
Journal of Mathematical Research with Applications

Mar., 2016, Vol. 36, No. 2, pp. 162–170

DOI:10.3770/j.issn:2095-2651.2016.02.004

Http://jmre.dlut.edu.cn

On Jordan Biderivations of Triangular Matrix Rings

Driss AIAT HADJ AHMED
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Abstract Let R and S be rings with identity, M be a unitary (R,S)-bimodule and T =(
R M

0 S

)
be the upper triangular matrix ring determined by R, S and M . In this paper

we prove that under certain conditions a Jordan biderivation of an upper triangular matrix

ring T is a biderivation of T .
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1. Introduction

Let R be a ring and Z(R) be the center of R. For each x, y in R, denote the commutator

of x, y by [x, y] = xy − yx. An additive mapping d from R into R is said to be a derivation of

R if d (ab) = d (a) b+ ad (b) for all a, b ∈ R. If a derivation d is of the form d(x) = [x, a], where

a ∈ R, then d is said to be an inner derivation.

A biadditive mapping φ from R×R into R is called a biderivation if it is a derivation with

respect to both components, meaning that

φ(xy, z) = φ(x, z)y + xφ(y, z) and φ(x, yz) = φ(x, y)z + yφ(x, z)

for all x, y, z ∈ R.

If R is a non commutative ring, then the map ϕ(x, y) = λ[x, y] for all x, y ∈ R, where

λ ∈ Z(R), is a biderivation, which is called an inner biderivation.

We say that the mapping ψ : R × R → R is an extremal biderivation if ψ(x, y) = [x, [y, a]]

for all x, y ∈ R, where a ∈ R and a /∈ Z(R) such that [[R,R], a] = 0.

Let φ be the biadditive mapping from R×R into R. φ is called a Jordan biderivation if it

is a Jordan biderivation with respect to both components, meaning that

φ(x2, y) = φ(x, y)x+ xφ(x, y) and φ(x, y2) = φ(x, y)y + yφ(x, y)

for all x, y ∈ R.

Let R, S be rings with identity and M be a unitary (R,S)-bimodule. Let f :M ×M →M

be a biadditive mapping. We say that f is an (R,S)-bimodule homomorphism if it is a bimodule
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homomorphism in each argument; namely,

f (rms,m′) = rf (m,m′) s and f (m, r′m′s′) = r′f (m,m′) s′,

for all r, r′ ∈ R, s, s′ ∈ S, and m,m′ ∈M .

Let R, S and M be as above. In the sequel, we denote by T =

(
R M

0 S

)
the upper

triangular matrix ring determined by R, S and M with the usual addition and multiplication of

matrices.

In 1993, Brešar et al. [1] proved that all biderivations of noncommutative prime rings are

inner. Somewhat later, Brešar [2] investigated biderivations of semiprime rings. More details

about biderivations and their generalizations can be found in [3, Section 3] where applications

of biderivations to other fields are also described.

In 2009, Benkovič [4] obtained a description of biderivations for a certain class of triangular

algebras, which in fact generalized some results on biderivations of nest algebras and upper

triangular matrix algebras [5,6].

In 2013, Ghosseiri [7], obtained interesting results on biderivations of upper triangular matrix

rings.

In 2013, Du andWang [8], gave a description of biderivations for a certain class of generalized

matrix algebras.

The aim of the paper is to give a description of Jordan biderivations for an upper triangular

matrix ring. We prove that under certain conditions a Jordan biderivation of an upper triangular

matrix ring is a biderivation.

2. Main results and proofs

This section is dedicated to the treatment of Jordan biderivations of the upper triangular

matrix ring. The central question of this section is when Jordan biderivations of the upper

triangular matrix ring are biderivations.

Let 1R and 1S be identities of the ring R and S, respectively, and let 1 be the identity

of the upper triangular matrix ring T . Throughout this paper we shall use following notation

1 =

(
1R 0

0 1S

)
, e =

(
1R 0

0 0

)
, and f = 1− e =

(
0 0

0 1S

)
.

We immediately notice that e and f are orthogonal idempotents of T and so T may be

represented as T = 1T1 = (e+ f)T (e+ f) = eTe+ eTf + fTf .

Here eTe is a subring of T isomorphic to R, fTf is a subring of T isomorphic to S and

eTf is an (eTe, fTf)-bimodule isomorphic to the bimodule M . To simplify notation we will use

the following convention: r = ere ∈ R = eTe, s = fsf ∈ S = fTf and m = emf ∈ M = eTf .

Then each element x ∈ T can be represented in the form

x = exe+ exf + fxf = r +m+ s,

where r ∈ R, s ∈ S, m ∈M .
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Lemma 2.1 Let φ : R × R → R be a Jordan biderivation. Then, for all a; b; c;x; y ∈ R, the

following statements hold:

φ(ab+ ba, x) = φ(a, x)b+ aφ(b, x) + φ(b, x)a+ bφ(a, x),

φ(a, xy + yx) = φ(a, x)y + xφ(a, y) + φ(a, y)x+ yφ(a, x). (1)

φ(aba, x) = φ(a, x)ba+ aφ(b, x)a+ abφ(a, x),

φ(a, xyx) = φ(a, x)yx+ xφ(a, y)x+ xyφ(a, x). (2)

φ(abc+ cba, x) = φ(a, x)bc+ aφ(b, x)c+ abφ(c, x) + φ(c, x)ba+ cφ(b, x)a+ cbφ(a, x),

φ(a, xyz + zyx) = φ(a, x)yz + xφ(a, y)z + xyφ(a, z) + φ(a, z)yx+ zφ(a, y)x+ zyφ(a, x). (3)

Proposition 2.2 Let φ : R×R→ R be a Jordan biderivation. Then

[φ(a, x), [y, b]] + [φ(a, y), [x, b]] + [[a, x] , φ(b, y)] + [[a, y] , φ(b, x)] = 0

for all x, y, a, b ∈ R.

Proof Consider φ(ab + ba, xy + yx) for arbitrary x, y, a, b ∈ R. Since φ is a Jordan derivation

in the first argument, we have

φ(ab+ ba, xy + yx) =φ(a, xy + yx)b+ aφ(b, xy + yx) + φ(b, xy + yx)a+ bφ(a, xy + yx)

= (φ(a, x)y + xφ(a, y) + φ(a, y)x+ yφ(a, x)) b+

a (φ(b, x)y + xφ(b, y) + φ(b, y)x+ yφ(b, x))+

(φ(b, x)y + xφ(b, y) + φ(b, y)x+ yφ(b, x)) a+

b (φ(a, x)y + xφ(a, y) + φ(a, y)x+ yφ(a, x)) .

Also, since φ is a derivation in the second argument, we then have

φ(ab+ ba, xy + yx) =φ(ab+ ba, x)y + xφ(ab+ ba, y) + φ(ab+ ba, y)x+ yφ(ab+ ba, x)

= (φ(a, x)b+ aφ(b, x) + φ(b, x)a+ bφ(a, x)) y+

x (φ(a, y)b+ aφ(b, y) + φ(b, y)a+ bφ(a, y))+

(φ(a, y)b+ aφ(b, y) + φ(b, y)a+ bφ(a, y))x+

y (φ(a, x)b+ aφ(b, x) + φ(b, x)a+ bφ(a, x)) .

Comparing both relations, we obtain

[φ(a, x), [y, b]] + [φ(a, y), [x, b]] + [[a, x] , φ(b, y)] + [[a, y] , φ(b, x)] = 0. �

Lemma 2.3 Let φ : T × T → T be a Jordan biderivation. Then

(i) φ(1, x) = φ(x, 1) = 0 for all x ∈ A;

(ii) φ(x, 0) = 0 = φ(0, x) for all x ∈ A;

(iii) φ(e, e) = −φ(e, f) = −φ(f, e) = φ(f, f).

Proof The identity φ(1, x) = 0 follows from

φ(1;x) = φ(1× 1× 1;x) = φ(1;x) + φ(1;x) + φ(1;x).
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Similarly, φ(x, 1) = 0, while φ(x, 0) = 0 = φ(0, x) is obvious.

To prove (iii), we use (i) and the equality e+ f = 1. Then we may write

φ(e, e) = φ(e, 1− f) = φ(e, 1)− φ(e, f) = −φ(e, f).

Similarly, φ(f, e) = −φ(e, e). It is also true that

φ(f, f) = φ(1− e, 1− e) = φ(1, 1)− φ(1, e)− φ(e, 1) + φ(e, e) = φ(e, e).

Thus we conclude that φ(e, e) = −φ(e, f) = −φ(f, e) = φ(f, f). �

Lemma 2.4 Let T be the upper triangular matrix ring and let φ : T × T → T be a Jordan

biderivation. If φ(e, e) ̸= 0, then φ = ψ + θ, where ψ(x, y) = [x, [y, φ(e, e)]] is an extremal

biderivation and θ is a Jordan biderivation that satisfies θ(e, e) = 0.

Proof For every x, y, a, b ∈ T , it follows from Lemma 2.1 that

[φ(a, x), [y, b]] + [φ(a, y), [x, b]] + [[a, x] , φ(b, y)] + [[a, y] , φ(b, x)] = 0.

If we substitute a = x = e, then we obtain that

[φ(e, e), [y, b]] + [φ(e, y), [e, b]] + [[e, e] , φ(b, y)] + [[e, y] , φ(b, e)] = 0.

Let b, y ∈ T. We have [e, b] = eb− be = e [e, b] f , and φ(e, y) = eφ(e, y)e+ eφ(e, y)f + fφ(e, y)f .

It follows from the fact e2 = e that φ(e; y) = φ(e2, y) = φ(e, y)e + eφ(e, y). This implies

that eφ(e, y)e = 0 = fφ(e, y)f . Thus, φ(e, y) = eφ(e, y)f.

Consequently, [φ(e, y), [e, b]] = 0. Similarly, [[e, y] , φ(b, e)] = 0. Hence

[φ(e, e), [y, b]] = 0 = φ(y, b)[e, e] = 0.

By [4, Remark 4.4], if x0 ∈ T , x0 /∈ Z(T ) and suppose that [[x, y], x0] = 0 for all x, y ∈ A.

Then the map ψ : T × T → T defined by ψ(x, y) = [x, [y, x0]] for all x, y ∈ T is a biderivation.

We see that φ(e; e) = eφ(e, e)f /∈ Z (T ), and it satisfies [φ(e, e), [y, b]] = 0.

Write θ = φ− ψ. Clearly, θ is also a Jordan biderivation of T satisfying θ(e, e) = 0. �

Proposition 2.5 Let T be the upper triangular matrix ring given above and let φ : T ×T → T

be a Jordan biderivation satisfying φ(e, e) = 0. Then

φ

((
r m

s

)
,

(
r′ m′

s′

))
=

(
δ (r, r′) rg(m′)− g(m′)s+ r′h(m)− h(m)s′ + ξ(m;m′)

γ (s, s′)

)
for all r, r′ ∈ R, s, s′ ∈ S, and m,m′ ∈M where

(i) δ is a Jordan biderivation of R and γ is a Jordan biderivation of S.

(ii) g :M →M an (R,S)-bimodule homomorphism such that

δ (r, r′)m = [r, r′] g(m); mγ (s, s′) = g(m) [s, s′]

for all r, r′ ∈ R,m ∈M , and s, s′ ∈ S.

(iii) h :M →M an (R,S)-bimodule homomorphism such that

δ (r, r′)m = [r′, r]h(m); mγ (s, s′) = h(m) [s′, s]
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for all r, r′ ∈ R,m ∈M , and s, s′ ∈ S.

(iv) ξ : M ×M → M an (R,S)-bimodule homomorphism such that for all m,m′ ∈ M ,

r, r′ ∈ R, and s, s′ ∈ S we have

[r, r′] ξ(m,m′) = ξ(m,m′) [s, s′] = 0.

Before characterizing the Jordan biderivations of the triangular ring T , let us begin with

the following lemma.

Lemma 2.6 Let T be the upper triangular matrix ring given above and let φ : T × T → T be

a Jordan biderivation satisfying φ(e, e) = 0. For all r, r′ ∈ R, s, s′ ∈ S we have

φ(re, f) = 0; φ(re, e) = 0

φ(f, r′e) = 0; φ(e, r′e) = 0

φ(e, s′f) = 0; φ(f, s′f) = 0

φ(sf, e) = 0; φ(sf, f) = 0

(4)

φ(re, s′f) = 0. (5)

Proof Put φ(re, f) =

(
x11 x12

x22

)
.

Applying φ on both sides of (re, f) = (re, f2), one observes that x12 = x22 = 0.

Now applying, φ on both sides of (re, f) = (e (re) e, f), one observes that x11 = 0. Hence,

we have φ(re, e) = 0.

In a similar manner we can prove that φ(f, r′e) = 0; φ(e, r′e) = 0, φ(e, s′f) = 0; φ(f, s′f) =

0; φ(sf, e) = 0; φ(sf, f) = 0.

To prove (2), put φ(re, s′f) =

(
y11 y12

y22

)
.

Likewise, applying φ on both sides of (re, s′f) = (e (re) e, s′f) using the Lemma 2.1 (2), one

observes that y12 = y22 = 0.

Moreover, applying φ on both sides of (re, s′f) = (re, f (sf) f) using the Lemma 2.1 (2),

one observes that y11 = 0. �

Lemma 2.7 Let T be the upper triangular matrix ring given above and let φ : T × T → T be

a Jordan biderivation satisfying φ(e, e) = 0.

(i) There exists a Jordan biderivation δ : R × R → R such that for all r, r′ ∈ R, s, s′ ∈ S

we have φ(re, r′e) = δ (r, r′).

(ii) There exists a Jordan biderivation γ : S × S → S such that for all s, s′ ∈ S we have

φ (sf, s′f) = γ (s, s′) f .

Proof Let r, r′ be in R. Using Lemma 2.1 (2), we have

φ(re, r′e) =φ(e (re) e, r′e) = φ(e; r′e)re+ eφ(re; r′e)e+ reφ(e; r′e)

=eφ(re; r′e)e = δ (r, r′) e,
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where δ : R × R → R is a mapping that satisfies φ(re, r′e) = δ (r, r′) e, since φ is biadditive, so

is δ.

Let r, r′ ∈ R. We have

φ(r2e, r′e) =δ
(
r2, r′

)
e = φ((re)

2
, r′e) = rφ(re, r′e)e+ φ(re, r′e)re

=rδ (r, r′) e+ δ (r, r′) re.

Hence δ
(
r2, r′

)
= rδ (r, r′) e + δ (r, r′) r, and δ is a Jordan derivation on the first component.

Similarly, one can show that δ is also a Jordan derivation on the second component. Thus, δ is

a Jordan biderivation of R. The proof of (ii) is similar, hence omitted. �

Lemma 2.8 Let T be the upper triangular matrix ring given above and let φ : T × T → T be

a Jordan biderivation satisfying φ(e, e) = 0.

(i) There exists an (R,S)-bimodule homomorphism g :M →M such that

φ(re,me12) = rg(m)e12; φ(sf,me12) = −g(m)se12,

δ (r, r′)m = [r, r′] g(m); mγ (s, s′) = g(m) [s, s′] ,

for all r, r′ ∈ R,m ∈M , and s, s′ ∈ S.

(ii) There exists an (R,S)-bimodule homomorphism h :M →M such that

φ(me12, re) = rh(m)e12; φ(me12, sf) = −h(m)se12,

δ (r, r′)m = [r′, r]h(m); mγ (s, s′) = h(m) [s′, s] ,

for all r, r′ ∈ R,m ∈M , and s, s′ ∈ S.

Proof Let r ∈ R and m ∈M . First assume that φ(e,me12) =

(
v11 v12

v22

)
.

Applying φ on both sides of (e,me12) = (e2,me12), one observes that v11 = v22 = 0. Thus,

there exists a mapping g from M to itself such that φ(e,me12) = g(m)e12.

Now, applying φ on both sides of (re,me12) = (e (re) e,me12), and using Lemma 2.1 (2), we

conclude that φ(re,me12) = eφ(re,me12)e+ rg(m)e12.

Moreover, applying φ on both sides of (re,me12) = (re, e (me12) f + f (me12) e), and using

Lemma 2.1 (2), we find that φ(re,me12) = eφ(re,me12)f , one observes that φ(re,me12) =

rg(m)e12.

Let s ∈ S andm ∈M . First note that, by Lemma 2.3 and the preceding result, φ(f,me12) =

−φ(e,me12) = − g(m)e12. Now, applying φ on both sides of (sf,me12) = (f (sf) f,me12), and

using Lemma 2.1 (2), we conclude that φ(sf,me12) = fφ(sf,me12)f − g(m)se12. Applying φ on

both sides of (sf,me12) = (sf, e (me12) f + f (me12) e), and using Lemma 2.1 (3), we conclude

that φ(sf,me12) = eφ(sf,me12)f , we find that φ(sf,me12) = −g(m)se12.

Since φ is additive on the second component, g is additive. Moreover, from φ(e, rme12) =

g(rm)e12 and applying φ on both sides of (e, rme12) = (e, (re) (me12) f+f (me12) (re)), and using

Lemma 2.1 (3), we conclude that g(rm) = rg(m). We infer that g is a left R-homomorphism.
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Likewise, applying φ on both sides of (f,mse12) = (f, e (me12) (sf)+ (sf) (me12) e), we see that

g is also a right S-homomorphism.

Next, we show that δ (r, r′)m = [r, r′] g(m).

Applying φ on both sides of (re, r′me12) = (re, (r′e) (me12) f + f (me12) (r
′e)), and using

Lemma 2.1 (3), we conclude that φ(re, r′me12) = δ (r, r′)me12 + r′rg(m)e12.

Now, applying φ on both sides of (re,me12) = (e (re) e, r′me12), and using Lemma 2.1 (2),

we conclude that φ(re,me12) = eφ(re, r′me12)e + rg(r′m)e12, one observes that rg(r′m) =

δ (r, r′)m + r′rg(m) = rr′g(m). Hence δ (r, r′)m = [r, r′] g(m). Similarly, one can show that

mγ (s, s′) = g(m) [s, s′].

The proof of (2) is similar to that of (1), except for the coordinates, so it is omitted. �

Lemma 2.9 Let T be the upper triangular matrix ring given above and let φ : T × T → T

be a Jordan biderivation satisfying φ(e, e) = 0. There exists an (R,S)-bimodule homomorphism

ξ :M ×M →M such that for all m,m′ ∈M , r, r′ ∈ R, and s, s′ ∈ S we have

φ (me12,m
′e12) = ξ(m,m′)e12, [r, r′] ξ(m,m′) = ξ(m,m′) [s, s′] = 0. (6)

Proof Applying φ on both sides of (me12,m
′e12) = ((e) (me12) f + f (me12) (e) ,m

′e12), and

using Lemma 2.1 (3), we conclude that φ (me12,m
′e12) = eφ(me12,m

′e12)f , therefore, there

exists a mapping ξ :M ×M →M such that φ (me12,m
′e12) = ξ(m,m′)e12. Biadditivity of ξ is

inherited from φ.

To show that ξ is a left R-homomorphism on the first component, let r ∈ R, and m,m′ ∈
M . Applying φ on both sides of (rme12,m

′e12) = ((re) (me12) f + f (me12) (re) ,m
′e12), and

using Lemma 2.1 (3), we conclude that φ(rme12,m
′e12) = rξ(m,m′)e12, that is, ξ(rm,m′) =

rξ(m,m′). Likewise, one can show that ξ is also a right S-homomorphism on the first component,

and an (R,S)-bimodule homomorphism on the second component.

Next, we show that [r, r′] ξ(m,m′) = 0.

Applying φ on both sides of (rme12, r
′m′e12) = (rme12, (r

′e) (m′e12) f + f (m′e12) (r
′e)),

and using Lemma 2.1 (3), we conclude that φ(rme12, r
′m′e12) = (r′e)φ(rme12, (m

′e12))f =

r′ξ(rm,m′)e12, and ξ(rm, r
′m′) = r′ξ(rm,m′) = r′rξ(m,m′). One observes that ξ(rm, r′m′) =

rr′ξ(m,m′) = r′rξ(m,m′).Hence [r, r′] ξ(m,m′) = 0. Similarly, one can show that ξ(m,m′) [s, s′] =

0. �

Proof of Proposition 2.5 For all m,m′ ∈M , r, r′ ∈ R, and s, s′ ∈ S we have

φ

((
r m

s

)
,

(
r′ m′

s′

))
= φ (r +m+ s, r′ +m′ + s′)

= φ(re, r′e) + φ(re,m′e12) + φ(re, s′f)+

φ(sf, r′e) + φ(sf,m′e12) + φ(sf, s′f)+

φ(me12, r
′e) + φ(me12,m

′e12) + φ(me12, s
′f)+

= δ (r, r′) e+ γ (s, s′) f + ξ(m,m′)e12+



On Jordan biderivations of triangular matrix rings 169

rg(m′)e12 − g(m′)se12 + r′h(m)e12 − h(m)s′e12,

φ

((
r m

s

)
,

(
r′ m′

s′

))
=

(
δ (r, r′) rg(m′)− g(m′)s+ r′h(m)− h(m)s′ + ξ(m,m′)

γ (s, s′)

)
.�

Theorem 2.10 Let T be the upper triangular matrix ring given above and let φ : T × T → T

be a Jordan biderivation. Suppose that

(i) Every Jordan biderivation of R is a biderivation;

(ii) Every Jordan biderivation of S is a biderivation.

Then all the Jordan biderivation of T is a biderivation.

Proof For all m1,m2,m
′ ∈ M , r1, r2, r

′ ∈ R, and s1, s2, s
′ ∈ S, put X =

(
r1 m1

s1

)
, Y =(

r2 m2

s2

)
and Z =

(
r′ m′

s′

)
, we have

φ(XY,Z)− φ(X,Z)Y −Xφ(Y,Z)

=

(
δ (r1r2, r

′)− δ (r1, r
′) r2 − r1δ (r2, r

′) 0

γ (s1s2, s
′)− γ (s1, s

′) s2 − s1γ (s2, s
′)

)
and

φ(X,Y Z)− φ(X,Y )Z + Y φ(X,Z)

=

(
δ (r1, r2r

′)− δ(r1, r2)r
′ + r2δ(r1, r

′) 0

γ (r1, r2r
′)− γ(r1, r2)r

′ + r2γ(r1, r
′)

)
.

Since every Jordan biderivation of R is a biderivation and every Jordan biderivation of S is

a biderivation. This completes the proof. �

Remark 2.11 ([9]) Let R be a prime ring, and char(R) ̸= 2. Then every Jordan biderivation

of R is a biderivation.

Corollary 2.12 ([10]) Let T be the upper triangular matrix ring given above and let φ :

T × T → T be a Jordan biderivation. Suppose that R and S be a prime ring, char(R) ̸= 2, and

char(S) ̸= 2. Then Jordan biderivation of T is a biderivation.
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