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Abstract In this paper, we establish the existence of the minimal Lp (p > 1) solution of

backward stochastic differential equations (BSDEs) where the time horizon may be finite or

infinite and the generators have a non-uniformly linear growth with respect to t. The main

idea is to construct a sequence of solutions {(Y n, Zn)} which is a Cauchy sequence in Sp×Mp

space, and finally we prove {(Y n, Zn)} converges to the Lp (p > 1) solution of BSDEs.
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1. Introduction

We study the following one-demensional nonlinear backward stochastic differential equations

(BSDEs for short)

Yt = ξ +

∫ T

t

g(s, Ys, Zs)ds−
∫ T

t

Zs · dBs, 0 ≤ t ≤ T, (1.1)

where T > 0 is a finite or an infinite constant called the time horizon, ξ is a random variable

called the terminal condition, the function g(ω, t, y, z) : Ω× [0, T ]×R×Rd −→ R is progressively

measurable for each (y, z), called the generator of BSDE (1.1) (g(t, y, z) for short), and (B)t∈[0,T ]

is a d-dimensional standard Brownian motion. The solution (Y·, Z·) is a pair of adapted processes.

The triple (g, T, ξ) is called the parameters of BSDEs (1.1).

Since the pioneering paper Pardoux and Peng [1] proved that there exists a unique L2

solution to the multidimensional BSDEs with square integrable parameters under the Lipschitz

assumption on the generator g, much effort has been done in relaxing the Lipschitz hypothesis

on the generator. Here we just introduce some articles which are closely linked to our paper.

Since the generators g are continuous and uniform with respect to t and 0 < T < ∞, we have

obtained a lot of results yet. For instance, while ξ ∈ L2(Ω,FT , P ), Lepeltier [2] first gave the

linear growth condition and showed the existence of the minimal L2 solutions to BSDEs (1.1).
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The Lp (1 < p < 2) solutions for BSDEs with uniform linear-growth generator was established in

[3] by constructing a Cauchy sequence which converges to the desired solution. For all (p > 1),

when ξ ∈ Lp(Ω,FT , P ), Fan and Jiang [4] got the existence of Lp solution to BSDE by using the

localization procedure. In particular, Izumi [5] also gave the Lp (p > 1) solution by proving the

sequence of solution constructed in [2] is a Cauchy one while p > 2.

On the other hand, as for the non-uniformly linear growth generator, only [6] established

the existence of L2 solutions to BSDEs with the time horizon T being finite or infinite and

the generators g being non-uniform with t. But the Lp (p > 1) solutions for BSDEs are still

remaining to be solved so far. Motivated by it, the objective of this paper is to explore the

existence of Lp (p > 1) solutions for BSDEs with non-uniformly linear growth generators.

This paper is organized as follows. We introduce some preliminaries and lemmas in Section

2. In Section 3, we obtain the existence theorem for BSDEs with non-uniformly linear growth

generators by constructing an approximation Cauchy sequence, this improves the results in [2–6].

2. Preliminaries and lemmas

Let us first introduce some notations. For what follows, we fix two positive numbers

0 < T 6 ∞ and p > 1. Let (Ω,F , P ) be a complete probability space carrying a d-dimensional

standard Brownian motion (Bt)t≥0, and (Ft)t≥0 denote the natural filtration generated by

(Bt)t≥0, augmented by P -null sets of F and assume FT = F . For any positive integer n,

let | · | denote the norm of an Euclid space Rn.

For t ∈ [0, T ], let Lp(Ω,Ft, P ) denote the set of all Ft -measurable random variables ξ such

that E[|ξ|p] < +∞. Let Sp(0, T ;R) be the set of all continuous and adapted processes (Yt)t∈[0,T ]

with values in R such that

∥Y ∥Sp :=
(
E
[

sup
0≤t≤T

|Yt|p
])1/p

< +∞.

And for each positive integer d, we denote by Mp(0, T ;Rd) the set of all (Ft)-progressively

measurable processes (Zt)t∈[0,T ] with values in Rd such that

∥Z∥Mp :=
(
E
[( ∫ T

0

|Zt|2dt
)p/2])1/p

< +∞.

Moreover, let S be the set of all nondecreasing continuous functions ρ(·) from R+ to itself

with ρ(0) = 0 and ρ(u) > 0 for u > 0.

Obviously, both Sp and Mp are Banach spaces.

Definition 2.1 A pair of processes (Yt, Zt)t∈[0,T ] is called an Lp solution to BSDE (1.1), if

(Yt, Zt)t∈[0,T ] ∈ Sp ×Mp and satisfies BSDE (1.1).

We list some useful Lemmas, and we always assume that 0 < T 6 ∞ and p > 1 in this

article, unless otherwise specified.

Lemma 2.2 ([7]) Let the generator g satisfy the following conditions (A1) and (A2).

(A1) E[(
∫ T

0
|g(s, 0, 0)|ds)p] < +∞.
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(A2) g is non-uniformly Lipschitz, i.e., there exist two deterministic functions u(·), v(·) :

[0, T ] →R+, with
∫ T

0
(u(t) + v(t)2)dt < +∞ such that dP × dt-a.s., for each y1, y2, z1, z2,

|g(t, y1, z1)− g(t, y2, z2)| ≤ u(t)|y1 − y2|+ v(t)|z1 − z2|.

Then for each ξ ∈ Lp(Ω,FT , P ), BSDE (1.1) has a unique Lp solution.

The following priori estimates play a key role in this paper, and it was first brought forward

in [5] by generalizing the conclusion in [3]. It is easy to show that the following Lemma also

holds when 0 < T ≤ ∞, we omit it here.

Lemma 2.3 ([5]) (i) If (Y, Z) is an Lp solution to BSDE (1.1), then there exists a positive

constant Cp depending only on p such that

∥Y ∥pSp ≤ CpE
[
|ξ|p +

∫ T

0

|Ys|p−1|g(s, Ys, Zs)|ds
]
,

∥Z∥pMp ≤ Cp

{
E
[
|ξ|p +

(∫ T

0

|Ys||g(s, Ys, Zs)|ds
) p

2
]
+ ∥Y ∥pSp

}
.

(ii) If (Y 1, Z1) and (Y 2, Z2) are, respectively, an Lp solution to the BSDE (1.1) with

parameters (g1, T, ξ1) and (g2, T, ξ2), then there exists a positive constant Cp depending only on

p such that

∥δY ∥pSp ≤ CpE
[
|δξ|p +

∫ T

0

|δYs|p−1|δgs|ds
]
,

∥δZ∥pMp ≤ Cp

{
E
[
|δξ|p +

(∫ T

0

|δYs||δgs|ds
) p

2
]
+ ∥δY ∥pSp

}
,

where δξ = ξ1 − ξ2, δY = Y 1 − Y 2, δZ = Z1 − Z2, δgs = g1(t, Y 1
s , Z

1
s )− g2(t, Y 2

s , Z
2
s ).

3. A General comparison theorem for Solutions of BSDEs

We will use the following assumptions (A3) and (A4):

(A3) g is weakly monotonic in y, i.e., there exists a deterministic function u(·) : [0, T ] → R+

with
∫ T

0
u(t)dt < +∞ and a concave function ϕ ∈ S with

∫
0+

1
ϕ(x)dx = +∞ such that dP×dt-a.s.,

for each y1, y2, z,

sgn(y1 − y2) · (g(t, y1, z)− g(t, y2, z)) ≤ u(t) · ϕ(|y1 − y2|).

(A4) g is uniformly continuous in z uniformly with respect to y, i.e., there exists a deter-

ministic function v(·) : [0, T ] → R+ with
∫ T

0
v(t)2dt < +∞ and a function ρ ∈ S of linear growth

such that dP × dt-a.s., for each y, z1, z2,

|g(t, y, z1)− g(t, y, z2)| ≤ v(t) · ρ(|z1 − z2|).

Here and henceforth, we always assume that 0 ≤ ρ(x) ≤ ax+b for all x ∈ R+. Furthermore,

we also assume that
∫ T

0
v(t)dt < +∞ when b ̸= 0.

It can be proved that the following Comparison Theorem holds true for all p > 1.

Theorem 3.1 Let ξ1, ξ2 ∈ Lp(Ω,FT , P ), g1 and g2 be two generators of BSDEs, and let (y1· , z
1
· )
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(resp., (y2· , z
2
· )) be an Lp solution to BSDE with parameters (g1, T, ξ1) (resp., (g2, T, ξ2)). If

dP -a.s., ξ1 ≤ ξ2, g1 (or g2) satisfies (A3) and (A4) and dP × dt-a.s., g1(t, y2t , z
2
t ) ≤ g2(t, y2t , z

2
t )

(or g1(t, y1t , z
1
t ) ≤ g2(t, y1t , z

1
t )), then for each t ∈ [0, T ], we have dP -a.s., y1t ≤ y2t .

Remark 3.2 It is easy to prove the above Theorem is also true while g1 (resp., g2) satisfies

(A2) as the assumption (A2) implies (A3) and (A4).

As Theorem 3.1 is a generalized one of Theorem 2 in [6] from p = 2 to p > 1, it is easy to

be proved, and we omit it here.

4. Existence theorem for BSDEs with non-uniformly linear-growth gen-
erators

In this section we obtain an existence result of the minimal Lp solutions to BSDEs with

continuous and non-uniformly linear-growth generators for all p > 1. We will work under the

following assumptions.

(H1) g is non-uniformly linear growth with t in (y, z), i.e., there exist two positive de-

terministic functions u(·), v(·) : [0, T ] → R+ with
∫ T

0
(u(t) + v(t)2)dt < +∞, and an (Ft)-

progressively measurable, non-negative stochastic process (ft)t∈[0,T ] with E[(
∫ T

0
fsds)

p] < +∞
such that dP × dt-a.s., for each y, z, |g(t, y, z)| ≤ ft + u(t)|y|+ v(t)|z|.

(H2) g is continuous in (y, z), i.e., dP × dt-a.s., (y, z) → g(t, y, z) is continuous.

Now let us give the main result of this paper.

Theorem 4.1 Let the assumptions (H1) and (H2) hold for g. For ξ ∈ Lp(Ω,FT , P ), there exists

a minimal Lp (p > 1) solution (y·, z·) to BSDE with parameters (g, T, ξ).

Remark 4.2 Here, let us have a look of Theorem 4.1. First, [6] is an obvious conclusion of this

paper by taking p = 2. Second, in the case of 0 < T < ∞ and u(t) = v(t) = K, one can get

that the above Theorem 3.1 generalizes the corresponding result in [4] and [5]. Moreover, If we

let ft = K, [2] and [3] are both the deduction of our result. So Theorem 4.1 improves all the

previous results.

We first state some Propositions before proving the Theorem 4.1.

The following proposition was first established in [2] for uniformly linear growth generator,

then [6] developed it into non-uniformly situation.

Proposition 4.3 ([6]) Assume that the generator g satisfies (H1) and (H2). Let gn be the

function defined as follows:

gn(t, y, z) := inf
(a,b)∈R1+d

{g(t, a, b) + nu(t)|y − a|+ nv(t)|z − b|}.

Then the sequence of functions gn is well defined for each n ≥ 1, and it satisfies dP × dt-a.s.,

(i) Linear growth, i.e., ∀(y, z), |gn(t, y, z)| ≤ ft(w) + u(t)|y|+ v(t)|z|.

(ii) Monotonicity in n, i.e., ∀(y, z), gn(t, y, z) increases in n.
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(iii) Lipschitz condition, i.e., ∀y1, y2, z1, z2, we have

|gn(t, y1, z1)− gn(t, y2, z2)| ≤ nu(t)|y1 − y2|+ nv(t)|z1 − z2|.

(iv) Convergence, i.e., if (yn, zn) → (y, z), then gn(t, yn, zn) → g(t, y, z).

Moreover, inspired by [5], if we suppose the generator g satisfies (H1) in the Lemma 2.3,

then a more precisely priori estimates can be obtained for z.

Proposition 4.4 If (Y, Z) is an Lp solution to BSDE (1.1), and the assumption (H1) holds for

the generator g too, then there exists a positive constant C such that

∥Z∥pMp ≤ C{1 + ∥Y ∥
p
2

Sp + ∥Y ∥pSp},

where C is a positive constant and depends on p,E[|ξ|p], E[(
∫ T

0
ftdt)

p,
∫ T

0
u(t)dt] and

∫ T

0
v2(t)dt.

Proof By Lemma 2.3, we have

∥Z∥pMp ≤ Cp

{
E
[
|ξ|p +

(∫ T

0

|Ys||g(s, Ys, Zs)|ds
) p

2
]
+ ∥Y ∥pSp

}
. (4.1)

Since the generator g satisfies the assumption (H1) and the basic inequality

2ab ≤ εa2 + ε−1b2, ε > 0, a, b ≥ 0,

we can deduce that

E
[( ∫ T

0

|Ys||g(s, Ys, Zs)|ds
) p

2
]
≤ E

[( ∫ T

0

|Ys|(fs + u(s)|Ys|+ v(s)|Zs|)ds
) p

2
]

≤ C1
P

{
E
[( ∫ T

0

|Ys|fsds
) p

2
]
+ E

[( ∫ T

0

|Ys|2u(s)ds
) p

2
]
+

E
[( ∫ T

0

|Ys||Zs|v(s)ds
) p

2
]}

. (4.2)

Furthermore, for the second term of (4.2), we can get

E
[( ∫ T

0

|Ys|2u(s)ds
) p

2
]
≤ ∥Y ∥pSp

(∫ T

0

u(s)ds
) p

2

. (4.3)

For the third term of (4.2), it follows that

E
[( ∫ T

0

|Ys||Zs|v(s)ds
) p

2
]
≤ E

[( ∫ T

0

(
1

ε
|Ys|2v2(s) + ε|Zs|2)ds

) p
2
]

≤ C2
P

{
ε−

p
2 ∥Y ∥pSp

(∫ T

0

v2(s)ds
) p

2

+ ε
p
2 ∥Z∥pZp

}
. (4.4)

By the Hölder inequality, we can get

E
[( ∫ T

0

|Ys|fsds
) p

2
]
≤ ∥Y ∥

p
2

SP

(
E
[( ∫ T

0

fsds
)p]) 1

2

. (4.5)

Thus, combining (4.2)–(4.5), we have

E
[( ∫ T

0

|Ys||g(s, Ys, Zs)|ds
) p

2
]
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≤ C3
P

{
∥Y ∥

p
2

SP

(
E
[( ∫ T

0

fsds
)p]) 1

2

+ ∥Y ∥pSp
(∫ T

0

u(s)ds
) p

2

+

ε−
p
2 ∥Y ∥pSp

(∫ T

0

v2(s)ds
) p

2

+ ε
p
2 ∥Z∥pMp

}
. (4.6)

By (4.6) and (4.1), taking CPC
3
P ε

p
2 = 1

2 , we can get the desired result

∥Z∥pMp ≤ C{1 + ∥Y ∥
p
2

Sp + ∥Y ∥pSp},

where

C =CP

{
E[|ξ|p] + C3

P

{(
E
[( ∫ T

0

fsds
)p]) 1

2

+
(∫ T

0

u(s)ds
) p

2

+

ε−
p
2

(∫ T

0

v2(s)ds
) p

2
}
+ 1

}
< ∞.

The proof is completed. �
Assume (H1) and (H2) hold. Then for the following BSDEs:

Y n
t = ξ +

∫ T

t

gn(s, Y
n
s , Zn

s )ds−
∫ T

t

Zn
s · dBs, n ≥ 1. (4.7)

Y ′
t = ξ +

∫ T

t

(fs + u(s)|Y ′
s |+ v(s)|Z ′

s|)ds−
∫ T

t

Z ′
s · dBs. (4.8)

The Proposition 4.3 and Lemma 2.2 deduce the above BSDE (4.7) has a unique Lp solution in

Sp × Mp for any n ≥ 0, denoted by (Y n, Zn). And BSDE (4.8) also has a unique Lp solution

(Y ′, Z ′). By Theorem 3.1, we have dP × dt-a.s., Y 1
t ≤ Y n

t ≤ Y n+1
t ≤ Y ′

t . Thus, there must exist

an (Ft)-progressively measurable process (Yt)t∈[0,T ] satisfying dP × dt-a.s.,

lim
n→+∞

Y n
t = Yt.

Let M = supn supt∈[0,T ] |Y n
t |. Then we have

∀n ≥ 1, |Y n
t | ≤ |Yt|+ |Y 1

t |, dP × dt-a.s.,

E
[

sup
t∈[0,T ]

|Yt|p
]
≤ E[|M |p] < +∞.

The following Proposition is very useful in the proof of Theorem 4.1.

Proposition 4.5 {(Y n, Zn)}n≥1 is a Cauchy sequence in Sp ×Mp.

Proof For each m,n ≥ 1, t ∈ [0, T ], dP -a.s.,

|Y m
t − Y n

t |p−1ft ≤ 2p−1Mp−1ft,

|Y m
t − Y n

t |p−1ut ≤ 2p−1Mp−1ut,

|Y m
t − Y n

t |p−1v2t ≤ 2p−1Mp−1v2t . (4.9)

Furthermore, by the Hölder inequality, we can get

E
[ ∫ T

0

Mp−1fsds
]
≤ (E[Mp])

p−1
p

(
E
[( ∫ T

0

fsds
)p]) 1

p

< +∞,
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E
[( ∫ T

0

Mp−1usds
) p

p−1
]
≤ E[Mp]

(∫ T

0

usds
) p

p−1

< +∞,

E
[( ∫ T

0

Mp−1v2sds
) p

p−1
]
≤ E[Mp]

(∫ T

0

v2sds
) p

p−1

< +∞. (4.10)

Then by (4.9), (4.10) and the dominated convergence theorem, let m,n → +∞, it follows that

E
[ ∫ T

0

|Y m
t − Y n

t |p−1ftdt
]
→ 0,

E
[( ∫ T

0

|Y m
t − Y n

t |p−1utdt
) p

p−1
]
→ 0,

E
[( ∫ T

0

|Y m
t − Y n

t |p−1v2t dt
) p

p−1
]
→ 0. (4.11)

We first show {Y n}n≥1 is a Cauchy sequence in Sp. By (ii) in Lemma 2.3 and (H1), we have

∥Y m − Y n∥pSp ≤CpE
[ ∫ T

0

|Y m
s − Y n

s |p−1(2fs + u(s)(|Y n
s |+ |Y m

s |)+

v(s)(|Zn
s |+ |Zm

s |))ds
]

≤Cp

{
2E

[ ∫ T

0

|Y m
s − Y n

s |p−1fsds
]
+

E
[ ∫ T

0

|Y m
s − Y n

s |p−1u(s) · (|Y n
s |+ |Y m

s |)ds
]
+

E
[ ∫ T

0

|Y m
s − Y n

s |p−1v(s)(|Zn
s |+ |Zm

s |)ds
]}

. (4.12)

Now we estimate the second term of (4.12), by the Hölder inequality and (4.11), while m,n → ∞,

we have

E
[ ∫ T

0

|Y m
s − Y n

s |p−1u(s)(|Y n
s |+ |Y m

s |)ds
]

≤ 2(E[Mp])
1
p

(
E
[( ∫ T

0

|Y m
s − Y n

s |p−1u(s)ds
) p

p−1
]) p−1

p → 0. (4.13)

The third term of (4.12) also converges to 0, while m,n → ∞. Actually,

E
[ ∫ T

0

|Y m
s − Y n

s |p−1v(s)(|Zn
s |+ |Zm

s |)ds
]

≤ E
[( ∫ T

0

|Y m
s − Y n

s |2p−2v2(s)ds
) 1

2
(∫ T

0

(|Zn
s |+ |Zm

s |)2ds
) 1

2
]

≤
(
E
[( ∫ T

0

|Y m
s − Y n

s |2p−2v2(s)ds
) p

2p−2
]) p−1

p ·
(
E
[( ∫ T

0

(|Zn
s |+ |Zm

s |)2ds
) p

2
]) 1

p

.

By (4.11) and the Hölder inequality, let m,n → ∞, we have(
E
[( ∫ T

0

|Y m
s − Y n

s |2p−2v2(s)ds
) p

2p−2
]) p−1

p

≤
(
E
[

sup
s∈[0,T ]

|Y m
s − Y n

s |
p
2

(∫ T

0

|Y m
s − Y n

s |p−1v2(s)ds
) p

2p−2
]) p−1

p
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≤
(
E
[

sup
s∈[0,T ]

|Y m
s − Y n

s |p
]) p−1

2p
(
E
[( ∫ T

0

|Y m
s − Y n

s |p−1v2(s)ds
) p

p−1
]) p−1

2p

≤ C1
p(E[Mp])

p−1
2p

(
E
[( ∫ T

0

|Y m
s − Y n

s |p−1v2(s)ds
) p

p−1
]) p−1

2p

→ 0. (4.14)

Moreover, (
E
[( ∫ T

0

(|Zn
s |+ |Zm

s |)2ds
) p

2
]) 1

p

< +∞. (4.15)

So, the above (4.14) and (4.15) show

lim
m,n→∞

E
[ ∫ T

0

|Y m
s − Y n

s |p−1v(s)(|Zn
s |+ |Zm

s |)ds
]
→ 0. (4.16)

Combining (4.11), (4.12), (4.13) and (4.16), we prove that ∥Y m − Y n∥pSp converges to zero as

m,n → ∞. Thus, {Y n}n≥1 is a Cauchy sequence in Sp.
By (H1) and the Hölder inequality, we have

E
[( ∫ T

0

|Y m
s − Y n

s ||gm(s, Y m
s , Zm

s )− gn(s, Y
n
s , Zn

s )|ds
)P

2
]

≤ E
[( ∫ T

0

|Y m
s − Y n

s |(2fs + u(s)(|Y n
s |+ |Y m

s |) + v(s)(|Zn
s |+ |Zm

s |))ds
) p

2
]

≤ E
[(

2

∫ T

0

|Y m
s − Y n

s |fsds+ 2

∫ T

0

|Y m
s − Y n

s |u(s)Mds+∫ T

0

|Y m
s − Y n

s |v(s)(|Zn
s |+ |Zm

s |)ds
) p

2
]

≤ C3
p

(
E
[

sup
s∈[0,T ]

|Y m
s − Y n

s |
p
2

(∫ T

0

fsds
) p

2
]
+

E
[

sup
s∈[0,T ]

|Y m
s − Y n

s |
p
2M

p
2

(∫ T

0

u(s)ds
) p

2
]
+

E
[

sup
s∈[0,T ]

|Y m
s − Y n

s |
p
2

(∫ T

0

v2(s)ds
) p

4
(∫ T

0

(|Zn
s |2 + |Zm

s |2)ds
) p

4
])

≤ C3
p(∥Y m − Y n∥

p
2

Sp

(
E
[( ∫ T

0

fsds
)p]) 1

2

+

∥Y m − Y n∥
p
2

Sp(E[Mp])
1
2

(∫ T

0

u(s)ds
) p

2

+

∥Y m − Y n∥
p
2

Sp

(
E
[( ∫ T

0

|Zn
s |2ds

) p
2
]
+ E

[( ∫ T

0

|Zm
s |2ds

) p
2
]) 1

2
(∫ T

0

v2(s)ds
) p

4
)

≤ K · ∥Y m − Y n∥
p
2

Sp ,

where K is a positive integer. Due to (ii) in Lemma 2.3 and that {Y n}n≥1 is Cauchy sequence,

we can show that {Zn}n≥1 is also a Cauchy one.

Then {(Y n, Zn)}n≥1 is a Cauchy sequence in Sp ×Mp.

The proof is completed. �
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We denote Z as the limit of Zn in Mp. Now we can prove Theorem 4.1.

Proof Because {Zn} is a Cauchy sequence in Mp, we select a subsequence {Znk} of {Zn} (For

simplicity, it is still written as {Zn}) satisfying

E
[( ∫ T

0

|Zn
s − Zs|2ds

) p
2
]
<

1

2n
,

then

E
[( ∫ T

0

sup
n≥1

|Zn
s − Zs|2ds

) p
2
]
≤ E

[ ∞∑
n=1

(∫ T

0

|Zn
s − Zs|2ds

) p
2
]
≤

∞∑
n=1

1

2n
< ∞.

Therefore

E
[( ∫ T

0

sup
n≥1

|Zn
s |2ds

) p
2
]

≤ Cp

{
E
[( ∫ T

0

sup
n≥1

|Zn
s − Zs|2ds

) p
2
]
+E

[( ∫ T

0

|Zs|2ds
) p

2
]}

< ∞. (4.17)

Since ∥Y n − Y ∥Sp → 0, ∥Zn − Z∥Mp → 0, as n → +∞, there exist two subsequences {Y n}
and {Zn} respectively, satisfying

Y n → Y, a.e., a.s.,

Zn → Z, a.e., a.s..

In view of Proposition 4.3 (iv), while n → +∞, it is easy to show that

gn(t, Y
n
t , Zn

t ) → g(t, Yt, Zt), a.e., a.s.

Moreover, as

gn(t, Y
n
t , Zn

t ) ≤ ft(w) + u(t)|Y n
t |+ v(t)|Zn

t | ≤ ft(w) + u(t) sup
n≥1

|Y n
t |+ v(t) sup

n≥1
|Zn

t |,

and

E
[( ∫ T

0

(ft(w) + u(t) sup
n≥1

|Y n
t |+ v(t) sup

n≥1
|Zn

t |)dt
)p]

< +∞,

by the dominated convergence theorem, we have

lim
n→∞

E
[( ∫ T

0

|gn(t, Y n
t , Zn

t )− g(t, Yt, Zt)|dt
)p]

= 0.

By taking limits on n in BSDEs (4.7), we deduce that (Yt, Zt)t∈[0,T ] is a solution of the

BSDE (1.1).

The minimal solution is ensured by Theorem 3.1 (Comparison Theorem).

The Proof of Theorem 4.1 is completed. �
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