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Abstract The atom-bond connectivity (ABC) index of a graph G, introduced by Estrada,

Torres, Rodriguez and Gutman in 1998, is defined as the sum of the weights % + % — d?d_
f r id;
of all edges v;v; of G, where d; denotes the degree of the vertex v; in G. In this paper, we

give an upper bound of the ABC index of a two-tree G with n vertices, that is, ABC(G) <

(2n — 4)@ + 7v2"14. We also determine the two-trees with the maximum and the second

n—

maximum ABC index.
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1. Introduction

Molecular descriptors play a significant role in chemistry, pharmacology, etc. Among them,
topological indices have a prominent place [1]. On the topological indices, there are many
publications [2-10]. One of the most important topological indices is the Randié¢ index, which is
aimed at use in the modeling of the branching of the carbon-atom skeleton of alkanes, introduced
by Randi¢ [11]. But a great variety of physico-chemical properties rest on factor rather than
branching. In order to take this into consideration, Estrada et al. proposed a new index, known
as the atom-bond connectivity (ABC) index [12] of graph G, which is defined as the sum of
1/d%_ + dij — %dj of all edges v;v; of G, where E(G) denotes the edge set and d; denotes the

degree of the vertex v; of G, i.e.,

ABC(G) =)

ViV EE(G)

The ABC' index keeps the spirit of the Randi¢ index and it provides a good model for the
stability of branched alkanes as well as the strain of cycloalkanes [12,13]. In 2009, Furtula et
al. [14] studied the mathematical properties of ABC index of trees and proved that the star
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tree has the maximal ABC value among all trees with n (n > 2) vertices. Bollobéds and Erdos
[15] found that the Randié¢ index of a graph decreases when an edge with maximal weight is
deleted. For the ABC index of graphs, Chen and Guo [16] proved that the ABC index of a
graph decreases when any edge is deleted.

The ABC index has an important result, for example, Chen et al.[17] showed that among
all n-vertex graphs with vertex connectivity k, the graph Kj V (K7 U K,,__1) is the unique
graph with maximum ABC index. Gutman and Furtula [18] showed that the structure of trees
with a single high-degree vertex and smallest ABC' is determined. Gan et al. [19] characterized
the trees with given degree sequences, extremal w.r.t. the ABC index. Lin et al.[20] proved
that for any degree sequence 7, there exists a BFS-graph with minimal ABC' index in C(7) and
the result is applicable to obtain the minimal value or lower bounds of ABC' index of connected
graphs. For more results on the ABC' index, we refer to [21-30].

The two-tree is defined as follows.

Step 1. When t = 0, let Gy = K3, where K (an edge) is a two-tree with 2 vertices.

Step 2. Let G¢ be a two-tree generated at the ¢-th step. Then, G;11 generated at the (t+1)
step is the graph obtained from G; by adding a new vertex adjacent to the two end vertices of
one edge. Clearly, Gyy1 has t + 3 vertices.

The two-tree has a very important structure in complex networks. It is known that the
small-world Farey graph [31], fractal scale-free networks [32], the pseudofractal scale-free web

[33] and the generalized Farey graph [34] are some special classes of two-tree networks.
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*
Sk Ry,
Figure 1 The graphs S;, and R,

Let S} denote the graph obtained from the complete bipartite graph K5 ,_2 by adding one
edge in the part with two vertices (see Figure 1). Let R} denote the graph obtained from the
graph S _; by adding a new vertex and two new edges adjacent to the new vertex such that one
edge is incident to a vertex of degree 2 in S};_; and the other is incident to a vertex of degree
n—21in S} _; (see Figure 1).

In this paper, we investigate the ABC index of two-trees and obtain the following results.

Theorem 1.1 Let G be a two-tree with n (n > 4) vertices. Then

ABC(G) < (2n — 4)? + 7?__14

with the equality holding if and only if G = S}.
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Theorem 1.2 Let G be a two-tree with n (n > 5) vertices and G # S¥. Then

"y (1 — 2n — 5 n n—1
ABC(G) < ABC(R;) = (n—3)V2+ (n_lxn—2y+ng~4)+VCw~4W

2. Preliminary

In this section, we prove some lemmas, which is a preparation of our main results.

Observation 2.1 Let g(d1,ds) = i + é — (11272. Then ¢g(2,d2) = g(dy,2) = g

Lemma 2.2  Let dy,dy be two integers with di,ds > 2. Then the function g(di,ds) =

chl + é — d12d2 is monotonic decreasing for d; (i = 1,2) and gmax(2,d2) = gmax(d1,2) = 72
Proof Note that 597‘71 = 2—dy . Since dy,d2 > 2, it follows that 867(]1 < 0 and hence

2d14/d1dz (d1+d2—2)
g(d1,ds2) is monotonic decreasing for dy. Therefore, gmax(2,d2) = gmax(d1,2) = g O

Lemma 2.3 Let x be an integer with x > 3. Then the function

(@) /1+1 2 1 . 1 2
T)=A/—F+———5 — -
x oz a2 x+1 z4+1 (z+1)2
is monotonic decreasing for x.
2 2 2 2
f@vxxzﬁﬂ(mﬂ)z

2—x 1—2x r—1 r—2

- 22/2x — 2 B V2 (z +1)2 B V2r(z +1)2 B 222z — 2

Proof Observe that

and

f'(z)

Therefore, we have

r—1 2 r—2 \2  2z(-3z°+9z* + 32% — 92% — 122 — 4)
(\/ﬂ(a:—i-lﬁ) - <x2m) 4r5(z — 1) (2 + 1)% '
Since the maximum root of —3z° + 92% + 32% — 922 — 122 — 4 is less than 3, it follows that
—32° + 92* + 323 — 922 — 120 — 4 < 0 for 2 > 3, which implies
rz—1 r—2
V2r(z +1)2  a2y2z 2

Hence f/(z) < 0 for = > 3, as desired. O

< 0.

Lemma 2.4 Let x be an integer with x > 3. Then the function

! 2 1 1 2
IO =\t o "2y Veritartl Grne+D

is monotonic decreasing for x.
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Proof Observe that

143

o) = 1 \/E(a:—1)_2x2—2x—1)
20/T(z+1)3 " (z+1)2 o/2r —1 7
Let a = % and b = 2;2_2% Then a? — b2 = _G"Lzﬁ(lfil)_(g; _1‘;“ L for x > 3. Since
—62% 4+ 1623 — 622 — 5br — 1 < 23(—62 + 16) < 0, it follows that a® — b < 0. Since a+b > 0, it
follows that a — b < 0 and hence ‘(E(mgi) - 2:”?/_22””—11 < 0. So f'(z) < 0 and the result holds. O
4 2 €T xr—

Lemma 2.5 Let x and y be two integers with y > x > 2. Then

1+1 2 1 n 1 2 S 2 2 2 2
Ve vy 2y x+1 y+1 (x+D@w+1) =~ Vy y2 y+1 (y+1)%

Proof Notice that

1+1 2 1 n 1 2 ( 1 1 2
Ve vy a2y z+1 y+1 (z+1)(y+1) \/y y o y?

+ 2
y+1 y+1 (y +1)2

\/7 /x+y 2 /y+y—2 \/ \/y+y
y+1 y+1

1 T
VA== 1S Vet

. We now suppose y > . From Lemma 2.2, we have \/T(\/ ”H'y Z_

< 0. Since \/> N +1’ it suffices to show that

Set L(z,y) =

1 \/x+y72 _ y+y,2)
y z Yy

easily check that L
x+y

y+y 2 y+y
1/ > 0 and 1/ ,/y+1 $+1
:c+y 2> /2ty o, yty—2 yty
r+1 Y y+1°

C0n51der the latter case. Observe that yﬂ/ﬁ —
[yty=2 futy
Y < y+1°

Consider the former case. Note that %H — % =

k—2 T+y—2 z+y

andel Ifk227thenm207807_m

>0 (k> 2).

y+1

_\/:r-i—y)
x+17

Z1U)  When x = y, one can

x+1/°

—2
y(y+1)

5y < 0, which implies that

= z(wﬂf Suppose that y = = + k
= ﬁ > 0, which implies that

From the above arguments, we have L(z,y) > 0 for k > 2. If

zty—=2 _  [zty
x r+1
2x—1

242

k=1, then L(z,y) = \/m(erl) - \/<zfi§Tzl+z>
we can get L(z,y) > 0. So, we have

2x
- (\/(r+1)(x+1) B

(a:+2)(:1:+2)) By Lemma 2.4,

\/ _:ry_\/erl y+1 (x+1 (y+1) \/ \/y+1 y+1)

Lemma 2.6 Let x and y be two integers with x > 3,y > 2. Then the function

1 1 2
f<x’y):\/x1+y_(x1)y_

is monotonic increasing for y.

z—2

1 1 2

r y Ty

x—2

. . of _
Proof For fixing x, it follows that 5 T i

_ z—3
2/ 3 Va—1-vaFy—3 z\F( V-

r+y— 2
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r—3

m) By computation, we have

0<(2? —x—4)y+2(z—2)(z —3)
=(z —2)*(¢ — )z +y—3) — (z - 3)%z(z +y - 2),

which leads to
T —2 r—3

> .
Ve-ve+y—2~ Vor—1-\Jr+y—3
That is, % > 0, which implies that the lemma is true. [J

Lemma 2.7 Let z,y be two integers with x > 3,y > 2. Then

f(x,y)\/l FESE Y | O )

r—1 y (z—1y Ty xy

is monotonic decreasing for x.

Proof Note that
% _ y—2 y—2

00 2 /my(ety -2 2e- 0\ Dyl ty 3

Since

(z— 1V (z - Dyl +y—3) <ayaylz +y—2),

we have
y—2 y—2

xy(z+y—2) < (z—1)/(z — Dy(z+y—3)

Hence % < 0, as desired. [

Lemma 2.8 Let y be an integer with y > 6. Then the function

fw) LT 2 L1 2
=2+ -2_ /L _
y oy oy y y+1l yly+1)

is monotonic decreasing for y.

Proof Note that

Fly) = 2 —y 2y + 1 — 2y? 2—y 2y + 1 — 22
Yoy ——2 2wt )iV =1 V2 -2 293 (y+ )32y —2
c_ 2y 2y* — 2y _ 1 <y2—y y—%
YV -2 E(y+ 1)y -2y 2y —2\(y+1): VI
o ‘2_‘ - _2 . —‘4+6(3—(2—8‘ —4 4
Leta—ﬁandb—”ﬁ.ThenaZ—bQ— . Fory > 6, —y + 6y° —

y? =8y — 4 < y*(~y +6) < 0, s0 we have a® — b = =V FOU—WS=t < which implies that
f'(y) <0, as desired. OJ

Lemma 2.9 Let x be an integer with x > 2. Then the function

N 1 2 1 1 2
flz) = E+x+1_aj‘(l’+1)_ :z:+1+x+2_(1?+1)(1’+2)
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is monotonic decreasing for x.

Proof Notice that

f’(;c):l( 22% 422 — 1 B 222 — 2z — 1 )
2\(@z+1)(z+2)/z+D@+2)2z+1) z(@+1)yz(x+1)(2z—1)
Seta = (w+1(w+afikiii(i+2x2x+1) and b= muﬁdfjigii;i2w—l)'rrhen

2 —2427 — 2425 + 1122° + 1442 — 702% — 1422 — 60z — 8

(x+1)3(x+2)3(2x 4+ 1)(2z — 1)z
Observe that —24x7 —242% 411225 + 14424 — 7023 — 14222 — 602 — 8 < 8z*(—323 — 322 +142+18).
Since —3z3 — 322 + 142+ 18 = z(—32? — 3z +14) + 18 < 0, it follows that a? —b? < 0. For = > 3,
from above —2427 — 242° + 1122° + 1442* — 7023 — 14222 — 60z — 8 < 0. Then a? — b? < 0 and
hence a — b < 0. Therefore, f'(z) < 0 for > 3. The result follows. O

Lemma 2.10 Let x,y be two integers with y > x > 3. Then
1 1 2 1 1 2
Vo y ay z+1 y+1 (z+1y+1)
> + 2 ! + 2
y y+1 yly+1) \y+l y+2 (y+1)y+2)

PI‘OOf SetM \/ +*—@— z+1+y+1—(z+1)2wandN:\/%+ﬁ—m—

\/ w1ty T e
Suppose y = z. From Lemma 2.8, we have M — N > 0 for y > 6. When y = 3,4, 5, one can

easily check that M — N > 0.
Suppose y > x. Note that

M—N:\/T( [t+y—2 2y1>_\/ 1 (\/x+y_\/2y+1).
y x y+1 y+1 z+1 y+2

Let y = 2+ k (k > 1). From Lemma 2.2, we have \/j(\/“'y 2 \/nyﬂl) > 0 and

4y ery 2 4y
*/y+1 Vo — y+2 ) > 0. Slncef 1/erl,1tbufﬁcestoshowthat\/ >\ ort and
[2ytl o /2y—1
y+2 y+1°

. 2y—1  2y+1 _ -3 ; 2y
Consider the latter case. Observe that ) e = GEDE < 0, that is, )

2y+1 .
yy+2 < 0, as desired.
Consider the former case. For y > z 42, =2 _ o = g(_f_;li >0; for y =z + 1, by
Lemma 2.9 we have M > N.

From above arguments, we know that M > N. I

Lemma 2.11 Let x,y be two integers with y > x > 3. Then

1+1 2 1 n 1 2
Ve y xy x+1 y+1 (z+1)y+1)
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N L1 2 L1 2
“\Vy-1 'y (y—-1l)y y y+1 yly+1)

where the equality holds if and only if y = x + 1.

- r,:1 2  J/J 1 ., 1 2 - 1 o, 12
Proof Set M = (/z+ y xy a1 T (z+1)(y+1) and N = \/yfl Ty (y—1y
1 1 2
\/a BT ERTORS)E
Note that

M’—N’:\/T(\/m—\/m)—\/ 1 (\/m+y_\/2y—1).
Y T y—1 y+1 z+1 Y

Since y > x+1, we have 1/% - \/2;’? > 0and \/%7 2yy—1 > 0, where the equality
holds if and only if y = z + 1. Since\/g> \/g, it suffices to show that\/%wz\/%and

A similar argument of Lemma 2.10, the lemma is true. O

3. Proofs of main results
We are now in a position to prove our main results.

Proof of Theorem 1.1 We prove this theorem by induction on n. Let T;, be a two-tree with
n vertices.

For n = 4, the two-tree T}, is a unique graph obtained from the complete graph of order 4
by deleting one edge. Clearly, ABC(T,) =2v2+ 2v/3 = (2n — 4)? + @, as desired.

Suppose that the result holds for all integers smaller than n. Pick up one vertex of degree
2 from the graph T;,, say w. Observe that T,, — w is a two-tree of order n — 1. By induction
hypothesis, ABC(T,, —w) < ABC(S};_,) with the equality holding if and only if T}, —w = S} _,.
Now we prove that ABC(T,,) < ABC(S}).

Let u and v be two vertices adjacent to the vertex w in T,,. Let dr, (u) = z and dr, (v) = v,
where dr, (u) denotes the degree of the vertex w in Tj,. Clearly,3 <z <n—1land3 <y <n-—1.

Without loss of generality, let y > x > 3. Notice that

1 1 2 T 1 2
. - B B I
ABC(Tn) >~ ABC(Tn w) + \f (\/JJ —1 + Yy — 1 (3;‘ — 1)(y - 1) x Y xy)
] 1 2 T 1 2
< . - - Va2 Ty wy/)
< ABC(S;_y) + V2 (\/z1+y1 (x—1)(y—1) x+y Il/)
Set
. [ 1 2 _ g2
M _\/m—1+y—1 (z-1(y—-1) Ty xy
and
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Then
1 1
M - N" — _ N B T
\/x—1+y—1 (x—1)(y—1) x+y xy
! + ! 2 + -l-
n—2 n—-2 (n-—2)>2 n—l)
[ ﬁ
“Vz-1 y-1 (xfl (y—1) y Yy
1 1 2 1 1 2
+ — — —+———) by Lemma 2.3
(\/y—l y—1 -1 Vy vy ¢ ( )
>0 (by Lemma 2.5).
Hence
ABC(Ty)

< ABC(S;, )+ V2 - (

< ABC(S*_ 1)+\f—(
= ABC(S,),

where the equality holds if and only if T;, —w = S);_; and x = y = n — 1, which completes the
proof. (I

Proof of Theorem 1.2 We prove this theorem by induction on n. Let T}, be a two-tree with
n vertices and T,, # S.

For n = 5, one can see that T,, = S} or T,, = R}. Since T}, # S}, we have T,, = R}. One
can sece that ABC(T,,) =2v2+ 2 + @ (n —3)v2+ \/ 2” = \/B(n 5 \/3(n %)

desired.

Suppose that the result holds for any integer smaller than n. Choose one vertex w of degree
2 from the graph T, such that T,, —w # S)_;. By induction hypothesis, ABC(T,, — w) <
ABC(R? _4). Our aim is to prove that ABC(T,) < ABC(R}).

Let u and v be two vertices adjacent to the vertex w in T;,. Then there must exist a vertex

p with dp, _,(p) > 3 (otherwise, T,, —w = S} _4). Let dr, (u) = z, dr, (v) =y and dp, (p) = a.

n—1

Then 3 < z,y,a < n— 1. Let max{x,y,a} = y. Then y < n — 1 and max{z,a} < n — 2
(Otherwise T,, = S}).
By Lemma 2.2, we have that

ABC(T;,)
gABC(Tn—w)+\f_(\/ 1 1__2 _ l+l_£)_

x—1 a a(z—-1) x a za
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T 1T 2 /1 1 2
(st 2 Ty

< ABC( ;_1>+¢5—< e RTAE T B

(L 2 Ty
y—1 3 3@y-1) y 3 3y

11 2 11 2
< . - P - 3 N
< ABC(R, )+ V2= (([n =5+ 3(n —3) ¢n—2+3 3@—29

11 2 1 1 2
( n_2 3 3m-2 n—1+§73m—197

1 1 2 1 1 2
— - ———) (byL 2.7).
(\/a:—1+y—1 (y—1)(x—1) :U+y xy)(y emma 2.7)

We now give a lower bound of \/ﬁ—i—ﬁ—m—\/%—i—%—%.

For x <y <n —2, by Lemmas 2.9 and 2.10 we have

( LI 2 _ l+l_20_
=1 y—-1 (y-1L-1) T

>< 1 1 _ 2 _ 1+1_EJ_
r—1 y—-1 (y—1)(z-1) r oy wxy

( L1 2 11 9 )>0
y—1 y yly—1) y y+1 yly+1) '

Fory=n—1and y > x + 1, by Lemmas 2.9 and 2.11 we have

( LI 2 _ l+l_30_
=1 y—-1 (y-1L-1) Ty ay
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where the equality holds if and only if y =n — 1 and x = n — 2. Therefore,
ABC(T,,)

. 11 2 11 2
< ABC( ”_1)+\/§_(\/3+n—3_3(n—3)_\/3+n—2_3(n_2)>_

11 2 1 1 2
( 32 3m-2 §+n—173(n—1))7

— ABC(R;),
where the equality holds if and only if 7,, —w = R} _;, a =3, =n —2 and y = n — 1, which
completes the proof. [
4. Concluding Remark

In this paper, we investigated ABC index of a two-tree, which has a very important structure

in complex networks.

Un—1 V1 Un—2 Uy
(%) n (%) Un—1
n is even n is odd

Figure 2 Graphs with ABC(G) = 2v/2 4 2415 4 (2n — 11) 8

From Theorems 1.1 and 1.2, we determine the two-trees with the first two largest ABC' index,
but the two-trees with the minimum ABC index are still unknown, this seems to be a difficult
problem. For the minimum ABC index, we conjecture the following result holds: For a two-tree
G onn (n > 6) vertices, ABC(G) > 2v/2+ Léﬁ +(2n— 11)?. The graph attaining this bound

is shown in Figure 2.
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