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Abstract Let γ∗(D) denote the twin domination number of digraph D and let Cm�Cn

denote the Cartesian product of Cm and Cn, the directed cycles of length m,n ≥ 2. In this

paper, we determine the exact values: γ∗(C2�Cn) = n; γ∗(C3�Cn) = n if n ≡ 0 (mod 3),

otherwise, γ∗(C3�Cn) = n + 1; γ∗(C4�Cn) = n + ⌈n
2
⌉ if n ≡ 0, 3, 5 (mod 8), otherwise,

γ∗(C4�Cn) = n + ⌈n
2
⌉ + 1; γ∗(C5�Cn) = 2n; γ∗(C6�Cn) = 2n if n ≡ 0 (mod 3), otherwise,

γ∗(C6�Cn) = 2n+ 2.
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1. Introduction

Let D = (V,A) be a finite digraph without loops and multiple arcs where V = V (D) is the

vertex set and A = A(D) is the arc set. For a vertex v ∈ V (D), N+
D (v) and N−

D (v) denote the

set of out-neighbors and in-neighbors of v, d+D(v) = |N+
D (v)| and d−D(v) = |N−

D (v)| denote the

out-degree and in-degree of v in D, respectively. A digraph D is r-regular if d+D(v) = d−D(v) = r

for any vertices v in D. Given two vertices u and v in D, we say u out-dominates v if u = v or

uv ∈ A(D), and we say v in-dominates u if u = v or uv ∈ A(D). Let N+
D [v] = N+

D (v) ∪ {v}.
A vertex v dominates all vertices in N+

D [v]. A set S ⊆ V (D) is a dominating set of D if S

dominates V (D). The domination number of D, denoted by γ(D), is the minimum cardinality

of a dominating set of D. The notion of twin domination in digraphs has been studied in [1,7].

A set S ⊆ V (D) is a twin dominating set of D if for any vertex v ∈ V − S, there exist u,w ∈ S

(possibly u = w) such that arcs uv, vw ∈ A(D). The twin domination number of D, denoted by

γ∗(D), is the minimum cardinality of a twin dominating set of D. Clearly, γ(D) 6 γ∗(D).

Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs which have disjoint vertex sets

V1 = {x1, x2, . . . , xn1} and V2 = {y1, y2, . . . , yn2} and disjoint arc sets A1 and A2, respectively.

The Cartesian product D = D1�D2 has vertex set V = V1 × V2 and (xi, yj)(xi′ , yj′) ∈ A(D) if

and only if one of the following holds:

(a) xi = xi′ and yjyj′ ∈ A2;
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(b) yj = yj′ and xixi′ ∈ A1.

The subdigraph Dyi

1 of D has vertex set V yi

1 = {(xj , yi): for any xj ∈ V1 , fixed yi ∈ V2}∼= V1,

and arc set Ayi

1 = {(xj , yi)(xj′ , yi): xjxj′ ∈ A
1
} ∼= A1. It is clear that Dyi

1
∼= D1. Similarly,

the subdigraph Dxi
2 of D has vertex set V xi

2 = {(xi, yj): for any yj ∈ V2 , fixed xi ∈ V1}∼= V2,

and arc set Axi
2 = {(xi, yj)(xi, yj′): yjyj′ ∈ A2} ∼= A2. It is clear that Dxi

2
∼= D2. In recent

years, the domination number of the Cartesian product of directed cycles and paths has been

discussed in [2–6,8]. However, to date no research about the twin domination number has been

done for the Cartesian product of directed cycles. In this paper, we study the twin domination

number of Cm�Cn. We mainly determine the exact values: γ∗(C2�Cn) = n; γ∗(C3�Cn) = n

if n ≡ 0 (mod 3), otherwise, γ∗(C3�Cn) = n + 1; γ∗(C4�Cn) = n + ⌈n
2 ⌉ if n ≡ 0, 3, 5 (mod 8),

otherwise, γ∗(C4�Cn) = n + ⌈n
2 ⌉ + 1; γ∗(C5�Cn) = 2n; γ∗(C6�Cn) = 2n if n ≡ 0 (mod 3),

otherwise, γ∗(C6�Cn) = 2n+ 2.

2. Main results

We denote the vertices of a directed cycle Cn by the integers {0, 1, . . . , n − 1} considering

modulo n. There is an arc xy from x to y in Cn if and only if y = x+ 1 (modn).

Observe that in Cm�Cn the vertices of Ci
m are out-dominated by vertices of Ci−1

m or Ci
m

and in-dominated by vertices of Ci+1
m or Ci

m for i ∈ {0, 1, . . . , n− 1}. Especially, the vertices of

C0
m are out-dominated by vertices of Cn−1

m or C0
m and in-dominated by vertices of C1

m or C0
m.

First we investigate the twin domination number of C2�Cn.

Lemma 2.1 ([2]) Let n ≥ 2. Then γ(C2�Cn) = n.

By Lemma 2.1, γ∗(C2�Cn) ≥ γ(C2�Cn) = n. Let S0 = {(0, i)|i ∈ {0, 1, . . . , n− 1}}. Then
S0 is a twin dominating set of C2�Cn. According to the discussion, we can get the following

theorem.

Theorem 2.2 Let n ≥ 2. Then γ∗(C2�Cn) = n.

Lemma 2.3 ([2]) Let n ≥ 2. Then γ(C3�Cn) =

{
n, if n ≡ 0 (mod 3);

n+ 1, otherwise.
.

Now we consider the twin domination number of Cartesian product C3�Cn, and define a

set S1 (see Figure 1) as follows: S1 consists of vertices (0, i), i ≡ 0 (mod 3); (1, i), i ≡ 1 (mod 3);

(2, i), i ≡ 2 (mod 3). Note that |S1| = n.

Figure 1 The set S1

Theorem 2.4 Let n ≥ 2. Then γ∗(C3�Cn) =

{
n, if n ≡ 0 (mod 3);

n+ 1, otherwise.
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Proof By Lemma 2.3, if n ≡ 0 (mod 3), then γ∗(C3�Cn) ≥ γ(C3�Cn) = n. S1 is a twin dom-

inating set of C3�Cn, when n ≡ 0 (mod 3). If n ≡ 1 (mod 3), then γ∗(C3�Cn) ≥ γ(C3�Cn) =

n+1. Note that S1∪{(1, 0)} is a twin dominating set of C3�Cn, when n ≡ 1 (mod 3). Similarly,

S1∪{(2, 0)} is a twin dominating set of C3�Cn, when n ≡ 2 (mod 3). Thus γ∗(C3�Cn) = n+1,

when n ≡ 1, 2 (mod 3). �

Lemma 2.5 ([4]) Let S be a dominating set of Cm�Cn. Then |S ∩Ci−1
m |+ 2|S ∩Ci

m| ≥ m for

all i in {0, 1, . . . , n− 1} considered modulo n.

By Lemma 2.5, we have |S ∩ Ci−1
m | + 2|S ∩ Ci

m| ≥ m for 0 6 i 6 n − 1, where S is a twin

dominating set of Cm�Cn.

Lemma 2.6 ([4]) Let n ≥ 2. Then γ(C4�Cn) =

{
3n
2 , if n ≡ 0 (mod 8);

n+ ⌈n+1
2 ⌉, otherwise.

Next we consider the twin domination number of Cartesian product C4�Cn, and define

a set S2 (see Figure 2) as follows: S2 consists of vertices (0, i), (3, i), i ≡ 0 (mod 8); (1, i),

i ≡ 1 (mod 8); (2, i), (3, i), i ≡ 2 (mod 8); (0, i), i ≡ 3 (mod 8); (1, i), (2, i), i ≡ 4 (mod 8); (3, i),

i ≡ 5 (mod 8); (0, i), (1, i), i ≡ 6 (mod 8); (2, i), i ≡ 7 (mod 8). Note that |S2| = n+ ⌈n
2 ⌉.

Figure 2 The set S2

Theorem 2.7 Let n ≥ 2. Then γ∗(C4�Cn) =

{
n+ ⌈n

2 ⌉, if n ≡ 0, 3, 5 (mod 8);

n+ ⌈n
2 ⌉+ 1, otherwise.

Proof We consider three cases.

Case 1 n ≡ 0, 3, 5 (mod 8).

By Lemma 2.6, γ∗(C4�Cn) ≥ γ(C4�Cn) ≥ n + ⌈n
2 ⌉. The set S2 defined above is a twin

dominating set. Thus γ∗(C4�Cn) = n+ ⌈n
2 ⌉, when n ≡ 0, 3, 5 (mod 8).

Case 2 n ≡ 2, 4, 6 (mod 8).

By Lemma 2.6, γ∗(C4�Cn) ≥ γ(C4�Cn) ≥ n + ⌈n+1
2 ⌉. If n ≡ 2, 4, 6 (mod 8), then n +

⌈n+1
2 ⌉ = n + ⌈n

2 ⌉ + 1, so γ∗(C4�Cn) ≥ n + ⌈n
2 ⌉ + 1. It is easy to see that S2 ∪ {(2, n − 1)}

is a minimum twin dominating set of C4�Cn and |S2 ∪ {(2, n − 1)}| = n + ⌈n
2 ⌉ + 1. Thus

γ∗(C4�Cn) = n+ ⌈n
2 ⌉+ 1, when n ≡ 2, 4, 6 (mod 8).

Case 3 n ≡ 1, 7 (mod 8).

By Lemma 2.6, γ∗(C4�Cn) ≥ γ(C4�Cn) ≥ n + ⌈n+1
2 ⌉. Suppose that γ∗(C4�Cn) = n +

⌈n
2 ⌉ = n + n+1

2 . Let S be a minimum twin dominating set of C4�Cn and ai = |S ∩ Ci
4| for all

i ∈ {0, 1, . . . , n− 1}, |S| = n+ n+1
2 .

Let J be the set of i ∈ {0, 1, . . . , n − 1} such that ai ≤ 1 (|J | ≤ n−1
2 ). Let J ′ = {i|i +
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1 (modn) ∈ J}. If i ∈ J , by Lemma 2.5, ai−1+2ai ≥ 4, and thus ai−1+ai ≥ 3. Then J ∩J ′ = ∅
and Σi∈J∪J ′ai ≥ 3|J |. Therefore, Σi∈{0,1,...,n−1}ai ≥ 3|J | + 2(n − 2|J |). Next we consider the

following two subcases.

Subcase 3.1 ai = 0.

In order to in-dominate and out-dominate the vertices of Ci
4, let ai−1 = 4 and ai+1 = 4. So

Σi∈{0,1,...,n−1}ai ≥ 3(|J | − 1) + 4 + 0 + 4 + 2(n − 1 − 2|J |) = 2n − |J | + 3 = 3n+7
2 > 3n+1

2 , a

contradiction.

Subcase 3.2 ai = 4.

If i− 1 ∈ J , then ai−1 = 0 or 1. If ai−1 = 0, we can obtain Σi∈{0,1,...,n−1}ai ≥ 3n+7
2 by the

same argument as that of Subcase 3.1. If ai−1 = 1, then Σi∈{0,1,...,n−1}ai ≥ 3(|J | − 1) + 2 + 1 +

4 + 2(n− 1− 2|J |) = 2n− |J |+ 2 = 3n+5
2 > 3n+1

2 , a contradiction.

If i− 1 /∈ J , Σi∈{0,1,...,n−1}ai ≥ 3|J |+ 4 + 2(n− 1− 2|J |) = 2n− |J |+ 2 = 3n+5
2 > 3n+1

2 , a

contradiction.

From above, we can obtain 1 ≤ ai ≤ 3, i ∈ {0, 1, . . . , n− 1}. Since J ∩ J ′ = ∅, there do not

exist two consecutive integers t and t+ 1, modulo n, such that at = at+1 = 1. Therefore, S can

only be of the form (a0, a1, . . . , an−1) = (2, 1, 2, . . . , 2).

Next we will prove that (|S∩C0
4 |, . . . , |S∩Cn−1

4 |) does not exist in the form (a0, a1, . . . , an−1) =

(2, 1, 2, . . . , 2) when |S| = n + n+1
2 . Without loss of generality, suppose that |C0

4 ∩ S| = 2 and

(0, 0) ∈ S. We claim that (1, 0) ∈ S or (3, 0) ∈ S, otherwise, if (2, 0) ∈ S, in order to in-dominate

(1,1) and (3,1), |C1
4 ∩ S| = 2, a contradiction. In fact, the proofs of cases that (1, 0) ∈ S or

(3, 0) ∈ S are exactly the same, considered modulo n. Hence we consider only the case that

(3, 0) ∈ S. We have (1, 1) ∈ S and consequently (2, 2), (3, 2) ∈ S, otherwise, |C3
4 ∩ S| = 2.

Thus (0, 3) ∈ S and (1, 4), (2, 4) ∈ S; (3, 5) ∈ S; and (0, 6), (1, 6) ∈ S; · · · . We conclude that

S ⊇ S2. Note that S2 is not a twin dominating set of C4�Cn, when n ≡ 1, 7 (mod 8). Thus

γ∗(C4�Cn) > n+⌈n
2 ⌉, a contradiction. So γ∗(C4�Cn) ≥ n+⌈n

2 ⌉+1. While S3∪{(2, n−1)} is a

twin dominating set of C4�Cn and |S3∪{(2, n−1)}| = n+⌈n
2 ⌉+1. Thus γ∗(C4�Cn) = n+⌈n

2 ⌉+1,

when n ≡ 1, 7 (mod 8). �

Lemma 2.8 ([8]) Let n ≥ 2. Then γ(C5�Cn) = 2n.

Figure 3 The set S3

We consider the twin domination number of Cartesian product C5�Cn, and define two sets

S3 (see Figure 3) and S4 (see Figure 4) as follows: S3 consists of vertices (0, 0), (2, 0), (1, 1), (3, 1), (2, 2),

(4, 2); (0, i), (3, i), i ≡ 0 (mod 3); (1, i), (4, i), i ≡ 1 (mod 3); (2, i), (4, i), i ≡ 2 (mod 3),
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when i ≥ 3. By Theorem 2.8, γ∗(C5�Cn) ≥ γ(C5�Cn) = 2n. If n ≡ 0, 2 (mod 3), it

is clear that S3 is a twin dominating set of C5�Cn and |S3| = 2n. S4 consists of vertices

(0, 0), (2, 0), (0, 1), (3, 1), (1, 2), (3, 2); (1, i), (4, i), i ≡ 0 (mod 3); (0, i), (2, i), i ≡ 1 (mod 3);

(0, i), (3, i), i ≡ 2 (mod 3), when i ≥ 3.

Figure 4 The set S4

Similarly, S4 is a twin dominating set of C5�Cn, when n ≡ 1 (mod 3), and |S4| = 2n. Therefore,

we can obtain the following Theorem.

Theorem 2.9 Let n ≥ 2. Then γ∗(C5�Cn) = 2n.

Lemma 2.10 ([8]) Let n ≥ 3. Then γ(C6�Cn) =

{
2n, if n ≡ 0 (mod 3);

2n+ 2, otherwise.

Finally we consider the twin domination number of Cartesian product C6�Cn, and define

a set S5 (see Figure 5) as follows: S5 consists of vertices (0, i), (3, i), i ≡ 0 (mod 3); (1, i), (4, i),

i ≡ 1 (mod 3); (2, i), (5, i), i ≡ 2 (mod 3). Note that |S5| = 2n.

Figure 5 The set S5

Lemma 2.11 Let n ≥ 3. Then γ∗(C6�Cn) =

{
2n, if n ≡ 0 (mod 3);

2n+ 2, otherwise.

Proof By Lemma 2.10, if n ≡ 0 (mod 3), then γ∗(C6�Cn) ≥ γ(C6�Cn) = 2n. S5 is a

twin dominating set of C6�Cn, when n ≡ 0 (mod 3). If n ≡ 1 (mod 3), then γ∗(C3�Cn) ≥
γ(C3�Cn) = 2n+2. Note that S5∪{(1, 0), (4, 0)} is a twin dominating set of C6�Cn, when n ≡
1 (mod 3). Similarly, S5∪{(2, 0), (5, 0)} is a twin dominating set of C6�Cn, when n ≡ 2 (mod 3).

Thus γ∗(C3�Cn) = 2n+ 2, when n ≡ 1, 2 (mod 3). �
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