Journal of Mathematical Research with Applications Mar., 2016, Vol. 36, No. 2, pp. 171–176 DOI:10.3770/j.issn:2095-2651.2016.02.005 Http://jmre.dlut.edu.cn

The Twin Domination Number of Cartesian Product of Directed Cycles

Hongxia MA, Juan LIU*

College of Mathematics Sciences, Xinjiang Normal University, Xinjiang 830017, P. R. China

Abstract Let $\gamma^*(D)$ denote the twin domination number of digraph D and let $C_m \Box C_n$ denote the Cartesian product of C_m and C_n , the directed cycles of length $m, n \ge 2$. In this paper, we determine the exact values: $\gamma^*(C_2 \Box C_n) = n$; $\gamma^*(C_3 \Box C_n) = n$ if $n \equiv 0 \pmod{3}$, otherwise, $\gamma^*(C_3 \Box C_n) = n + 1$; $\gamma^*(C_4 \Box C_n) = n + \lceil \frac{n}{2} \rceil$ if $n \equiv 0, 3, 5 \pmod{8}$, otherwise, $\gamma^*(C_4 \Box C_n) = n + \lceil \frac{n}{2} \rceil + 1$; $\gamma^*(C_5 \Box C_n) = 2n$; $\gamma^*(C_6 \Box C_n) = 2n$ if $n \equiv 0 \pmod{3}$, otherwise, $\gamma^*(C_6 \Box C_n) = 2n + 2$.

Keywords twin domination number; Cartesian product; directed cycles

MR(2010) Subject Classification 05C69; 05C76

1. Introduction

Let D = (V, A) be a finite digraph without loops and multiple arcs where V = V(D) is the vertex set and A = A(D) is the arc set. For a vertex $v \in V(D)$, $N_D^+(v)$ and $N_D^-(v)$ denote the set of out-neighbors and in-neighbors of v, $d_D^+(v) = |N_D^+(v)|$ and $d_D^-(v) = |N_D^-(v)|$ denote the out-degree and in-degree of v in D, respectively. A digraph D is r-regular if $d_D^+(v) = d_D^-(v) = r$ for any vertices v in D. Given two vertices u and v in D, we say u out-dominates v if u = v or $uv \in A(D)$, and we say v in-dominates u if u = v or $uv \in A(D)$. Let $N_D^+[v] = N_D^+(v) \cup \{v\}$. A vertex v dominates all vertices in $N_D^+[v]$. A set $S \subseteq V(D)$ is a dominating set of D if Sdominates V(D). The domination number of D, denoted by $\gamma(D)$, is the minimum cardinality of a dominating set of D. The notion of twin domination in digraphs has been studied in [1,7]. A set $S \subseteq V(D)$ is a twin dominating set of D if for any vertex $v \in V - S$, there exist $u, w \in S$ (possibly u = w) such that arcs $uv, vw \in A(D)$. The twin domination number of D, denoted by $\gamma^*(D)$, is the minimum cardinality of a twin dominating set of D. Clearly, $\gamma(D) \leq \gamma^*(D)$.

Let $D_1 = (V_1, A_1)$ and $D_2 = (V_2, A_2)$ be two digraphs which have disjoint vertex sets $V_1 = \{x_1, x_2, \ldots, x_{n_1}\}$ and $V_2 = \{y_1, y_2, \ldots, y_{n_2}\}$ and disjoint arc sets A_1 and A_2 , respectively. The Cartesian product $D = D_1 \Box D_2$ has vertex set $V = V_1 \times V_2$ and $(x_i, y_j)(x_{i'}, y_{j'}) \in A(D)$ if and only if one of the following holds:

(a) $x_i = x_{i'}$ and $y_j y_{j'} \in A_2$;

Received April 16, 2015; Accepted September 14, 2015

* Corresponding author

Supported by the National Natural Science Foundation of China (Grant Nos. 61363020; 11301450; 11226294), the Youth Science and Technology Education Project of Xinjiang (Grant No. 2013731011) and China Scholarship Council.

E-mail address: 598254233@qq.com (Hongxia MA); liujuan1999@126.com (Juan LIU)

(b) $y_j = y_{j'}$ and $x_i x_{i'} \in A_1$.

The subdigraph $D_1^{y_i}$ of D has vertex set $V_1^{y_i} = \{(x_j, y_i): \text{ for any } x_j \in V_1, \text{ fixed } y_i \in V_2\} \cong V_1$, and arc set $A_1^{y_i} = \{(x_j, y_i)(x_{j'}, y_i): x_j x_{j'} \in A_1\} \cong A_1$. It is clear that $D_1^{y_i} \cong D_1$. Similarly, the subdigraph $D_2^{x_i}$ of D has vertex set $V_2^{x_i} = \{(x_i, y_j): \text{ for any } y_j \in V_2, \text{ fixed } x_i \in V_1\} \cong V_2$, and arc set $A_2^{x_i} = \{(x_i, y_j)(x_i, y_{j'}): y_j y_{j'} \in A_2\} \cong A_2$. It is clear that $D_2^{x_i} \cong D_2$. In recent years, the domination number of the Cartesian product of directed cycles and paths has been discussed in [2–6,8]. However, to date no research about the twin domination number has been done for the Cartesian product of directed cycles. In this paper, we study the twin domination number of $C_m \Box C_n$. We mainly determine the exact values: $\gamma^*(C_2 \Box C_n) = n; \gamma^*(C_3 \Box C_n) = n$ if $n \equiv 0 \pmod{3}$, otherwise, $\gamma^*(C_3 \Box C_n) = n + 1; \gamma^*(C_4 \Box C_n) = n + \lceil \frac{n}{2} \rceil$ if $n \equiv 0, 3, 5 \pmod{3}$, otherwise, $\gamma^*(C_4 \Box C_n) = n + \lceil \frac{n}{2} \rceil + 1; \gamma^*(C_5 \Box C_n) = 2n; \gamma^*(C_6 \Box C_n) = 2n$ if $n \equiv 0 \pmod{3}$, otherwise, $\gamma^*(C_6 \Box C_n) = 2n + 2$.

2. Main results

We denote the vertices of a directed cycle C_n by the integers $\{0, 1, \ldots, n-1\}$ considering modulo n. There is an arc xy from x to y in C_n if and only if $y = x + 1 \pmod{n}$.

Observe that in $C_m \Box C_n$ the vertices of C_m^i are out-dominated by vertices of C_m^{i-1} or C_m^i and in-dominated by vertices of C_m^{i+1} or C_m^i for $i \in \{0, 1, \ldots, n-1\}$. Especially, the vertices of C_m^0 are out-dominated by vertices of C_m^{n-1} or C_m^0 and in-dominated by vertices of C_m^1 or C_m^0 . First we investigate the twin domination number of $C_2 \Box C_n$.

Lemma 2.1 ([2]) Let $n \ge 2$. Then $\gamma(C_2 \Box C_n) = n$.

By Lemma 2.1, $\gamma^*(C_2 \Box C_n) \ge \gamma(C_2 \Box C_n) = n$. Let $S_0 = \{(0, i) | i \in \{0, 1, \dots, n-1\}\}$. Then S_0 is a twin dominating set of $C_2 \Box C_n$. According to the discussion, we can get the following theorem.

Theorem 2.2 Let $n \ge 2$. Then $\gamma^*(C_2 \Box C_n) = n$.

Lemma 2.3 ([2]) Let $n \ge 2$. Then $\gamma(C_3 \Box C_n) = \begin{cases} n, & \text{if } n \equiv 0 \pmod{3}; \\ n+1, & \text{otherwise.} \end{cases}$.

Now we consider the twin domination number of Cartesian product $C_3 \Box C_n$, and define a set S_1 (see Figure 1) as follows: S_1 consists of vertices (0, i), $i \equiv 0 \pmod{3}$; (1, i), $i \equiv 1 \pmod{3}$; (2, i), $i \equiv 2 \pmod{3}$. Note that $|S_1| = n$.

Theorem 2.4 Let $n \ge 2$. Then $\gamma^*(C_3 \Box C_n) = \begin{cases} n, & \text{if } n \equiv 0 \pmod{3}; \\ n+1, & \text{otherwise.} \end{cases}$

Proof By Lemma 2.3, if $n \equiv 0 \pmod{3}$, then $\gamma^*(C_3 \Box C_n) \ge \gamma(C_3 \Box C_n) = n$. S_1 is a twin dominating set of $C_3 \Box C_n$, when $n \equiv 0 \pmod{3}$. If $n \equiv 1 \pmod{3}$, then $\gamma^*(C_3 \Box C_n) \ge \gamma(C_3 \Box C_n) = n+1$. Note that $S_1 \cup \{(1,0)\}$ is a twin dominating set of $C_3 \Box C_n$, when $n \equiv 1 \pmod{3}$. Similarly, $S_1 \cup \{(2,0)\}$ is a twin dominating set of $C_3 \Box C_n$, when $n \equiv 2 \pmod{3}$. Thus $\gamma^*(C_3 \Box C_n) = n+1$, when $n \equiv 1, 2 \pmod{3}$. \Box

Lemma 2.5 ([4]) Let S be a dominating set of $C_m \Box C_n$. Then $|S \cap C_m^{i-1}| + 2|S \cap C_m^i| \ge m$ for all i in $\{0, 1, \ldots, n-1\}$ considered modulo n.

By Lemma 2.5, we have $|S \cap C_m^{i-1}| + 2|S \cap C_m^i| \ge m$ for $0 \le i \le n-1$, where S is a twin dominating set of $C_m \Box C_n$.

Lemma 2.6 ([4]) Let
$$n \ge 2$$
. Then $\gamma(C_4 \square C_n) = \begin{cases} \frac{3n}{2}, & \text{if } n \equiv 0 \pmod{8}; \\ n + \lceil \frac{n+1}{2} \rceil, & \text{otherwise.} \end{cases}$

Next we consider the twin domination number of Cartesian product $C_4 \Box C_n$, and define a set S_2 (see Figure 2) as follows: S_2 consists of vertices (0,i), (3,i), $i \equiv 0 \pmod{8}$; (1,i), $i \equiv 1 \pmod{8}$; (2,i), (3,i), $i \equiv 2 \pmod{8}$; (0,i), $i \equiv 3 \pmod{8}$; (1,i), (2,i), $i \equiv 4 \pmod{8}$; (3,i), $i \equiv 5 \pmod{8}$; (0,i), (1,i), $i \equiv 6 \pmod{8}$; (2,i), $i \equiv 7 \pmod{8}$. Note that $|S_2| = n + \lceil \frac{n}{2} \rceil$.

Theorem 2.7 Let $n \ge 2$. Then $\gamma^*(C_4 \Box C_n) = \begin{cases} n + \lceil \frac{n}{2} \rceil, & \text{if } n \equiv 0, 3, 5 \pmod{8}; \\ n + \lceil \frac{n}{2} \rceil + 1, & \text{otherwise.} \end{cases}$

Proof We consider three cases.

Case 1 $n \equiv 0, 3, 5 \pmod{8}$.

By Lemma 2.6, $\gamma^*(C_4 \Box C_n) \ge \gamma(C_4 \Box C_n) \ge n + \lceil \frac{n}{2} \rceil$. The set S_2 defined above is a twin dominating set. Thus $\gamma^*(C_4 \Box C_n) = n + \lceil \frac{n}{2} \rceil$, when $n \equiv 0, 3, 5 \pmod{8}$.

Case 2 $n \equiv 2, 4, 6 \pmod{8}$.

By Lemma 2.6, $\gamma^*(C_4 \Box C_n) \ge \gamma(C_4 \Box C_n) \ge n + \lceil \frac{n+1}{2} \rceil$. If $n \equiv 2, 4, 6 \pmod{8}$, then $n + \lceil \frac{n+1}{2} \rceil = n + \lceil \frac{n}{2} \rceil + 1$, so $\gamma^*(C_4 \Box C_n) \ge n + \lceil \frac{n}{2} \rceil + 1$. It is easy to see that $S_2 \cup \{(2, n-1)\}$ is a minimum twin dominating set of $C_4 \Box C_n$ and $|S_2 \cup \{(2, n-1)\}| = n + \lceil \frac{n}{2} \rceil + 1$. Thus $\gamma^*(C_4 \Box C_n) = n + \lceil \frac{n}{2} \rceil + 1$, when $n \equiv 2, 4, 6 \pmod{8}$.

Case 3 $n \equiv 1, 7 \pmod{8}$.

By Lemma 2.6, $\gamma^*(C_4 \Box C_n) \ge \gamma(C_4 \Box C_n) \ge n + \lceil \frac{n+1}{2} \rceil$. Suppose that $\gamma^*(C_4 \Box C_n) = n + \lceil \frac{n}{2} \rceil = n + \frac{n+1}{2}$. Let S be a minimum twin dominating set of $C_4 \Box C_n$ and $a_i = |S \cap C_4^i|$ for all $i \in \{0, 1, \dots, n-1\}, |S| = n + \frac{n+1}{2}$.

Let J be the set of $i \in \{0, 1, ..., n-1\}$ such that $a_i \leq 1$ $(|J| \leq \frac{n-1}{2})$. Let $J' = \{i | i + 1\}$

1 (mod n) $\in J$ }. If $i \in J$, by Lemma 2.5, $a_{i-1} + 2a_i \ge 4$, and thus $a_{i-1} + a_i \ge 3$. Then $J \cap J' = \emptyset$ and $\sum_{i \in J \cup J'} a_i \ge 3|J|$. Therefore, $\sum_{i \in \{0,1,\dots,n-1\}} a_i \ge 3|J| + 2(n-2|J|)$. Next we consider the following two subcases.

Subcase 3.1 $a_i = 0.$

In order to in-dominate and out-dominate the vertices of C_4^i , let $a_{i-1} = 4$ and $a_{i+1} = 4$. So $\sum_{i \in \{0,1,\dots,n-1\}} a_i \ge 3(|J|-1) + 4 + 0 + 4 + 2(n-1-2|J|) = 2n - |J| + 3 = \frac{3n+7}{2} > \frac{3n+1}{2}$, a contradiction.

Subcase 3.2 $a_i = 4$.

If $i-1 \in J$, then $a_{i-1} = 0$ or 1. If $a_{i-1} = 0$, we can obtain $\sum_{i \in \{0,1,\dots,n-1\}} a_i \ge \frac{3n+7}{2}$ by the same argument as that of Subcase 3.1. If $a_{i-1} = 1$, then $\sum_{i \in \{0,1,\dots,n-1\}} a_i \ge 3(|J|-1) + 2 + 1 + 4 + 2(n-1-2|J|) = 2n - |J| + 2 = \frac{3n+5}{2} > \frac{3n+1}{2}$, a contradiction.

If $i - 1 \notin J$, $\sum_{i \in \{0,1,\dots,n-1\}} a_i \ge 3|J| + 4 + 2(n - 1 - 2|J|) = 2n - |J| + 2 = \frac{3n+5}{2} > \frac{3n+1}{2}$, a contradiction.

From above, we can obtain $1 \le a_i \le 3$, $i \in \{0, 1, \ldots, n-1\}$. Since $J \cap J' = \emptyset$, there do not exist two consecutive integers t and t + 1, modulo n, such that $a_t = a_{t+1} = 1$. Therefore, S can only be of the form $(a_0, a_1, \ldots, a_{n-1}) = (2, 1, 2, \ldots, 2)$.

Next we will prove that $(|S \cap C_4^0|, \ldots, |S \cap C_4^{n-1}|)$ does not exist in the form $(a_0, a_1, \ldots, a_{n-1}) = (2, 1, 2, \ldots, 2)$ when $|S| = n + \frac{n+1}{2}$. Without loss of generality, suppose that $|C_4^0 \cap S| = 2$ and $(0, 0) \in S$. We claim that $(1, 0) \in S$ or $(3, 0) \in S$, otherwise, if $(2, 0) \in S$, in order to in-dominate (1, 1) and $(3, 1), |C_4^1 \cap S| = 2$, a contradiction. In fact, the proofs of cases that $(1, 0) \in S$ or $(3, 0) \in S$ are exactly the same, considered modulo n. Hence we consider only the case that $(3, 0) \in S$. We have $(1, 1) \in S$ and consequently $(2, 2), (3, 2) \in S$, otherwise, $|C_4^3 \cap S| = 2$. Thus $(0, 3) \in S$ and $(1, 4), (2, 4) \in S; (3, 5) \in S;$ and $(0, 6), (1, 6) \in S; \cdots$. We conclude that $S \supseteq S_2$. Note that S_2 is not a twin dominating set of $C_4 \square C_n$, when $n \equiv 1, 7 \pmod{8}$. Thus $\gamma^*(C_4 \square C_n) > n + \lceil \frac{n}{2} \rceil$, a contradiction. So $\gamma^*(C_4 \square C_n) \ge n + \lceil \frac{n}{2} \rceil + 1$. While $S_3 \cup \{(2, n-1)\}$ is a twin dominating set of $C_4 \square C_n$ and $|S_3 \cup \{(2, n-1)\}| = n + \lceil \frac{n}{2} \rceil + 1$. Thus $\gamma^*(C_4 \square C_n) = n + \lceil \frac{n}{2} \rceil + 1$, when $n \equiv 1, 7 \pmod{8}$. \square

Lemma 2.8 ([8]) Let $n \ge 2$. Then $\gamma(C_5 \Box C_n) = 2n$.

We consider the twin domination number of Cartesian product $C_5 \Box C_n$, and define two sets S_3 (see Figure 3) and S_4 (see Figure 4) as follows: S_3 consists of vertices $(0, 0), (2, 0), (1, 1), (3, 1), (2, 2), (4, 2); (0, i), (3, i), i \equiv 0 \pmod{3}; (1, i), (4, i), i \equiv 1 \pmod{3}; (2, i), (4, i), i \equiv 2 \pmod{3},$

when $i \geq 3$. By Theorem 2.8, $\gamma^*(C_5 \Box C_n) \geq \gamma(C_5 \Box C_n) = 2n$. If $n \equiv 0, 2 \pmod{3}$, it is clear that S_3 is a twin dominating set of $C_5 \Box C_n$ and $|S_3| = 2n$. S_4 consists of vertices $(0,0), (2,0), (0,1), (3,1), (1,2), (3,2); (1,i), (4,i), i \equiv 0 \pmod{3}; (0,i), (2,i), i \equiv 1 \pmod{3};$ $(0,i), (3,i), i \equiv 2 \pmod{3}$, when $i \geq 3$.

Similarly, S_4 is a twin dominating set of $C_5 \square C_n$, when $n \equiv 1 \pmod{3}$, and $|S_4| = 2n$. Therefore, we can obtain the following Theorem.

Theorem 2.9 Let $n \ge 2$. Then $\gamma^*(C_5 \Box C_n) = 2n$.

Lemma 2.10 ([8]) Let $n \ge 3$. Then $\gamma(C_6 \Box C_n) = \begin{cases} 2n, & \text{if } n \equiv 0 \pmod{3}; \\ 2n+2, & \text{otherwise.} \end{cases}$

Finally we consider the twin domination number of Cartesian product $C_6 \Box C_n$, and define a set S_5 (see Figure 5) as follows: S_5 consists of vertices $(0, i), (3, i), i \equiv 0 \pmod{3}$; $(1, i), (4, i), i \equiv 1 \pmod{3}$; $(2, i), (5, i), i \equiv 2 \pmod{3}$. Note that $|S_5| = 2n$.

Figure 5 The set S_5

Lemma 2.11 Let $n \ge 3$. Then $\gamma^*(C_6 \Box C_n) = \begin{cases} 2n, & \text{if } n \equiv 0 \pmod{3}; \\ 2n+2, & \text{otherwise.} \end{cases}$

Proof By Lemma 2.10, if $n \equiv 0 \pmod{3}$, then $\gamma^*(C_6 \Box C_n) \geq \gamma(C_6 \Box C_n) = 2n$. S_5 is a twin dominating set of $C_6 \Box C_n$, when $n \equiv 0 \pmod{3}$. If $n \equiv 1 \pmod{3}$, then $\gamma^*(C_3 \Box C_n) \geq \gamma(C_3 \Box C_n) = 2n + 2$. Note that $S_5 \cup \{(1,0), (4,0)\}$ is a twin dominating set of $C_6 \Box C_n$, when $n \equiv 1 \pmod{3}$. Similarly, $S_5 \cup \{(2,0), (5,0)\}$ is a twin dominating set of $C_6 \Box C_n$, when $n \equiv 2 \pmod{3}$. Thus $\gamma^*(C_3 \Box C_n) = 2n + 2$, when $n \equiv 1, 2 \pmod{3}$. \Box

Acknowledgements We thank the referees for their time and comments.

References

- G. CHARTRAND, P. DANKELMANN, M. SCHULTZ, et al. Twin domination in digraphs. Ars Combin., 2003, 67: 105–114.
- Juan LIU, Xindong ZHANG, Xing CHEN, et al. On domination number of Cartesian product of directed cycles. Inform. Process. Lett., 2010, 110(5): 171–173.
- Juan LIU, Xindong ZHANG, Jixiang MENG. On domination number of Cartesian product of directed paths. J. Comb. Optim., 2011, 22(1): 651–662.
- M. MOLLARD. On the domination of Cartesian product of directed cycles: Results for certain equivalence classes of lengths. Discuss. Math. Graph Theory, 2013, 33(2): 387–394.
- [5] R. S. SHAHEEN. The domination number of Cartesian product of two directed paths. J. Comb. Optim., 2014, 27(1): 144–151.
- [6] R. S. SHAHEEN. Domination number of toroidal grid digraphs. Util. Math., 2009, 78: 175–184.
- [7] Yueli WANG. Efficient twin domination in generalized De Bruijn digraphs. Discrete Math., 2015, 338(3): 36–40.
- [8] Xindong ZHANG, Juan LIU, Xing CHEN, et al. Domination number of Cartesian products of directed cycles. Inform. Process. Lett., 2010, 111(1): 36–39.

176