The Twin Domination Number of Cartesian Product of Directed Cycles

Hongxia MA, Juan LIU*
College of Mathematics Sciences, Xinjiang Normal University, Xinjiang 830017, P. R. China

Abstract

Let $\gamma^{*}(D)$ denote the twin domination number of digraph D and let $C_{m} \square C_{n}$ denote the Cartesian product of C_{m} and C_{n}, the directed cycles of length $m, n \geq 2$. In this paper, we determine the exact values: $\gamma^{*}\left(C_{2} \square C_{n}\right)=n ; \gamma^{*}\left(C_{3} \square C_{n}\right)=n$ if $n \equiv 0(\bmod 3)$, otherwise, $\gamma^{*}\left(C_{3} \square C_{n}\right)=n+1 ; \gamma^{*}\left(C_{4} \square C_{n}\right)=n+\left\lceil\frac{n}{2}\right\rceil$ if $n \equiv 0,3,5(\bmod 8)$, otherwise, $\gamma^{*}\left(C_{4} \square C_{n}\right)=n+\left\lceil\frac{n}{2}\right\rceil+1 ; \gamma^{*}\left(C_{5} \square C_{n}\right)=2 n ; \gamma^{*}\left(C_{6} \square C_{n}\right)=2 n$ if $n \equiv 0(\bmod 3)$, otherwise, $\gamma^{*}\left(C_{6} \square C_{n}\right)=2 n+2$.

Keywords twin domination number; Cartesian product; directed cycles
MR(2010) Subject Classification 05C69; 05C76

1. Introduction

Let $D=(V, A)$ be a finite digraph without loops and multiple arcs where $V=V(D)$ is the vertex set and $A=A(D)$ is the arc set. For a vertex $v \in V(D), N_{D}^{+}(v)$ and $N_{D}^{-}(v)$ denote the set of out-neighbors and in-neighbors of $v, d_{D}^{+}(v)=\left|N_{D}^{+}(v)\right|$ and $d_{D}^{-}(v)=\left|N_{D}^{-}(v)\right|$ denote the out-degree and in-degree of v in D, respectively. A digraph D is r-regular if $d_{D}^{+}(v)=d_{D}^{-}(v)=r$ for any vertices v in D. Given two vertices u and v in D, we say u out-dominates v if $u=v$ or $u v \in A(D)$, and we say v in-dominates u if $u=v$ or $u v \in A(D)$. Let $N_{D}^{+}[v]=N_{D}^{+}(v) \cup\{v\}$. A vertex v dominates all vertices in $N_{D}^{+}[v]$. A set $S \subseteq V(D)$ is a dominating set of D if S dominates $V(D)$. The domination number of D, denoted by $\gamma(D)$, is the minimum cardinality of a dominating set of D. The notion of twin domination in digraphs has been studied in $[1,7]$. A set $S \subseteq V(D)$ is a twin dominating set of D if for any vertex $v \in V-S$, there exist $u, w \in S$ (possibly $u=w$) such that $\operatorname{arcs} u v, v w \in A(D)$. The twin domination number of D, denoted by $\gamma^{*}(D)$, is the minimum cardinality of a twin dominating set of D. Clearly, $\gamma(D) \leqslant \gamma^{*}(D)$.

Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be two digraphs which have disjoint vertex sets $V_{1}=\left\{x_{1}, x_{2}, \ldots, x_{n_{1}}\right\}$ and $V_{2}=\left\{y_{1}, y_{2}, \ldots, y_{n_{2}}\right\}$ and disjoint arc sets A_{1} and A_{2}, respectively. The Cartesian product $D=D_{1} \square D_{2}$ has vertex set $V=V_{1} \times V_{2}$ and $\left(x_{i}, y_{j}\right)\left(x_{i^{\prime}}, y_{j^{\prime}}\right) \in A(D)$ if and only if one of the following holds:
(a) $x_{i}=x_{i^{\prime}}$ and $y_{j} y_{j^{\prime}} \in A_{2} ;$

[^0](b) $y_{j}=y_{j^{\prime}}$ and $x_{i} x_{i^{\prime}} \in A_{1}$.

The subdigraph $D_{1}^{y_{i}}$ of D has vertex set $V_{1}^{y_{i}}=\left\{\left(x_{j}, y_{i}\right)\right.$: for any $x_{j} \in V_{1}$, fixed $\left.y_{i} \in V_{2}\right\} \cong V_{1}$, and arc set $A_{1}^{y_{i}}=\left\{\left(x_{j}, y_{i}\right)\left(x_{j^{\prime}}, y_{i}\right): x_{j} x_{j^{\prime}} \in A_{1}\right\} \cong A_{1}$. It is clear that $D_{1}^{y_{i}} \cong D_{1}$. Similarly, the subdigraph $D_{2}^{x_{i}}$ of D has vertex set $V_{2}^{x_{i}}=\left\{\left(x_{i}, y_{j}\right)\right.$: for any $y_{j} \in V_{2}$, fixed $\left.x_{i} \in V_{1}\right\} \cong V_{2}$, and arc set $A_{2}^{x_{i}}=\left\{\left(x_{i}, y_{j}\right)\left(x_{i}, y_{j^{\prime}}\right): y_{j} y_{j^{\prime}} \in A_{2}\right\} \cong A_{2}$. It is clear that $D_{2}^{x_{i}} \cong D_{2}$. In recent years, the domination number of the Cartesian product of directed cycles and paths has been discussed in $[2-6,8]$. However, to date no research about the twin domination number has been done for the Cartesian product of directed cycles. In this paper, we study the twin domination number of $C_{m} \square C_{n}$. We mainly determine the exact values: $\gamma^{*}\left(C_{2} \square C_{n}\right)=n ; \gamma^{*}\left(C_{3} \square C_{n}\right)=n$ if $n \equiv 0(\bmod 3)$, otherwise, $\gamma^{*}\left(C_{3} \square C_{n}\right)=n+1 ; \gamma^{*}\left(C_{4} \square C_{n}\right)=n+\left\lceil\frac{n}{2}\right\rceil$ if $n \equiv 0,3,5(\bmod 8)$, otherwise, $\gamma^{*}\left(C_{4} \square C_{n}\right)=n+\left\lceil\frac{n}{2}\right\rceil+1 ; \gamma^{*}\left(C_{5} \square C_{n}\right)=2 n ; \gamma^{*}\left(C_{6} \square C_{n}\right)=2 n$ if $n \equiv 0(\bmod 3)$, otherwise, $\gamma^{*}\left(C_{6} \square C_{n}\right)=2 n+2$.

2. Main results

We denote the vertices of a directed cycle C_{n} by the integers $\{0,1, \ldots, n-1\}$ considering modulo n. There is an arc $x y$ from x to y in C_{n} if and only if $y=x+1(\bmod n)$.

Observe that in $C_{m} \square C_{n}$ the vertices of C_{m}^{i} are out-dominated by vertices of C_{m}^{i-1} or C_{m}^{i} and in-dominated by vertices of C_{m}^{i+1} or C_{m}^{i} for $i \in\{0,1, \ldots, n-1\}$. Especially, the vertices of C_{m}^{0} are out-dominated by vertices of C_{m}^{n-1} or C_{m}^{0} and in-dominated by vertices of C_{m}^{1} or C_{m}^{0}. First we investigate the twin domination number of $C_{2} \square C_{n}$.

Lemma 2.1 ([2]) Let $n \geq 2$. Then $\gamma\left(C_{2} \square C_{n}\right)=n$.
By Lemma 2.1, $\gamma^{*}\left(C_{2} \square C_{n}\right) \geq \gamma\left(C_{2} \square C_{n}\right)=n$. Let $S_{0}=\{(0, i) \mid i \in\{0,1, \ldots, n-1\}\}$. Then S_{0} is a twin dominating set of $C_{2} \square C_{n}$. According to the discussion, we can get the following theorem.

Theorem 2.2 Let $n \geq 2$. Then $\gamma^{*}\left(C_{2} \square C_{n}\right)=n$.
Lemma $2.3([2])$ Let $n \geq 2$. Then $\gamma\left(C_{3} \square C_{n}\right)= \begin{cases}n, & \text { if } n \equiv 0(\bmod 3) \text {; } \\ n+1, & \text { otherwise. }\end{cases}$
Now we consider the twin domination number of Cartesian product $C_{3} \square C_{n}$, and define a set S_{1} (see Figure 1) as follows: S_{1} consists of vertices $(0, i), i \equiv 0(\bmod 3) ;(1, i), i \equiv 1(\bmod 3)$; $(2, i), i \equiv 2(\bmod 3)$. Note that $\left|S_{1}\right|=n$.

Figure 1 The set S_{1}
Theorem 2.4 Let $n \geq 2$. Then $\gamma^{*}\left(C_{3} \square C_{n}\right)= \begin{cases}n, & \text { if } n \equiv 0(\bmod 3) ; \\ n+1, & \text { otherwise. }\end{cases}$

Proof By Lemma 2.3, if $n \equiv 0(\bmod 3)$, then $\gamma^{*}\left(C_{3} \square C_{n}\right) \geq \gamma\left(C_{3} \square C_{n}\right)=n . S_{1}$ is a twin dominating set of $C_{3} \square C_{n}$, when $n \equiv 0(\bmod 3)$. If $n \equiv 1(\bmod 3)$, then $\gamma^{*}\left(C_{3} \square C_{n}\right) \geq \gamma\left(C_{3} \square C_{n}\right)=$ $n+1$. Note that $S_{1} \cup\{(1,0)\}$ is a twin dominating set of $C_{3} \square C_{n}$, when $n \equiv 1(\bmod 3)$. Similarly, $S_{1} \cup\{(2,0)\}$ is a twin dominating set of $C_{3} \square C_{n}$, when $n \equiv 2(\bmod 3)$. Thus $\gamma^{*}\left(C_{3} \square C_{n}\right)=n+1$, when $n \equiv 1,2(\bmod 3)$.

Lemma 2.5 ([4]) Let S be a dominating set of $C_{m} \square C_{n}$. Then $\left|S \cap C_{m}^{i-1}\right|+2\left|S \cap C_{m}^{i}\right| \geq m$ for all i in $\{0,1, \ldots, n-1\}$ considered modulo n.

By Lemma 2.5, we have $\left|S \cap C_{m}^{i-1}\right|+2\left|S \cap C_{m}^{i}\right| \geq m$ for $0 \leqslant i \leqslant n-1$, where S is a twin dominating set of $C_{m} \square C_{n}$.
Lemma $2.6([4])$ Let $n \geq 2$. Then $\gamma\left(C_{4} \square C_{n}\right)= \begin{cases}\frac{3 n}{2}, & \text { if } n \equiv 0(\bmod 8) \text {; } \\ n+\left\lceil\frac{n+1}{2}\right\rceil, & \text { otherwise. }\end{cases}$
Next we consider the twin domination number of Cartesian product $C_{4} \square C_{n}$, and define a set S_{2} (see Figure 2) as follows: S_{2} consists of vertices $(0, i),(3, i), i \equiv 0(\bmod 8) ;(1, i)$, $i \equiv 1(\bmod 8) ;(2, i),(3, i), i \equiv 2(\bmod 8) ;(0, i), i \equiv 3(\bmod 8) ;(1, i),(2, i), i \equiv 4(\bmod 8) ;(3, i)$, $i \equiv 5(\bmod 8) ;(0, i),(1, i), i \equiv 6(\bmod 8) ;(2, i), i \equiv 7(\bmod 8)$. Note that $\left|S_{2}\right|=n+\left\lceil\frac{n}{2}\right\rceil$.

Figure 2 The set S_{2}
Theorem 2.7 Let $n \geq 2$. Then $\gamma^{*}\left(C_{4} \square C_{n}\right)= \begin{cases}n+\left\lceil\frac{n}{2}\right\rceil, & \text { if } n \equiv 0,3,5(\bmod 8) \text {; } \\ n+\left\lceil\frac{n}{2}\right\rceil+1, & \text { otherwise. }\end{cases}$
Proof We consider three cases.
Case $1 \quad n \equiv 0,3,5(\bmod 8)$.
By Lemma 2.6, $\gamma^{*}\left(C_{4} \square C_{n}\right) \geq \gamma\left(C_{4} \square C_{n}\right) \geq n+\left\lceil\frac{n}{2}\right\rceil$. The set S_{2} defined above is a twin dominating set. Thus $\gamma^{*}\left(C_{4} \square C_{n}\right)=n+\left\lceil\frac{n}{2}\right\rceil$, when $n \equiv 0,3,5(\bmod 8)$.

Case $2 n \equiv 2,4,6(\bmod 8)$.
By Lemma 2.6, $\gamma^{*}\left(C_{4} \square C_{n}\right) \geq \gamma\left(C_{4} \square C_{n}\right) \geq n+\left\lceil\frac{n+1}{2}\right\rceil$. If $n \equiv 2,4,6(\bmod 8)$, then $n+$ $\left\lceil\frac{n+1}{2}\right\rceil=n+\left\lceil\frac{n}{2}\right\rceil+1$, so $\gamma^{*}\left(C_{4} \square C_{n}\right) \geq n+\left\lceil\frac{n}{2}\right\rceil+1$. It is easy to see that $S_{2} \cup\{(2, n-1)\}$ is a minimum twin dominating set of $C_{4} \square C_{n}$ and $\left|S_{2} \cup\{(2, n-1)\}\right|=n+\left\lceil\frac{n}{2}\right\rceil+1$. Thus $\gamma^{*}\left(C_{4} \square C_{n}\right)=n+\left\lceil\frac{n}{2}\right\rceil+1$, when $n \equiv 2,4,6(\bmod 8)$.

Case $3 n \equiv 1,7(\bmod 8)$.
By Lemma 2.6, $\gamma^{*}\left(C_{4} \square C_{n}\right) \geq \gamma\left(C_{4} \square C_{n}\right) \geq n+\left\lceil\frac{n+1}{2}\right\rceil$. Suppose that $\gamma^{*}\left(C_{4} \square C_{n}\right)=n+$ $\left\lceil\frac{n}{2}\right\rceil=n+\frac{n+1}{2}$. Let S be a minimum twin dominating set of $C_{4} \square C_{n}$ and $a_{i}=\left|S \cap C_{4}^{i}\right|$ for all $i \in\{0,1, \ldots, n-1\},|S|=n+\frac{n+1}{2}$.

Let J be the set of $i \in\{0,1, \ldots, n-1\}$ such that $a_{i} \leq 1\left(|J| \leq \frac{n-1}{2}\right)$. Let $J^{\prime}=\{i \mid i+$
$1(\bmod n) \in J\}$. If $i \in J$, by Lemma 2.5, $a_{i-1}+2 a_{i} \geq 4$, and thus $a_{i-1}+a_{i} \geq 3$. Then $J \cap J^{\prime}=\emptyset$ and $\Sigma_{i \in J \cup J^{\prime}} a_{i} \geq 3|J|$. Therefore, $\Sigma_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq 3|J|+2(n-2|J|)$. Next we consider the following two subcases.

Subcase $3.1 \quad a_{i}=0$.
In order to in-dominate and out-dominate the vertices of C_{4}^{i}, let $a_{i-1}=4$ and $a_{i+1}=4$. So $\Sigma_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq 3(|J|-1)+4+0+4+2(n-1-2|J|)=2 n-|J|+3=\frac{3 n+7}{2}>\frac{3 n+1}{2}$, a contradiction.

Subcase $3.2 a_{i}=4$.
If $i-1 \in J$, then $a_{i-1}=0$ or 1 . If $a_{i-1}=0$, we can obtain $\Sigma_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq \frac{3 n+7}{2}$ by the same argument as that of Subcase 3.1. If $a_{i-1}=1$, then $\Sigma_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq 3(|J|-1)+2+1+$ $4+2(n-1-2|J|)=2 n-|J|+2=\frac{3 n+5}{2}>\frac{3 n+1}{2}$, a contradiction.

If $i-1 \notin J, \Sigma_{i \in\{0,1, \ldots, n-1\}} a_{i} \geq 3|J|+4+2(n-1-2|J|)=2 n-|J|+2=\frac{3 n+5}{2}>\frac{3 n+1}{2}$, a contradiction.

From above, we can obtain $1 \leq a_{i} \leq 3, i \in\{0,1, \ldots, n-1\}$. Since $J \cap J^{\prime}=\emptyset$, there do not exist two consecutive integers t and $t+1$, modulo n, such that $a_{t}=a_{t+1}=1$. Therefore, S can only be of the form $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=(2,1,2, \ldots, 2)$.

Next we will prove that $\left(\left|S \cap C_{4}^{0}\right|, \ldots,\left|S \cap C_{4}^{n-1}\right|\right)$ does not exist in the form $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)=$ $(2,1,2, \ldots, 2)$ when $|S|=n+\frac{n+1}{2}$. Without loss of generality, suppose that $\left|C_{4}^{0} \cap S\right|=2$ and $(0,0) \in S$. We claim that $(1,0) \in S$ or $(3,0) \in S$, otherwise, if $(2,0) \in S$, in order to in-dominate $(1,1)$ and $(3,1),\left|C_{4}^{1} \cap S\right|=2$, a contradiction. In fact, the proofs of cases that $(1,0) \in S$ or $(3,0) \in S$ are exactly the same, considered modulo n. Hence we consider only the case that $(3,0) \in S$. We have $(1,1) \in S$ and consequently $(2,2),(3,2) \in S$, otherwise, $\left|C_{4}^{3} \cap S\right|=2$. Thus $(0,3) \in S$ and $(1,4),(2,4) \in S ;(3,5) \in S$; and $(0,6),(1,6) \in S ; \cdots$. We conclude that $S \supseteq S_{2}$. Note that S_{2} is not a twin dominating set of $C_{4} \square C_{n}$, when $n \equiv 1,7(\bmod 8)$. Thus $\gamma^{*}\left(C_{4} \square C_{n}\right)>n+\left\lceil\frac{n}{2}\right\rceil$, a contradiction. So $\gamma^{*}\left(C_{4} \square C_{n}\right) \geq n+\left\lceil\frac{n}{2}\right\rceil+1$. While $S_{3} \cup\{(2, n-1)\}$ is a twin dominating set of $C_{4} \square C_{n}$ and $\left|S_{3} \cup\{(2, n-1)\}\right|=n+\left\lceil\frac{n}{2}\right\rceil+1$. Thus $\gamma^{*}\left(C_{4} \square C_{n}\right)=n+\left\lceil\frac{n}{2}\right\rceil+1$, when $n \equiv 1,7(\bmod 8)$.

Lemma 2.8 ([8]) Let $n \geq 2$. Then $\gamma\left(C_{5} \square C_{n}\right)=2 n$.

Figure 3 The set S_{3}
We consider the twin domination number of Cartesian product $C_{5} \square C_{n}$, and define two sets S_{3} (see Figure 3) and S_{4} (see Figure 4) as follows: S_{3} consists of vertices $(0,0),(2,0),(1,1),(3,1),(2,2)$, $(4,2) ;(0, i),(3, i), i \equiv 0(\bmod 3) ;(1, i),(4, i), i \equiv 1(\bmod 3) ;(2, i),(4, i), i \equiv 2(\bmod 3)$,
when $i \geq 3$. By Theorem 2.8, $\gamma^{*}\left(C_{5} \square C_{n}\right) \geq \gamma\left(C_{5} \square C_{n}\right)=2 n$. If $n \equiv 0,2(\bmod 3)$, it is clear that S_{3} is a twin dominating set of $C_{5} \square C_{n}$ and $\left|S_{3}\right|=2 n . \quad S_{4}$ consists of vertices $(0,0),(2,0),(0,1),(3,1),(1,2),(3,2) ;(1, i),(4, i), i \equiv 0(\bmod 3) ;(0, i),(2, i), i \equiv 1(\bmod 3) ;$ $(0, i),(3, i), i \equiv 2(\bmod 3)$, when $i \geq 3$.

Figure 4 The set S_{4}
Similarly, S_{4} is a twin dominating set of $C_{5} \square C_{n}$, when $n \equiv 1(\bmod 3)$, and $\left|S_{4}\right|=2 n$. Therefore, we can obtain the following Theorem.

Theorem 2.9 Let $n \geq 2$. Then $\gamma^{*}\left(C_{5} \square C_{n}\right)=2 n$.
Lemma $2.10([8]) \quad$ Let $n \geq 3$. Then $\gamma\left(C_{6} \square C_{n}\right)= \begin{cases}2 n, & \text { if } n \equiv 0(\bmod 3) \text {; } \\ 2 n+2, & \text { otherwise. }\end{cases}$
Finally we consider the twin domination number of Cartesian product $C_{6} \square C_{n}$, and define a set S_{5} (see Figure 5) as follows: S_{5} consists of vertices $(0, i),(3, i), i \equiv 0(\bmod 3) ;(1, i),(4, i)$, $i \equiv 1(\bmod 3) ;(2, i),(5, i), i \equiv 2(\bmod 3)$. Note that $\left|S_{5}\right|=2 n$.

Figure 5 The set S_{5}
Lemma 2.11 Let $n \geq 3$. Then $\gamma^{*}\left(C_{6} \square C_{n}\right)= \begin{cases}2 n, & \text { if } n \equiv 0(\bmod 3) \text {; } \\ 2 n+2, & \text { otherwise. }\end{cases}$
Proof By Lemma 2.10, if $n \equiv 0(\bmod 3)$, then $\gamma^{*}\left(C_{6} \square C_{n}\right) \geq \gamma\left(C_{6} \square C_{n}\right)=2 n$. S_{5} is a twin dominating set of $C_{6} \square C_{n}$, when $n \equiv 0(\bmod 3)$. If $n \equiv 1(\bmod 3)$, then $\gamma^{*}\left(C_{3} \square C_{n}\right) \geq$ $\gamma\left(C_{3} \square C_{n}\right)=2 n+2$. Note that $S_{5} \cup\{(1,0),(4,0)\}$ is a twin dominating set of $C_{6} \square C_{n}$, when $n \equiv$ $1(\bmod 3)$. Similarly, $S_{5} \cup\{(2,0),(5,0)\}$ is a twin dominating set of $C_{6} \square C_{n}$, when $n \equiv 2(\bmod 3)$. Thus $\gamma^{*}\left(C_{3} \square C_{n}\right)=2 n+2$, when $n \equiv 1,2(\bmod 3)$.

Acknowledgements We thank the referees for their time and comments.

References

[1] G. CHARTRAND, P. DANKELMANN, M. SCHULTZ, et al. Twin domination in digraphs. Ars Combin., 2003, 67: 105-114.
[2] Juan LIU, Xindong ZHANG, Xing CHEN, et al. On domination number of Cartesian product of directed cycles. Inform. Process. Lett., 2010, 110(5): 171-173.
[3] Juan LIU, Xindong ZHANG, Jixiang MENG. On domination number of Cartesian product of directed paths. J. Comb. Optim., 2011, 22(1): 651-662.
[4] M. MOLLARD. On the domination of Cartesian product of directed cycles: Results for certain equivalence classes of lengths. Discuss. Math. Graph Theory, 2013, 33(2): 387-394.
[5] R. S. SHAHEEN. The domination number of Cartesian product of two directed paths. J. Comb. Optim., 2014, 27(1): 144-151.
[6] R. S. SHAHEEN. Domination number of toroidal grid digraphs. Util. Math., 2009, 78: 175-184.
[7] Yueli WANG. Efficient twin domination in generalized De Bruijn digraphs. Discrete Math., 2015, 338(3): 36-40.
[8] Xindong ZHANG, Juan LIU, Xing CHEN, et al. Domination number of Cartesian products of directed cycles. Inform. Process. Lett., 2010, 111(1): 36-39.

[^0]: Received April 16, 2015; Accepted September 14, 2015
 Supported by the National Natural Science Foundation of China (Grant Nos. 61363020; 11301450; 11226294), the Youth Science and Technology Education Project of Xinjiang (Grant No. 2013731011) and China Scholarship Council.

 * Corresponding author

 E-mail address: 598254233@qq.com (Hongxia MA); liujuan1999@126.com (Juan LIU)

