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Abstract In this paper we introduce derivations in hyperlatices and derive some basic proper-

ties of them. Also, some properties of differential hyperideals and differential hypercongruences

are studied. Further we prove that for an injective strong differential hyperlattice (L, d) and

for a strongly differential hypercongruence R of (L, d), the quotient hyperlattice (L/R, g) is

an injective strongly differential hyperlattice, where g is an injective strong derivation on L/R

induced by d.
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1. Introduction

The concept of hyperstructures was introduced by Marty [1] at 8th Congress of Scandinavian

Mathematicians in 1934. Till now, the hyperstructures are studied from the theoretical point of

view and for their applications to many subjects of pure and applied mathematics [2,3]. Algebraic

hyperstructures are suitable generalizations of classical algebraic structures. Since then, there

appeared many components of hyperalgebras such as hypergroups in [4,5] hyperrings in [6–8] etc.

Konstantinidou and Mittas have introduced the concept of hyperlattices in [9] and superlattices

in [10], also see [11,12]. The notion of hyperlattices is a generalization of the notion of lattices and

there are some intimate connections between hyperlattices and lattices. In particular, Rasouli

and Davvaz further studied the theory of hyperlattices and obtained some interesting results

[13,14], which enrich the theory of hyperlattices.

The notion of derivations, introduced from the analytic theory, is helpful for the research

of structures and properties in algebraic systems. Serval authors [15,16] studied derivations in

rings and near rings. Also Jun and Xin [17] applied the notion of derivation in rings and near-

rings theory to BCI-algebras. In [18], Xin, Li and Lu introduced the concept of derivations

on lattices and characterized modular lattices and distributive lattices by isotone derivations.

From the motivation of derivations, Vougiouklis [19,20] introduced a hyperoperation called theta

hyperoperation and studied Hν-structures. Jan Chvalina et al. [21] introduced a hyperoperation
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∗ on a differential ring R so that (R, ∗) is a hypergroup. In [21], Asokkumar introduced the notion

of derivations on Krasner hyperrings. In [22], Kamali Ardekani and Davvaz defined the notion

of derivation on milticative hyperring. Now, we define the notion of derivation on hyperlattice.

2. Preliminaries

In this section, we first recall some definitions and basic results which were given in [3,13,14].

Definition 2.1 ([13]) Let L be a non empty set and ∨ : L×L −→ P ∗(L) be a hyperoperation,

where P (L) is a power set of L and P ∗(L) = P (L) − ∅ and ∧ : L × L −→ L be an operation.

Then (L,∨,∧) is a hyperlattice if for all a, b, c ∈ L:

(1) a ∈ a ∨ a, a ∧ a = a;

(2) a ∨ b = b ∨ a, a ∧ b = b ∧ a;

(3) (a ∨ b) ∨ c = a ∨ (b ∨ c); (a ∧ b) ∧ c = a ∧ (b ∧ c);

(4) a ∈ [a ∧ (a ∨ b)] ∩ [a ∨ (a ∧ b)];

(5) if a ∈ a ∨ b, then a ∧ b = b.

For all non empty subsets A and B of L, A ∧B = {a ∧ b|a ∈ A, b ∈ B}, A ∨B = {a ∨ b|a ∈
A, b ∈ B}.

Let L be a hyperlattice. For each x, y ∈ L, we define two relations on L as follows: (x, y) ∈≤
if and only if x = x ∧ y, (x, y) ∈≼ if and only if y ∈ x ∨ y. For all nonempty subsets A and B of

L, we define A ≤ B if there exist a ∈ A and b ∈ B such that a ≤ b.

A zero of a hyperlattice L is an element 0 with 0 ≤ x for all x ∈ L. A unit, 1, satisfies

x ≤ 1 for all x ∈ L, so we can conclude that there are at most one zero and at most one unit.

A bounded hyperlattice is one that has both 0 and 1. In a bounded hyperlattice L, y is a

complement of x if x ∧ y = 0 and 1 ∈ x ∨ y. The set of complement elements of x is denoted by

xc too. A complemented hyperlattice is a bounded hyperlattice in which every element has at

least one complement.

Definition 2.2 ([3]) An element a ∈ L is called a scalar element if for all x ∈ L the set a ∨ x

has only one element.

Proposition 2.3 ([13]) Let (L,∨,∧) be a hyperlattice. Then for all x, y, z ∈ L and for all

nonempty subsets X,Y, Z of L the following hold:

(1) ≤=≼ and (L,≤) is a poset. Also, we can replace Definition 2.1 (4) by x ∈ x ∧ (x ∨ y);

(2) x ∧ y ≤ x, y ≤ x ∨ y;

(3) X ⊆ (X ∨X) ∩ (X ∧X);

(4) X ∨ (Y ∨ Z) = (X ∨ Y ) ∨ Z and X ∧ (Y ∧ Z) = (X ∧ Y ) ∧ Z;

(5) If x ≤ y, then x ∧ z ≤ y ∧ z;

(6) If x, y ∈ x ∨ y, then x = y, so x ∨ y = L implies that x = y;

(7) If x ∨ y = {0}, then x = y = 0;

(8) If 0 is a scalar element of L, then 0 ∨ 0 = 0, x ∨ 0 = {x}.
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Definition 2.4 ([13]) A subhyperlattice of a hyperlattice L is a nonempty subset of L which is

closed under the hyperoperation ∨ and operation ∧ as defined in L.

Definition 2.5 ([13]) A hyperlattice (L,∨,∧) is said to be a distributive if a ∧ (b ∨ c) =

(a ∧ b) ∨ (a ∧ c) holds for every a, b, c ∈ L.

Definition 2.6 ([13]) A bounded hyperlattice (L,∧,∨, 0, 1) is said to be a hyperboolean algebra

if L is a distributive and complemented.

Definition 2.7 ([13]) Let (L,∧,∨) be a hyperlattice and I be a nonempty subset of L. Then I

is called a hyperideal of L when:

(i) I is a subhyperlattice;

(ii) x ∈ I and y ∈ L imply x ∧ y ∈ I.

Definition 2.8 ([14]) Let P be proper ideal of hyperlattice L. P is called a prime ideal of L if

x, y ∈ L and x ∧ y ∈ P implies that x ∈ P or y ∈ P .

Definition 2.9 ([13]) A map f from a hyperlattice L1 to a hyperlattice L2 is called a homo-

morphism if it satisfies the following condition:

f(x ∧ y) = f(x) ∧ f(y), f(x ∨ y) = f(x) ∨ f(y).

Definition 2.10 A hyperlattice L is said to be 2-torsion free if 0 ∈ x ∨ x for x ∈ L implies

x = 0.

Example 2.11 Let L = {0, a, b, 1} and define ∧ and ∨ by the following Cayley tables

∧ 0 a b 1

0 0 0 0 0

a 0 a 0 a

b a 0 b b

1 0 a b 1

∨ 0 a b 1

0 L {a, 1} {b, 1} {1}
a {a, 1} {b, 1} {1} {1}
b {b, 1} {1} {b, 1} {1}
1 {1} {1} {1} 1

Table 1 Definition of ∨ and ∧ in Example 2.11

Then (L,∧,∨) is a hyperlattice. It is easy to check that L is a 2-torsion free hyperlattice.

Definition 2.12 ([13]) Let R be an equivalence relation on a nonempty set L and X, Y ⊆ L.

Then:

(i) XRY if and only if for all x ∈ X there exists y ∈ Y such that xRy and for all y ∈ Y

there exists x ∈ X such that xRy.

(ii) XRY if and only if for all x ∈ X and y ∈ Y we have xRy.

(iii) Let L be a nonempty set and R be an equivalence relation on L. In this article, for each

x ∈ L the equivalence class of x is denoted by [x] and is defined with [x] = {y ∈ L|xRy}. Also, the

quotient set of L with respect to R is denoted by L/R and is defined with L/R = {[x]|x ∈ L}.
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Definition 2.13 ([13]) Let L be a hyperlattice. An equivalence relation R is said to be a

hypercongruence relation on L if xRy implies x ∨ zRy ∨ z and x ∧ zRy ∧ z, for all x, y, z ∈ L.

Theorem 2.14 ([13]) Let (L,∨,∧) be a hyperlattice. If R is a hypercongruence on L, then L/R

is a hyperlattice.

Let S be a non-empty subset of a bounded hyperlattice L. Define C(S) = {x ∈ L|x∧S = 0}.
The set C(S) is similar to the annihilator of hyperring R. So we call the set C(S) the annihilator

of L.

Proposition 2.15 Let L be a bounded hyperlattice and S be a non-empty subset of L. Then

the following hold:

(1) If L is a bounded distributive hyperlattice, then C(S) is a hyperideal of L.

(2) If S1 and S2 are subsets of L such that S1 ⊆ S2, then C(S2) ⊆ C(S1).

Proof (1) Assume that L is a bounded distribute hyperlattice. Since 0 ∈ C(S), we see that

C(S) is non-empty. Let x, y ∈ C(S). Then x ∧ s = 0, y ∧ s = 0 for all s ∈ S. Now,

(x∧ y)∧ s = (x∧ s)∧ (x∧ s) = 0∧ 0 = 0. Also, (x∨ y)∧ s = (x∧ s)∨ (y ∧ s) = 0∨ 0 = 0. Thus

for any x, y ∈ L, x∧ y ∈ C(S), x∨ y ⊆ C(S). So, C(S) is a subhyperlattice of L. For any x ∈ L,

y ∈ C(S). We have x ∧ (y ∧ s) = (x ∧ y) ∧ s = 0. Thus x ∧ y ∈ C(S). So, C(S) is a hyperideal

of L.

(2) Let x ∈ C(S2). Then S2 ∧ x = 0. That is, s2 ∧ x = 0 for all s2 ∈ S2. This means

that x annihilates all elements of S2. In particular, x annihilates all elements of S1. Therefore,

x ∈ C(S1). �

3. Derivations of bounded hyperlattices

In what follows, let L denote a bounded hyperlattice with 0 being a scalar element unless

otherwise specified.

In this section we define derivation and strong derivation of hyperlattice and give examples.

Definition 3.1 Let L be a hyperlattice. A mapping d : L −→ L such that, for all x, y ∈ L, we

have

(1) d(x ∨ y) ⊆ d(x) ∨ d(y), (2) d(x ∧ y) ∈ (d(x) ∧ y) ∨ (x ∧ d(y))

is said to be a derivation on L, and the pair (L, d) is said to be a differential hyperlattice, or

more precisely, a hyperlattice with a derivation. If the map d such that d(x ∨ y) = d(x) ∨ d(y)

for all x, y ∈ L and satisfies the condition (2), then d is called a strong derivation of L. In this

case, the pair (L, d) is called a strongly differential hyperlattice.

Example 3.2 (1) Let L be a hyperlattice and d : L −→ L is a map defined by d(x) = 0 for

all x ∈ L. Then d is a derivation on L. This derivation is a strong derivation, called the trivial

derivation.

(2) Let L be a hyperlattice. Then the identity function, d(x) = x for every x ∈ L, is a

strong derivation of L and is called the identity derivation.
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(3) Let L = {0, a, b, 1} and define ∧ and ∨ by the following Cayley tables

∧ 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1

0 {0} {a} {b} {1}
a {a} L− {b} {0, 1} L− {a}
b {b} {0, 1} L− {a} L− {b}
1 {1} L− {a} L− {b} L

Table 2 Definition of ∨ and ∧ in Example 3.2 (3)

Then (L,∧,∨) is a hyperlattice. Define a map d : L −→ L by d0 = 0, da = db = d1 = 1. Then

we can see that d is a derivation on L.

(4) Consider the hyperlattice L = {0, a, b, 1} with meet ∧ and hyperjoin ∨ defined as follows.

∧ 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

∨ 0 a b 1

0 {0} {a} {b} {1}
a {a} {0, a} {1} {b, 1}
b {b} {1} {0, b} {a, 1}
1 {1} {b, 1} {a, 1} L

Table 3 Definition of ∨ and ∧ in Example 3.2 (4)

It is clear that the map d : L −→ L defined by d0 = da = 0, db = d1 = b is a derivation of

L.

Definition 3.3 Let d be a derivation on L. If x ≤ y implies dx ≤ dy for all x, y ∈ L, d is called

an isotone derivation.

Example 3.4 Let L be an hyperlattice as in Example 3.2. It is easy to check that d is an

isotone derivation of L.

Proposition 3.5 Let d be a derivation on L. Then the following hold: for all x, y ∈ L,

(1) d0 = 0;

(2) dx ∈ dx ∨ (x ∧ d1);

(3) d is an isotone derivation on L;

(4) d(x ∧ y) = dx ∧ dy;

(5) d1 ∈ d1 ∨ d1.

Proof (1) It is clear that d(0) = 0.

(2) d(x) = d(x ∧ 1) ∈ (d(x) ∧ 1) ∨ (x ∧ d(1)) = d(x) ∨ (x ∧ d(1)).

(3) If x ≤ y, then y ∈ x∨ y. Thus d(y) ∈ d(x∨ y) ⊆ d(x)∨ d(y). By Proposition 3.1 (1) we

get dx ≤ dy.

(4) By (2), we have dx ≥ d1 ∧ x for any x ∈ L. Therefore, d(x ∧ y) ≥ d1 ∧ (x ∧ y) =

d1 ∧ d1 ∧ (x ∧ y) = dx ∧ dy. On the other hand, since d is an isotone derivation. We have
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d(x ∧ y) ≤ dx, d(x ∧ y) ≤ dy, and so d(x ∧ y) ≤ dx ∧ dy. Thus d(x ∧ y) = d(x) ∧ d(y) for any

x, y ∈ L.

(5) By Definition 3.1. �

Proposition 3.6 Let d be a derivation on L. We define ker(d) = {x ∈ L|d(x) = 0}. Then the

following hold:

(1) ker(d) is a subhyperlattice of L;

(2) ker(d) is a hyperideal of L.

Proof (1) Since d0 = 0, we see that ker(d) is non-empty. Let x, y ∈ ker(d). Then d(x) = d(y) =

0. Now, d(x ∨ y) ⊆ d(x) ∨ d(y) = 0 ∨ 0 = 0. Also, d(x ∧ y) ∈ (d(x) ∧ y) ∨ (x ∧ d(y)) = 0 ∨ 0 = 0.

Thus for any x, y ∈ L, x ∧ y ∈ ker(d), x ∨ y ⊆ ker(d). So, ker(d) is a subhyperlattice of L.

(2) By (1) we have for any x, y ∈ L, x ∨ y ⊆ ker(d). If x ≤ ker(d), then there exists a y ∈
ker(d) such that x ≤ y. That is, y ∈ x∨y. Now, 0 = dy ∈ d(x∨y) ⊆ d(x)∨d(y) = d(x)∨0 = dx.

Thus x ∈ ker(d). So, ker(d) is a hyperideal of L. �

Definition 3.7 Let d be a derivation on L. d is said to be a prime derivation if ker(d) is a

prime hyperideal of L.

Example 3.8 Let d be a derivation as in Example 3.2 (4). It is easy to check that d is prime

derivation of L.

Proposition 3.9 Let d be a prime derivation of a 2-torsion free hyperlattice L. If d2 = 0, then

d = 0.

Proof Let d2 = 0. Suppose d ̸= 0, then there exists an element a ∈ L such that d(a) ̸= 0. Then

for every y ∈ L,

d2(a ∧ y) = 0 = d(d(a ∧ y)) ∈ d((d(a) ∧ y) ∨ (a ∧ d(y))) ⊆ d(d(a) ∧ y)) ∨ d((a ∧ d(y)))

⊆ (d2(a) ∧ y) ∨ (d(a) ∧ d(y)) ∨ ((d(a) ∧ d(y)) ∨ (a ∧ d2(y)))

= (d(a) ∧ d(y)) ∨ (d(a) ∧ d(y)).

Since L is 2-torsion free hyperlattice, d(a) ∧ d(y) = 0. Since d is a prime derivation, by

Definition 3.7, d(y) = 0 for every y ∈ L. That is we get d = 0, which is contradiction to the

assumption. Hence d = 0. �

Proposition 3.10 Let d1, d2 be prime derivation of a 2 torsion free hyperlattice L. If d1d2 = 0,

then d1 = 0 or d2 = 0.

Proof For x, y ∈ L we have

d1d2(x ∧ y) = 0 = d1(d2(x ∧ y)) ∈ d1((d2(x) ∧ y) ∨ (x ∧ d2(y)) ⊆ d1(d2(x) ∧ y) ∨ d1(x ∧ d2(y))

⊆ ((d1d2(x) ∧ y) ∨ (d2(x) ∧ d1(y))) ∨ ((d1(x) ∧ d2(y)) ∨ (x ∧ d1d2(y)))

= (d2(x) ∧ d1(y)) ∨ (d1(x) ∧ d2(y)).
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Replace x by d2(x), we get 0 ∈ (d2(d2(x)) ∧ d1(y)) ∨ (d1(d2(x)) ∧ d2(y)) = d22(x) ∧ d1(y).

Now, since d1 is a prime derivation. One can obtain d1 = 0 or d22 = 0. If d22 = 0, then by the

Proposition 3.9, we have d2 = 0. �

Definition 3.11 A derivation d is said to be contractive if dx ≤ x for any x ∈ L.

Example 3.12 In Example 3.2 (4), it is easy to check that d is a contractive derivation of L.

Proposition 3.13 Let d be a contractive derivation on L. Then the following hold:

(1) dx = x ∧ d1 for any x ∈ L;

(2) If I is a hyperideal of L, then dI ⊆ I;

(3) d2 = d;

(4) d is a co-closure operator on L;

Proof (1) Since d is isotone, dx ≤ d1. Note that dx ≤ x, we can get dx ≤ d1∧x. By Proposition

3.5 (2), we have dx ≥ d1 ∧ x. Thus dx = x ∧ d1 for any x ∈ L.

(2) Assume that y ∈ dI. Then there exists an x ∈ I such that y = dx ≤ x. Since I is a

hyperideal of L, we have y ∈ I.

(3) On the one hand d2x = d(dx) = d(x ∧ dx) ∈ (dx ∧ dx) ∨ (x ∧ d2x) = dx ∨ d2x, then

dx ≤ d2x. On the other hand d is a contractive derivation, therefore d2x = dx.

(4) Clearly. �
Define Fd(L) = {x ∈ L|dx = x}.

Proposition 3.14 Let d be a contractive derivation on L. If y ≤ x and dx = x, then dy = y.

Proof Assume that y ≤ x. Then y = x ∧ y. Thus dy = d(x ∧ y) ∈ (dx ∧ y) ∨ (x ∧ dy) = y ∨ dy.

ie., y ≤ dy and hence dy = y. �

Theorem 3.15 Let d be a contractive derivation on L. Then the following conditions are

equivalent:

(1) d is a strong derivation on L;

(2) Fd is a hyperideal of L.

Proof (1)⇒(2). By Propositions 3.5 (4), 3.14 and d(x ∨ y) = dx ∨ dy, we can get that Fd(L) is

a hyperideal of L.

(2)⇒(1). Since Fd(L) is a hyperideal of L, x∨ y ∈ Fd(L) for any x, y ∈ L. Thus d(x∨ y) =

dx ∨ dy. Therefore, d is a strong derivation on L. �

Proposition 3.16 Let (L,∧,∨) be a distributive hyperlattice. For any a ∈ L, define the self

mapping da : L −→ L by da(x) = t if and only if t = a ∧ x for all x ∈ L. Then da is a strong

derivation on L.

Proof Let x, y ∈ L. Suppose that da(x ∧ y) = t. Then t = a ∧ (x ∧ y) = (a ∧ x) ∧ y =

(x∧a)∧y = x∧ (a∧y). Hence t = x∧c for c = a∧y. Now c = a∧y implies da(y) = c. Therefore
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t = x ∧ c = x ∧ da(y). Thus da(x ∧ y) = x ∧ da(y). Similarly, we have da(x ∧ y) = da(x) ∧ y.

Hence da(x ∧ y) ∈ (da(x) ∧ y) ∨ (x ∧ da(y).

By da(x ∧ y) = da(x) ∧ y, we have da(x) = x ∧ da(1). Thus da(x ∨ y) = (x ∨ y) ∧ da(1) =

(x ∧ da(1)) ∨ (y ∧ da(y)) = da(x) ∨ da(y) for any x, y ∈ L. By Definition 2.1, we get that da is a

strong derivation of L. �
Let L be a hyperlattice and a ∈ L. Consider the map da defined by da(x) = a ∧ x for all

x ∈ L. Denote D(L) = {da|a ∈ L}. In the following theorem, we will discuss the algebraic

structures of D(L).

Theorem 3.17 If L is a hyperboolean lattice, so is (D(L),⊓,⊔, d0, d1), where for any da, db ∈
D(L), we define da ⊓ db by (da ⊓ db)x = (dax) ∧ (dbx), da ⊔ db by (da ⊔ db)x = (dax) ∨ (dbx) for

any x ∈ L.

Proof We have (da⊔db)x = da(x)∨db(x) = (a∧x)∨ (b∧x) = (a∨b)∧x = (a∨b)∧x = da∨b(x),

for any da, db ∈ D(L), x ∈ L. Since a, b ∈ L, a ∨ b ⊆ L. Thus (da ⊔ db)x = da∨bx.

For any da, db ∈ D(L), x ∈ A, (da ⊓ db)x = da(x) ∧ db(x) = (a ∧ x) ∧ (b ∧ x) = (a ∧ b) ∧ x =

da∧b(x). Since a, b ∈ L, a ∧ b ∈ L. Thus (da ⊓ db)x = da∧bx. So the definitions of “⊔” and “⊓”
are well defined. It is not difficult to prove that (D(L),⊓,⊔, d0, d1) is a bounded lattice. So we

omit the proof of this. �
Moreover, (da⊔ (db⊓dc))x = dax∨ (dbx∧dcx) = ((da⊔db)⊓ (da⊔dc))x, for any da, db, dc ∈

D(L), x ∈ L. Thus da ⊔ (db ⊓ dc) = (da ⊔ db) ⊓ (da ⊔ dc).

Therefore (D(L),⊔,⊓, d0, d1) is a bounded distributive hypelattice.

Since L is a hyperboolean lattice, for any a ∈ L, there exist a, b ∈ L satisfying a ∧ b = 0

and 1 ∈ a ∨ b.

For any da ∈ D(L), there exists a db ∈ D(L) such that (da ⊓ db)(x) = da∧b(x) = d0(x),

d1(x) ∈ da∨b(x) = (da⊔db)(x). That is, for any da ∈ D(L), there exists a db such that d0 = da⊓db,
d1 ∈ da ⊔ db.

By Definition 2.6, we get that (D(L),⊓,⊔, d0, d1) is a hyperboolean lattice.

4. Differential hyperideals and hypercongruences

In this section, we concentrate ourselves to differential hyperideals and hypercongruences

on differential hyperlattice.

Definition 4.1 Let d be a derivation of a hyperlattice L. A subset S is called d-invariant if

x ∈ S implies dx ∈ S.

Note that ∅ and L are the d-invariant subsets of L.

Example 4.2 In the Example 3.2 (3), {0, 1} is the d-invariant subset of L.

Definition 4.3 Let d be a derivation of a hyperlattice L. A hyperideal I is said to be a

differential hyperideal if I is the d-invariant subset of hyperlattice L.

Let us denote by Id(L) the set of all differential hyperideals of a hyperlattice.
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Example 4.4 For every differential hyperlattice L, [0] is a differential hyperideal.

Theorem 4.5 Let L be a differential hyperlattice. Then for any subset S of L, C(S) is a

differential hyperideal of L.

Proof If x ∈ C(S), then S ∧ x = 0. Now, for s ∈ S, 0 = d(s ∧ x) ∈ (d(s) ∧ x) ∨ (s ∧ d(x)).

Meeting by s from the right, we get 0 ∈ (d(s) ∧ x ∧ s) ∨ (s ∧ d(x) ∧ s). Since s ∧ x = 0, we have

x∧s = 0. Therefore, s∧d(x)∧s = 0. Meet by d(x) from the right, we get s∧d(x)∧s∧d(x) = 0.

That is, s ∧ d(x) = 0. This means that d(x) ∈ C(S). Thus we have d(C(S)) ⊆ C(S)). �
By Theorem 4.5, we know that the existence of a differential hyperideal in a hyperlattice.

As an illustration we have the following example.

Example 4.6 Consider the Example 3.2 (4). Now, C(0, b) = {0, a} is a hyperideal of L. Since

d(C(0, b)) = d({0, a}) = {0} ∈ (C(0, b)), we can see that C(0, b) = {0, a} is a differential hyper-

ideal of L.

Theorem 4.7 Let d be a derivation of a hyperlattice (L,∧,∨). Then (Id(L),∨,∧) is a hyper-

lattice.

Proof Let C, D ∈ Id(L) and x ∈ C ∨ D. Then x ∈ c ∨ d for some c ∈ C and d ∈ D. Hence

d(x) ∈ d(c∨d) ⊆ d(c)∨d(d) ⊆ C ∨D. Therefore, C ∨D is d-invariant. It is clear that C ⊆ C ∨C

for any C ⊆ L. Again, we have x = c ∨ d = d ∨ c. Hence, C ∨D = D ∨ C. In a similar way, we

can prove that (C ∨D) ∨ E = C ∨ (D ∨ E) for any C, D, E ⊆ Id(L).

Let C, D ∈ Id(L) and x ∈ C ∧ D. Then x = c ∧ d for some c ∈ C and d ∈ D. Hence

d(x) = d(c ∧ d) ∈ (d(c) ∧ d) ∨ (c ∧ d(d)) ⊆ C ∧ D. Therefore, C ∧ D is d-invariant. It is clear

that C ⊆ C ∧ C for any C ⊆ L. Again, we have x = c ∧ d = d ∧ c. Hence, C ∧D = D ∧ C. In a

similar way, we can prove that (C ∧D) ∧ E = C ∧ (D ∧ E) for any C, D, E ⊆ Id(L).

For any c ∈ C, d ∈ D. It is clear that c ∈ c ∧ (c ∨ d). Hence C ⊆ C ∨ (C ∧ D). We can

prove that if D ∈ C ∨D, then C = C ∧D for any C, D ∈ Id(L). �

Proposition 4.8 Let d be a strong derivation of L. Define a relation Rd on L by xRdy if and

only if d(x) = d(y) for all x, y ∈ L. Then Rd is a hypercongruence on L.

Proof Clearly, Rd is an equivalence relation on L. Let (a, b), (c, d) ∈ Rd. Then d(a) = d(b) and

d(c) = d(d). It is clear that d(a) ∧ d(c)Rdd(b) ∧ d(d) since d(a) ∧ d(c) = d(b) ∧ d(d).

Let x ∈ a∨c. Then d(x) ∈ d(a∨c) ⊆ d(a)∨d(c) = d(b)∨d(d) = d(b∨d). Hence d(x) = d(y)

for some y ∈ b ∨ d. Therefore, a ∧ cRdb ∧ d, a ∨ cRdb ∨ d. �

Definition 4.9 Let d be a derivation of a hyperlattice L. A hypercongruence R is said to be a

differential hypercongruence if it satisfies the property: xRy implies d(x)Rd(y).

Note that if d is the identity derivation on L, every hypercongruence is a differential con-

gruence on L.

Corollary 4.10 If R is a differential hypercongrue on L, then L/R is a hyperlattice.
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Theorem 4.11 Let d be an injective strong derivation of a hyperlattice L. If R is a differential

hypercongruence on L, then there exists an injective strong derivation on L/R.

Proof By Corollary 4.10, L/R is a hyperlattice. Define g : L/R −→ L/R by g([x]) = [d(x)] for

all [x] ∈ L/R. If [x], [y] ∈ L/R such that g([x]) = g([y]), then [d(x)] = [d(y)]. Hence d(x)Rd(y).

Since d is an injective derivation on L, we get xRy. Thus [x] = [y]. Therefore, g is an injective.

Let [x], [y] ∈ L/R. Now, g([x] ∨ [y]) = g({[u]|u ∈ x ∨ y}) = {d(u)|u ∈ x ∨ y}. Further,

g([x]) ∨ g([y]) = [d(x)] ∨ [d(y)] = {[v]|v ∈ d(x) ∨ d(y)} = {[v]|v ∈ d(x ∨ y)} = {[d(u)]|u ∈ x ∨ y}.
Since d is a strong derivation of L, we get g([x] ∨ [y]) = g([x]) ∨ g([y]).

Also, we have g([x] ∧ [y]) = g([x ∧ y]) = [d(x ∧ y)]. But (g([x]) ∧ [y]) ∨ ([x] ∧ g([y])) =

([d(x)])∧ [y]∨ [x]∧ ([d(y)]) = {[w]|w ∈ x∧ d(y)∨ d(x)∧ y}. Since d(x∧ y) ∈ d(x)∧ y ∨ x∧ d(y),

we get [d(x ∧ y)] ∈ {[w]|w ∈ d(x) ∧ y ∨ x ∧ d(y)}. That is, g([x] ∧ [y]) ∈ g([x]) ∧ [y] ∨ [x] ∧ g[y].

Thus g is a strong derivation of L/R. �

Theorem 4.12 Let (L, d) be a differential hyperlattice and R be a differential hypercongruence

of L. Then there exists a one to one correspondence between the set of all differential hypercon-

gruence containing R and the set of all differential hypercongruence of L/R.

Proof Let C(L) be the set of all differential hypercongruences of J containing R and QC(L) be
the set of all differential hypercongruences of L/R. Consider the following map:

u : C(L) −→ QC(L), u(R) = J/R.

Since R is a differential hypercongruence of J containing R, so J/R is a differential hyper-

congruence of L/R. Hence the map u is well defined.

Let M,N ∈ C(L) such that u(M) = u(N). So M/R = N/R. For any x ∈ M , we have

[x] ∈ M/R = N/R, so [x] = [y] for some y ∈ N . That is x ∈ [y] ⊆ N . Hence M ⊆ N . The

proof of N ⊆ M is similar to that of M ⊆ N . Hence M = N . That is, the function u is an epic

function. It is clear to see that u is a monomorphic function. Therefore, u is a bijective map

between C(A) and CQ(A).

5. Conclusion and future research

In this paper we introduce derivation in hyperlatices and derive some basic properties of

them. Also, some properties of differential hyperideals and differential hypercongruences are

studied. Further we prove that for an injective strong differential hyperlattice (L, d) and for a

strongly differential hypercongruence R of (L, d), the quotient hyperlattice (L/R, g) is an injective

strongly differential hyperlattice, where g is an injective strong derivation on L/R induced by d.

Since hyperlattice and hyper MV -algebras, hyperresiduated lattices are closely related, we

will use the results of this paper to study derivation on hyper MV -algebras, hyperresiduated

lattices and related hyperalgebraic systems. Some important issues for future works are: (i)

Developing the properties of a derivation; (ii) Defining new derivation which are related to given

derivation on hyperlattices; (iii) Finding useful results on the other hyperalgebraic structures.
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