigi)(
m∑
j=1

bjhj) =
n∑

i=1

m∑
j=1

ai ωgi(bj)gihj

=
n∑

i=1

m∑
j=1

(ai + I)ωgi(bj + I)gihj = 0̄,

Since R/I is skew strongly M -reversible, it follows that

β̄ᾱ = (
m∑
j=1

bjhj)(
n∑

i=1

aigi) = 0̄,

then we have βα ∈ I ∗M . Since I is M -rigid, I ∗M is reduced by Lemma 2.5. Hence (βα)2 =

(βα)(βα) = β(αβ)α = 0 implies that βα = 0. Therefore, R is skew strongly M -reversible. �
A ring R is called right Ore, if given a, b ∈ R with b regular, there exist a1, b1 ∈ R with b1

regular such that ab1 = ba1. It is a well-known fact that a ring R is right Ore if and only if the

classical right quotient ring Q of R exists. It was shown in [15, Theorem 16] and [4, Theorem

2.6] that a ring R is reduced (resp., reversible) if and only if Q is reduced (resp., reversible).

More generally, suppose that the classical right quotient ring Q of R exists. Assume that

M is a monoid with ω : M → End(R) a monoid homomorphism, then the induced map ω̄ : M →
End(Q) defined by ω̄g(ab

−1) = ωg(a) · ωg(b)
−1 extends ω and is also a monoid homomorphism

with ab−1 ∈ Q, where a, b ∈ R, g ∈ M and b is regular. In the following argument, we extend

this result to skew strongly M -reversible rings.

Theorem 2.16 Let M be a monoid and R a right Ore ring with classical right quotient ring Q

of R. The ring R is skew strongly M -reversible if and only if Q is skew strongly M -reversible.

Proof Let α =
∑n

i=1 aigi, β =
∑m

j=1 bjhj be elements in Q ∗ M such that αβ = 0, where
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ai, bj ∈ R and gi, hj ∈ M for each i, j. Since R is a right Ore ring with classical right quotient

ring Q, we can assume that ai = piωgi(u
−1), bj = qjωhj (v

−1) with pi, qj ∈ R for all i, j, regular

elements u, v ∈ R and g ∈ M such that ωg ∈ End(R) by [16, Proposition 2.1.16]. Also by

[16, Proposition 2.1.16], for each j, there exist cj ∈ R and a regular element s ∈ R such that

u−1qj = cjs
−1. Put α1 =

∑n
i=1 pigi, β1 =

∑m
j=1 qjhj , β2 =

∑m
j=1 cjhj , then we have

0 = αβ = (
n∑

i=1

aigi)(
m∑
j=1

bjhj) = (
n∑

i=1

piωgi(u
−1)gi)(

m∑
j=1

qjωhj (v
−1)hj)

=

n∑
i=1

m∑
j=1

piωgi(u
−1)ωgi(qjωhj (v

−1))gihj =

n∑
i=1

m∑
j=1

piωgi(u
−1qjωhj (v

−1))gihj

= (
n∑

i=1

pigi)(
m∑
j=1

u−1qjωhj (v
−1)hj) = (

n∑
i=1

pigi)(
m∑
j=1

cjs
−1ωhj (v

−1)hj)

= α1β2(s
−1ωhj (v

−1)).

Hence α1β2 = 0, and consequently α1β1 = 0 in R ∗ M . Again by [16, Proposition 2.1.16],

for each i there exist di ∈ R and a regular element t ∈ R such that v−1pi = dit
−1. Put

α2 =
∑n

i=1 digi ∈ R ∗M . Then we have

0 = α1tβ1 = (
n∑

i=1

pigi)t(
m∑
j=1

qjhj) = (
n∑

i=1

(pit)gi)(
m∑
j=1

qjhj)

= (
n∑

i=1

(vdi)gi)(
m∑
j=1

qjhj) = vα2β1,

thus α2β1 = 0. Since R is skew strongly M -reversible, we have β1α2 = 0. Then

βα = (
m∑
j=1

bjhj)(
n∑

i=1

aigi) = (
m∑
j=1

qjωhj (v
−1)hj)(

n∑
i=1

piωgi(u
−1)gi)

=
m∑
j=1

n∑
i=1

qjωhj (v
−1)ωhj (piωgi(u

−1))hjgi =
m∑
j=1

n∑
i=1

qjωhj (v
−1piωgi(u

−1))hjgi

=
m∑
j=1

n∑
i=1

qjωhj (djt
−1ωgi(u

−1))hjgi = (
m∑
j=1

qjhj)(
n∑

i=1

djt
−1ωgi(u

−1)gi)

= β1α2(t
−1ωgi(u

−1)) = 0.

Thus Q is skew strongly M -reversible.

Conversely, if Q is skew strongly M -reversible, then the result follows from Lemma 2.8. �
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