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Abstract A nonlinear fractional integrodifferential equation with three-point fractional bound-
ary conditions is studied in this paper, and some sufficient conditions for existence and u-
niqueness of solutions for the equation are established by Krasnoselskii fixed point theorem
and Banach contraction principle, respectively.
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1. Introduction

This article is concerned with the following nonlinear fractional integrodifferential equation

with three-point fractional boundary conditions:

Diz(t) = f(t,z(t), (¢2)(1), (Yz)(t)), 0<t<1l, 1<q<2,
D@=D/350) =0, DYYBz(1) +ax(n) =0, 0<n<1, (1.1)

where D denotes the standard Riemann-Liouville fractional derivative, f : [0, 1] x X x X x X — X
is a given continuous function, (X, | - ||) is a Banach space and C = C([0, 1], X) is the Banach
space of all continuous functions from [0, 1] = X endowed with a topology of uniform convergence
with the norm denoted by || - ||, @ € R satisfies I'(q) +anq’1f(2q—;'1) # 0, for ,60 : [0,1] x [0,1] —
[0, +00),

(6a)(t) = / At s)a(s)ds, (a)(t) = / 5(t, 5)x(s)ds. (1.2)

Recently, fractional order differential equations and systems have been of great interest. For
detailed discussion on this topic, refer to the monographs of Kilbas et al. [1], and the papers by
Anguraj et al. [2], Ahmad and Alsaedi [3,4], Cui [5], Guo and Liu [6-8], Kosmatov [9], Laksh-
mikantham and Vatsala [10], Li and Deng [11], Li [12], Li and Guérékata [13], Mao et al. [14] and

the references therein.
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Applying Krasnoselskii fixed point theorem and Banach contraction principle, we obtain

theorems of existence and uniqueness of solutions for equation (1.1).

2. Preliminaries

Let us recall some basic definitions on fractional calculus, which can be found in the litera-

ture.

Definition 2.1 The Riemann-Liouville fractional integral of order q is defined by
1 t
O A (e (21)
I'(g) Jo

provided the integral exists.

Definition 2.2 The Riemann-Liouville fractional derivaltive of order q is defined by

1 d
F(n—q)(&

provided the right-hand side is pointwise defined on (0, +00).

t
Df(t) = y / (t—s)" T f(s)ds, n—l<q<m q>0, (2.2

Lemma 2.3 For ¢ > 0, let x, D% € C(0,1) N L(0,1). Then
I9D%(t) = o(t) + et + et 2 - et ™, (2.3)

where ¢; € R,i=1,2,...,n (n is the smallest integer such that n > q).

Lemma 2.4 Let x € L(0,1). Then

(i) DPIx(t) =19 Px(t), ¢ >p > 0;

(i) D9t~ ! = (T'(a)/T'(a —q))t* 971, ¢ > 0,a > 0.
Theorem 2.5 (Krasnoselskii fixed point theorem) Let D be a closed convex and nonempty
subset of a Banach space X, and A, B be two operators such that

(i) Az + By € D whenever z,y € D;

(ii) A is compact and continuous;

(iii) B is a contraction mapping.

Then there exists z € D such that z = Az + Bz.

Lemma 2.6 Given f € C(0,1) N L(0,1), the unique solution of

Dix(t) = f(t), 0<t<1, 1<qg<2,
D@=D/B50) =0, DO YB2(1)+azx(n) =0, 0<n<1 (24)

is

s (24 D3
””“"/o Mg Y T a2 1/3)

(/O L((2q +1)/3) f<5)d5+a/0 () f(s)ds)- (2.5)
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Proof It follows from Lemma 2.3 that the fractional differential equation in (2.4) is equivalent

to the integral equation

t o qg—1
w(t) = T9f(t) + crt?™ " + ept?™? = / (tr(s))f(s)ds + ettt et (2.6)
0 q
where ¢1,co € R. From the boundary conditions for (2.4), we have ¢, = 0 and
I'((2¢ +1)/3) /1 (1 —s)Ba=2)/3 /" (n—s)!
¢ =— s)ds +a —F——f(s)ds), (2.7
T T e TG O Uy @ ) g (08): 00

which completes the proof. [
Now list the following hypotheses for convenience:
(H1) There exist positive functions Lq(t), La(t), L3(t) such that

| f(t, 1,1, 21) — f(t, 22,92, 22) || < La(t)||x1 — @2l + La(t)||ly1 — y2l| + Ls(t)||z1 — 22|

vt €[0,1], 21, 22,91, Y2, 21,22 € X. (2.8)
Further,
t
Yo = sup ’ v(t,s)ds|, 6= sup
t€[0,1] t€[0,1]

I(2q+1)/3L(1) :max{|j(2q+1)/3L ( )| |I 2q+1)/3L | |I(2q+1 /SL ( )|}
1L (n) = max{|[[*Ly(n)|, [T*L2(n)|, [I*L3(n)[},
I}, = sup {HILL (D)), [T Lo ()], T Ls (2]},
te[0,1]

_ I'((2¢ +1)/3)
" T(q) +ani=T((2q +1)/3)° (2.9)

(H2) ||f(t, 2, y,2)|| < p(t), for all (t,z,y,2) €[0,1] x X x X x X,u € L1([0,1],RT).

3. Main results

In this section, the theorems of existence and uniqueness of a solution for equation (1.1)

will be given.

Theorem 3.1 Assume that f:]0,1] x X x X x X — X is jointly continuous and satisfies (H1)
and (H2). If
A(L 40 + 80) (IHV/B L) + |a|I9L(n)) < 1, (3.1)

then the fractional integrodifferential equation (1.1) has at least one solution.
Proof Consider B, = {x € C: ||| < r}, where

L+ Alajy? A
= I'(g+1)  T((2¢+ 4)/3)>HMHL1~

Define two mappings A and B on B, by

t(p_ g)a-1
(Az)(t) = / “F@))f(s,axs), (62)(s), () (5)) ds
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I((2q+1)/3)ta1
X
L(q) +ani='T((2¢ +1)/3)

1 (1 )(2q 2)/3 )
(| Sty ! (o) 0n)(s). () (s)) s+

T — )1t
a/o Tq) f(s,z(s), (¢z)(s), (wx)(s))ds) (3.3)

(Bz)(t) = —

For x,y € B,, by (H2), we obtain

(A)(t) + (By) (1) < / -

£ (5), (62)(5), (6)()) s+
| F((2q+1)/3)tq ! Ix
I'(q) + an?=1T((2q + 1)/3)

1 (1 _ (9)(2(]—2)/3
( / W“ I (5:5(5). (89)(5), () (s) | ds+
ol [

17 (5,5(5), (69)(9), () (5)) )

$)i— — 3 (2¢—2)/3
<ol [ o ()) ds “HM”U/O et
(n— )" ds

Nl ller [ P52
A Alaln?

tq
Il (555 * Tg 073 T 1)
< 1+ Maln? A
Sl Cre 1y Fe+a73)
which means Ax + By € B,.

It is claimed that A is compact and continuous. Continuity of f implies that (Ax)(¢) is

r

<, (3.4)

continuous. (Ax)(¢) is uniformly bounded on B, as

||MHL1
A 3.5
Since f is bounded on the compact set [0, 1] x BT x B, x B,, let
sSup Hf(t,x, ¢5€,1/f$)|| = fmax-

(t,x,px,px)€[0,1] X By X By X B,

Then, for ¢1,t3 € [0, 1], we get
I (A)(t2) - el / — (t1 = 5)"7") £ (s:2(5), (62)(5), () (5)) ds-+
/ (t2 — )71 £ (5,2(5), (60)(s), ($2)(5))ds

t1
fmax| tQ*tl) td  t] + (tzftl)q|

q q q

fmdx
SNCES)

which is independent of z. Therefore, A is relatively compact on B,.. By Arzela-Ascoli’s Theorem,

(3.6)

\%—1
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A is compact on B,.
For x,y € B, and t € [0,1], by (H1), we have

1(Bz)(t) — (By) @)

1 (1 _ S)(2q72)/3
< AR 15, 205) (62)(5), (2)(5)) — £(5,3(6), ()5, (o) (8) s+

Alal / =0 (o, a(s), (62)(5), () (5)) — £ (5 (), (0w)(5). (b)) [ s
)(2q 2)/3
< A/o m( 1(8)|lz = yll + La(s)l|¢x — ¢yl + Ls(s)|[vz — vyl|)ds+
Alal / ()l — yll + La(s) 6w — dyll + La(s)llbe — byl )ds

)(211 2)/3
< A/0 W@ 1(8) + 70 L2(s) + doLs(s)) | — ylds+

Nl / () + 20La(s) + o La(s)) 1 — yds
<A 2q+1)/3L1< 1) + 701(2(1+1)/3L2(1) + 601(2’1+1)/3L3(1)) 2 —yl|+

Aal (I?L1(n) + 7017 L2(n) + doI?Ls(n)) |z — yl|
< AL +70 +60) (IPFDPL(L) + |al 1L () ||z — y]|- (3.7)

It follows from (3.1) that B is a contraction mapping. Thus, by Krasnoselskii fixed point theorem,

(1.1) has at least one solution.

Theorem 3.2 Assume that f :[0,1] x X x X x X — X is jointly continuous and satisfies (H1).
If

A= (1470 +60)(If + MNPFI/BL(1) + NalI7L(n)) < 1, (3.8)
then the fractional integrodifferential equation (1.1) has a unique solution.

Proof Define a mapping F : C — C by

(Fo)) = [ i 1 (s a(e) (02)(0) (v (5) s

I((2q+1)/3)ta71 y
I(g) +ani='I'((2¢ + 1)/3)

1 (1 _ S)(QQ*2)/3
([ S £(o. (60, (6210, () )) s

T—s) s 2(8) (6x)(s). (02 (s))ds
a/O I'(q) £ (s, 2(5), (2)(s), (Yz)( ))d), t[0,1]. (3.9)

Let supejoq71f(¢,0,0,0)| = M, and choose

(1+ Aajn?)I'((2¢ +4)/3) + Al'(g + 1)
- (1=MT(g+DI((29+4)/3)

It is claimed that F B, C B,, where B, = {x € C : ||z|| < r}. In fact, for x € B, by (3.8), (3.10)

(3.10)
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and (H1), we obtain

oo < [ )0 (s, 2(5), (B2)(s), (6) () s+

1] _g (2q 2)/3
\ /O (1}(<2q)+1)/3) 17 (5,2(5), (62)(s), () (5)) || ds+

Adl / F(q 1 (5,5), (B2) ), () (5)) [ s

(t—s)at
5/0 o) (£ (s, 2(s), (62)(5), (¥z)(5)) = f(5,0,0,0)|| + | £(5,0,0,0)|)ds+

1 (1 _ S)(2q—2)/3
)\/0 W(Hf(s ,2(s), (¢x)(s), (wx)(s)) - f(s,0,0,0)H + ||f(870,070)\|)d8+

A"/ (

bt —s)1™
< [ = (o) + La(s) | (g)(3)] + L@l () (s)] + M)t

(| £ (s, 2(s), (2)(s), (Yx)(s)) — f(5,0,0,0)|| + || £(5,0,0,0))ds

1 (1 )(2q 2)/3
v W( L] + Lo 62)( ) + Lo()|@a)(s)| + M)ds+

Nl [0

< / = ()] +20La() ()] + Bl + M)ds+

s)llz(s)ll + La(s) | (92)(s)] + Ls(s) | (¥)(s)]| + M)ds

F(q
1

1 (1 )(Qq 2)/3
/\/0 W(L 1(8)[|l2(8) [l + Yo La(s)lz(s)|| + doLs(s)[|z(s)|| + M)ds+

s)lz(s)Il + v0La(s)llx(s)ll + doLs(s) |z (s)]| + M)ds

M4 n
I'(g+1)

)\(I(zq+1)/3L1(1) I voI(2q+1)/3L2(1)501(2‘1+1)/3L3(1))7" +

< (Iqu( ) + Y0l La(t) + 817 L3 (t))r +

AM
(20 +9)/3)
Aa|lntM
I'(g+1)
< TE(1 470 + do)r + ATV L) (1 + 0 + do)r + AalITL(n) (1 4 yo + do)r+

(1 + Aa|n?) M AM

I(g+1) T((2 +4)/3)

< (1470 + o) (IE + MNPV L(1) + Na|I9L(n) ) r+

(14 Alaln?)T((2g +4)/3) + AT(g + 1)

I(q+1)0((2¢ +4)/3)

<Ar+(1—-ANr=r. (3.11)

Ma| (I9L1(n) + voI"La(n) + 6oI9Ls(n))r +

M

It is declared that F is a contraction mapping. For z,y € C and t € [0, 1], by (3.8) and (H1), we

have

I(Fz)(t) = (Fy)(@)]]
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s[;“‘sq|u@x L(62)(s), (63)(5)) — £(5,5(5), (60)(5), () (5)) | ds+
(1—s)(2a=2)/3
AA‘ﬁagjﬁﬁﬂU@JQLW@QLW@SD—f@w@%@@@%@@@»%“‘
May/ =) 1 (6 (), (B)(5), () (5)) — £ (5, (5). (69)(8). () (5)) s
Sé(tﬂgl(hwmx—w+Lﬂ®Wx—@H+%@WWVwMW®+
1 (29—2)/3
! “CML1V$<1@mx—m+Lx$Wx—@/+Lxﬁww—wmmh+
Mm/’ La(s) |z — gl + La(s)lléz — dyll + La(s)b — dy])ds

S/O <F(Sq))q(L1( ) +70La(s) + doLs(s))l|lz — yllds+

L(1 - s)(2a-2)/3
AAW?@+1B)@ﬂﬁ+mmx@+&mﬂﬁMxW®+

ol [P (1) + 0 La(s) + BaLa(s) o — s
< (I1La(t) + 701(%2( )+ 8017 L3(1)) ||z — yl|+
AT (1) 4+ 4ol RIS Lo (1) + 5o I 29TD3 La(1)) || — y)|+
Mal(I9Ly (1) + 7017 L2(n) + 8o 17Ls(n)) |z — ]|
< (140 + 60) (I + AMPITDEL(1) + NalIL(n)) = — |
— Ao -yl (3.16)
A < 1 ensures that F' is contractive. Therefore, the conclusion of the theorem follows from the
contraction mapping principle. [J
4. An example
Consider the following fractional integrodifferential equation
t t
D32(t) =tx(t) + t2/ s°x(s)ds + t/ sTx(s)ds, 0<t<1,
0 0
DY62(0) =0, DY6z(1) 4 22(1/2) = 0. (4.1)

Comparing (4.1) and (1.1), we see that ¢ = 3/2, f(t,x,y, 2) = tow +ty +tz,v(t,s) = ts°,0(t,s) =
s7,a =2, and = 1/2. If we choose L (t) = La(t) = L3(t) = t, then (H1) holds. From (2.9), it is

easy to get that yo = 1/6,00 = 1/8, I1TD/3[(1) = %’”L(m = 15\/511“(3/2)’1g = 15F(43/2)’
and I'(4/3 I'(4/3 1
(4/3) < (4/3) _ (4.2)

['(3/2) +2/vV20(4/3) ~ [(4/3) +v20(4/3)  1+2'
Noting that I'(3/2) > 4/5,T'(4/3) > 1 and (4.2), we have

(1+ 70 + 8o) (If + AICTEDBL(1) 4 Na|I9L(n))
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31 4 9 8
= — A A
215G T wras) A ErE )
31 3
— (1 + —
72( 1+ \/5)

that is, (3.8) holds. Thus, by Theorem 3.2, we obtain that (1.1) has a unique solution.

< <1,
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