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Abstract A ∗-ring is called ∗-clean if every element of the ring can be written as the sum of

a projection and a unit. For an integer n ≥ 1, we call a ∗-ring R n-∗-clean if for any a ∈ R,

a = p + u1 + · · · + un where p is a projection and ui are units for all i. Basic properties of

n-∗-clean rings are considered, and a number of illustrative examples of 2-∗-clean rings which

are not ∗-clean are provided. In addition, extension properties of n-∗-clean rings are discussed.
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1. Introduction

Throughout this article, rings are associative with unity. Following Nicholson [1], an element

of a ring R is called clean if it is the sum of an idempotent and a unit, and R is called clean if

every element of R is clean. Unit regular rings and semiperfect rings are well known examples

of clean rings [2]. For a positive integer n, Xiao and Tong [3] introduced the concept of n-clean

rings. Recall that a ∈ R is n-clean if it can be written as the sum of an idempotent and n units,

and R is called n-clean if all of its elements are n-clean. Clearly, clean rings coincide with 1-clean

rings. Various examples of 2-clean rings but not clean rings were provided in [4,5].

An involution of a ring R is an operation ∗ : R → R satisfying

(x+ y)∗ = x∗ + y∗, (xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R.

A ring R with involution ∗ is called a ∗-ring. An element p of a ∗-ring is called a projection if

p2 = p and p∗ = p (i.e., p is a self-adjoint idempotent). So 0 and 1 are projections of any ∗-ring.
Following Vaš [6], a ∗-ring R is called ∗-clean if every element of R is the sum of a projection

and a unit, and R is strongly ∗-clean if every element of R is the sum of a projection and a unit

that commute. Clearly, ∗-clean rings are clean and strongly ∗-clean rings are strongly clean (i.e.,

each element of the ring is the sum of an idempotent and a unit that commute [7]). Strongly

∗-clean rings were studied further in [8,9].
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In this article, we introduce the notion of n-∗-clean rings which can be regarded as both

generalization of ∗-clean rings and n-clean rings. Several examples of n-∗-clean rings are given,

and the relationship among ∗-clean rings, n-∗-clean rings, clean rings and n-clean rings are

discussed. In addition, extension properties of n-∗-clean rings are studied. For a ring R, the

set of all idempotents, all projections and all units of R are denoted by Id(R), P (R) and U(R),

respectively. We writeMn(R) for the ring of all n×nmatrices over R. Let Z(p) be the localization

of the ring of integers Z at the prime ideal (p) and Cn be a cyclic group of order n. The ring

of integers modulo n is denoted by Zn. For a ∗-ring R, the matrix ring Mk(R) has a natural

involution inherited from R : if A = (aij) ∈ Mk(R), A∗ = (a∗ij)
t is the transpose of (a∗ij), and in

this way, Mk(R) becomes a ∗-ring.

2. Main results

We first introduce the following concept.

Definition 2.1 Let n be a positive integer. An element a of a ∗-ring R is called n-∗-clean if

a = p+ u1 + · · ·+ un where p ∈ P (R) and u1, . . . , un ∈ U(R). The ∗-ring R is called n-∗-clean if

every element of R is n-∗-clean.
It is clear that ∗-clean rings coincide with 1-∗-clean rings, and n-∗-clean rings are n-clean.

Lemma 2.2 If R is n-∗-clean, then R is m-∗-clean for any m > n.

Proof By assumption, it is enough to prove that R is n+ 1-∗-clean. Let a = p+ u1 + · · ·+ un

with p ∈ P (R) and u1, . . . , un ∈ U(R). Take q = 1 − p and un+1 = 2p − 1. Then q ∈ P (R) and

u2
n+1 = 1. Thus, a = q + u1 + · · ·+ un + un+1 is (n+ 1)-∗-clean in R. �

Recall that R is called an (S, n)-ring if every element of R is a sum of no more than n units

of R (see [10]).

Corollary 2.3 (i) Every (S, n)-ring with involution ∗ is n-∗-clean.
(ii) If R is an n-∗-clean ring with the only projections 0 and 1, then R is an (S, n+1)-ring.

For a commutative ring R and a group G, the standard involution ∗ of the group ring RG

is defined by (
∑

rgg)
∗ =

∑
rgg

−1. According to [5, Proposition 2.7] and Proposition 2.4, the

∗-ring Z(2)C3 is 2-∗-clean but not an (S, 2)-ring.

Proposition 2.4 The group ring Z(p)C3 is 2-∗-clean for any prime p.

Proof Let C3 = {1, b, b2} with b3 = 1. If p ̸= 2, then Z(p)C3 is an (S, 2)-ring by [5, Proposition

2.5], and thus 2-∗-clean by Corollary 2.3. Next we assume that p = 2.

Firstly, we claim that all idempotents in Z(2)C3 are projections. Let e = e0 + e1b+ e2b
2 ∈

Z(2)C3 and e2 = e. Then we have

e1 = e22 + 2e0e1 (2.1)

e2 = e21 + 2e0e2. (2.2)
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Now, performing (2.1)–(2.2) yields

(e2 − e1)(e1 + e2 − 2e0 + 1) = 0. (2.3)

Since 2 ∈ J(Z(2)), by Eqs. (2.1) and (2.2) one easily gets that either e1, e2 ∈ U(Z(2)) or e1, e2 ∈
J(Z(2)). Note that Z(2)/J(Z(2)) ∼= Z2. Thus e1 = e2, that is e2 − e1 ∈ J(Z(2)). It follows that

e1 + e2 − 2e0 + 1 = 1 + (e2 − e1) + 2(e1 − e0) ∈ U(Z(2)). By Eq. (2.3), we obtain that e2 = e1.

So e2 = e = e∗, and the claim follows. In view of [3, Theorem 3.2], Z(2)C3 is clean. Therefore,

Z(2)C3 is ∗-clean (and hence 2-∗-clean). �

A ∗-ring R is called ∗-regular [11] if for any x ∈ R, there exists p ∈ P (R) such that xR = pR.

Due to [8], a ∗-ring R is ∗-unit regular if it is unit regular and ∗-regular.

Theorem 2.5 Every clean ∗-regular ring is 2-∗-clean.

Proof Let R be a clean ∗-regular ring. Given any a ∈ R. Then a = e+u for some e ∈ Id(R) and

u ∈ U(R). We next show that e is ∗-clean in R. Since R is ∗-regular, there exists a projection p

such that (1− e)R = pR. So we have 1− e = p(1− e) and p = (1− e)p, and thus ep = 0. Note

that

(e− p)(e− p) = e− ep− pe+ p = e+ p(1− e) = e+ (1− e) = 1.

So e− p ∈ U(R) and e = p+ (e− p) is a ∗-clean expression of e in R. So a = p+ (e− p) + u is

2-∗-clean. Hence, R is 2-∗-clean. �

According to [12, Theorem 1], unit regular rings are clean. So we have the following result.

Corollary 2.6 Every ∗-unit regular ring is 2-∗-clean.

Example 2.7 (i) Let R = Z(7)C3. In view of [13, Example 1], R is not clean, and thus not

∗-clean. However, R is 2-∗-clean by Proposition 2.4 (and thus 2-clean).

(ii) Let R = Z2 ⊕ Z2. Clearly, R is a commutative clean ring (and thus 2-clean). Define

a map ∗ : R → R by (a, b)∗ = (b, a). It is easy to check that ∗ is an involution of R. Note

that P (R) = {(0, 0), (1, 1)} and U(R) = {(1, 1)}. Take a = (1, 0). We conclude that a is not

n-∗-clean. Indeed, if a = p + u1 + · · · + un with p ∈ P (R) and ui ∈ U(R) for all i, then

a = p∗ + u∗
1 + · · ·+ u∗

n = a∗. This is a contradiction.

(iii) Let R = T2(Z2) be the 2 × 2 upper triangular matrix ring, and an involution ∗ of R

given by ( a b
0 c ) 7→ ( c b

0 a ). By [9, Example 2.6], R is clean. However, R is not n-∗-clean. Note that

u∗ = u for every u ∈ U(R). Given any a ∈ R with a ̸= a∗. If a = p + u1 + · · · + un for some

p ∈ P (R) and ui ∈ U(R) for each i, then a∗ = a. This contradicts a ̸= a∗.

Vaš [6] asked whether there is an example of a ∗-ring that is clean but not ∗-clean. Example

2.7(ii) gives an affirmative answer [8,9].

Remark 2.8 By virtue of Example 2.7, we have the following implications (for the class of
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∗-rings):

∗-clean ring

��

+3 n-∗-clean ring

��
clean ring +3 n-clean ring.

In this diagram, each of the implications is irreversible, and there are no other implications

between these rings.

Proposition 2.9 Let R be a ∗-ring with 2 ∈ U(R). The following are equivalent:

(i) R is n-clean and every unit of R is self-adjoint (i.e., u∗ = u for every u ∈ U(R)).

(ii) R is n-∗-clean and ∗ = 1R is the identity endomorphism of R.

Proof (ii)⇒(i) is trivial.

(i)⇒(ii) Let a ∈ R. Then a = e + u1 + · · · + un for some e2 = e and ui ∈ U(R) for all i.

Since (1 − 2e)2 = 1, we have 1 − 2e is a unit. The hypothesis implies that (1 − 2e)∗ = 1 − 2e,

and so 2(e∗ − e) = 0. Since the condition 2 ∈ U(R), e∗ = e. Thus a ∈ R is n-∗-clean and a∗ = a,

whence ∗ = 1R. �
Example 2.7(ii) reveals that “2 ∈ U(R)” in Proposition 2.9 can not be removed. Recall that

an element t of a ∗-ring R is self-adjoint square root of 1 if t2 = 1 and t∗ = t.

Proposition 2.10 Let R be a ∗-ring with 2 ∈ U(R). Then R is n-∗-clean if and only if every

element of R is a sum of n units and a self-adjoint square root of 1.

Proof Assume that R is n-∗-clean and a ∈ R. Then 1+a
2 = p+u1+· · ·+un for some p ∈ P (R) and

u1, . . . , un ∈ U(R). It follows that a = (2p−1)+2u1+· · ·+2un with (2p−1)∗ = 2p−1, (2p−1)2 = 1

and 2ui ∈ U(R) for i = 1, . . . , n.

Conversely, given any a ∈ R. Then there exist y ∈ R and v1, . . . , vn ∈ U(R) such that

2a − 1 = y + v1 + · · · + vn with y∗ = y, y2 = 1. Thus, a = y+1
2 + v1

2 + · · · + vn

2 is an n-∗-clean
expression since (y+1

2 )∗ = y+1
2 , (y+1

2 )2 = y+1
2 and vi

2 ∈ U(R) for each i. �
By Proposition 2.10, any n-∗-clean ring R with 2 ∈ U(R) is an (S, n+1)-ring. However, we

do not know whether 2 ∈ U(R) is still necessary in Proposition 2.10 when n ≥ 2.

Let I be an ideal of a ∗-ring R. We call I is ∗-invariant if I∗ ⊆ I. In this case, the involution

∗ of R can be extended to the factor ring R/I, which is still denoted by ∗.

Lemma 2.11 Let R be n-∗-clean. If I is a ∗-invariant ideal of R, then R/I is n-∗-clean.

Proof Since the homomorphism image of a projection (resp., unit) is also a projection (resp.,

unit), the result follows. �
For a ring R, the set of all nilpotent elements of R is denoted by N(R).

Corollary 2.12 Let R be n-∗-clean. We have

(i) R/J(R) is n-∗-clean.
(ii) if N(R) is an ideal, then R/N(R) is n-∗-clean.



198 Jian CUI and Xiaobin YIN

Proof (i) In view of Lemma 2.11, it suffices to show that J(R) is ∗-invariant. For any a∗ ∈
(J(R))∗, we show that a∗ ∈ J(R). Note that a ∈ J(R). Take any x ∈ R. Then 1− x∗a ∈ U(R).

Thus 1− a∗x = (1− x∗a)∗ is a unit of R, as desired.

(ii) By assumption, one easily checks that N(R) is a ∗-invariant ideal. The rest follows

from Lemma 2.11. �

Proposition 2.13 Let R be a ∗-ring and I a ∗-invariant ideal of R with I ⊆ J(R). If R/I is

n-∗-clean and projections can be lifted modulo I, then R is n-∗-clean.

Proof Given any x ∈ R. Write x̄ = x + I ∈ R/I. Then x̄ = p̄ + ū1 + ū2 + · · · + ūn, where

p2 − p ∈ I, p∗ − p ∈ I and ūi ∈ U(R/I) for i = 1, . . . , n. Since projections can be lifted modulo

I, we may assume that p2 = p ∈ R and p = p∗. Also, units can be lifted modulo I (since for

any ū, v̄ ∈ R/I with ūv̄ = v̄ū = 1̄, one has uv − 1 ∈ I ⊆ J(R) and vu − 1 ∈ I ⊆ J(R). Thus,

both u and v are invertible in R). So we can assume that ui are all units of R for i = 1, . . . , n.

Therefore,

x = p+ u1 + u2 + · · ·+ un.

This proves that x is n-∗-clean, and hence R is an n-∗-clean ring. �
For a ∗-ring R. Then ∗ induces an involution of the polynomial ring R[x] (resp., power series

ring R[[x]]), denoted by ∗, where (
∑m

i=0 aix
i)∗ =

∑m
i=0 a

∗
i x

i (resp., (
∑∞

i=0 aix
i)∗ =

∑∞
i=0 a

∗
i x

i).

Proposition 2.14 Let R be a ∗-ring. Then R[[x]] is n-∗-clean if and only if R is so.

Proof Suppose that R[[x]] is n-∗-clean. Note that R ∼= R[[x]]/(x) and (x) is a ∗-invariant
ideal of R[[x]]. By Lemma 2.11, R is n-∗-clean. Conversely, assume that R is n-∗-clean. Let

f(x) =
∑∞

i=0 aix
i ∈ R[[x]]. Write a0 = p + u1 + u2 + · · · + un with p ∈ P (R) and ui ∈ U(R)

for each i. Then f(x) = p + (u1 +
∑∞

i=1 aix
i) + u2 + · · · + un, where p ∈ P (R) ⊆ P (R[[x]]),

u1 +
∑∞

i=1 aix
i ∈ U(R[[x]]) and ui ∈ U(R[[x]]). Hence f(x) is n-∗-clean in R[[x]]. �

Recall that a ring R is semicommutative if ab = 0 implies that aRb = 0 for any a, b ∈ R.

Semicommutative rings are abelian (i.e., all idempotents of the ring are central).

Remark 2.15 (i) In view of [5, Theorem 3.8], if R is a semicommutative ∗-ring, then R[x] is

not n-∗-clean (as it is not n-clean).

(ii) For any ∗-ring R and k > 1, by [10, Theorem 3] the matrix ring Mk(R) is an (S, 3)-ring.

So Mk(R) is n-∗-clean by Corollary 2.3 where n ≥ 3.

The following example reveals that there exists a non-semicommutative ∗-ring R such that

R[x] is n-∗-clean where n ≥ 2.

Example 2.16 Let F be a field and R = Mk(F ) with k ≥ 2. Then R[x] = Mk(F )[x] ∼=
Mk(F [x]). Since F [x] is an elementary divisor ring, by [10, Theorem 11] R[x] is an (S, 2)-ring.

In view of Corollary 2.3, R[x] is n-∗-clean for any n ≥ 2. Notice that R is not semicommutative

(since it is not abelian).

It was proved in [3] that for any e ∈ Id(R), R is n-clean whenever both eRe and (1−e)R(1−e)
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are n-clean. Let R be a ∗-ring and p ∈ P (R). The involution ∗ of R is inherited naturally to the

corner ring pRp. We have an analogous result.

Theorem 2.17 Let R be a ∗-ring and p ∈ P (R). If pRp and (1−p)R(1−p) are n-∗-clean, then
R is n-∗-clean.

Proof Denote q = 1− p. We apply the Pierce decomposition for the ring R. Then

R =

(
pRp pRq

qRp qRq

)
Let x ∈ R. Then we can write

x =

(
a b

c d

)
where a ∈ pRp, b ∈ pRq, c ∈ qRp and d ∈ qRq.

By hypothesis, a = e+ u1 + u2 + · · ·+ un with e ∈ P (pRp) and ui ∈ U(pRp) with inverses

u−1
i (1 ≤ i ≤ n). Note that d − cu−1

1 b ∈ qRq. From the n-∗-cleanness of qRq, there exist

g, v1, . . . , vn ∈ R such that

d− cu−1
1 b = g + v1 + v2 + · · ·+ vn,

where g ∈ P (qRq) and vi are units of qRq (1 ≤ i ≤ n). Thus, we have

x =

(
a b

c d

)
=

(
e 0

0 g

)
+

(
u1 b

c v1 + cu−1
1 b

)
+

(
u2 0

0 v2

)
+ · · ·+

(
un 0

0 vn

)
.

Note that eg = ge = 0. Thus
(
e 0
0 g

)2
=

(
e 0
0 g

)
and

(
e 0
0 g

)∗
=

(
e 0
0 g

)
, which implies that

(
e 0
0 g

)
∈

P (R). In addition,(
p 0

0 q

)
=

(
u1 b

c v1 + cu−1
1 b

)(
u−1
1 + u−1

1 bv−1
1 cu−1

1 −u−1
1 bv−1

1

−v−1
1 cu−1

1 v−1
1

)
=

(
u−1
1 + u−1

1 bv−1
1 cu−1

1 −u−1
1 bv−1

1

−v−1
1 cu−1

1 v−1
1

)(
u1 b

c v1 + cu−1
1 b

)
and (

ui 0

0 vi

)(
u−1
i 0

0 v−1
i

)
=

(
p 0

0 q

)
=

(
u−1
i 0

0 v−1
i

)(
ui 0

0 vi

)
.

This proves that x ∈ R is n-∗-clean. Hence, R is an n-∗-clean ring. �
By Theorem 2.17, an inductive argument gives immediately the following.

Corollary 2.18 Let R be a ∗-ring. If 1 = p1 + p2 + · · · + pk in R where pi are orthogonal

projections and each piRpi is n-∗-clean, then R is n-∗-clean.

Corollary 2.19 If R is n-∗-clean, then Mk(R) is n-∗-clean for any k ≥ 1.

The converse of Theorem 2.17 is not true in general.

Example 2.20 Let R = F [x] with F a field, and define ∗ = 1R. In view of [10, Theorem 11],
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M2(R) is 2-∗-clean (being an (S, 2)-ring). Take E = ( 1 0
0 0 ) ∈ M2(R). Then E ∈ P (M2(R)) and

EM2(R)E ∼= R. However, R = F [x] is not 2-∗-clean by Remark 2.15 (i).

Proposition 2.21 Let R be a ∗-ring and p a central projection of R. If R is n-∗-clean, then so

is pRp.

Proof Let x ∈ pRp ⊆ R. By hypothesis, x = q + u1 + · · · + un with q ∈ P (R) and u1, . . . , un

are units of R. Since p is central, x = pxp = pqp+ pu1p+ · · ·+ punp is an n-∗-clean expression

in pRp. �
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