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Abstract Let K be a finite field of characteristic # 2 and G the additive group of K x K. Let
k1, k2 be integers not divisible by the characteristic p of K with (k1,k2) = 1. In 2004, Haddad
and Helou constructed an additive basis B of G for which the number of representations of
g € G as a sum by + ba(b1,b2 € B) is bounded by 18. For g € G and B C G, let ok, k, (B, g)
be the number of solutions of g = k1b1 + k2b2, where b1, bs € B. In this paper, we show that
there exists a set B C G such that k1B + k2B = G and oy, x,(B, g) < 16.
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1. Introduction

Let G be a semi-group. For A,B C G, g € G, and kq, ko be integers with (k1,ks) = 1, we
define
Ukl,k)Q (A7B7g) = ﬁ{(CL?b) S A X B : kla + ka = g}a

and ok, k, (A, g) = 0k, ke (4, A, g). In particular, we denote o4(g) = 01,1(4,9), 04(9) = 01,-1(4, 9).

The well known Erdés-Turdn conjecture [1] says that if A is a basis of N, then o 4(n) cannot
be bounded. Pus [2] first established that the analogue of the Erdos-Turdn conjecture fails to
hold in some abelian groups. Let K be a field of characteristic # 2 and G the additive group of
K x K. In 2004, Haddad-Helou [3] constructed an additive basis B of G for which the number of
representations of g € G as a sum by + by (b1, by € B) is bounded by 18. In 2010, Tang-Tang [4]
investigated the parallel problem for differences. We find that the set constructed by Tang-Tang
[4] is the same as the set constructed by Haddad-Helou [3]. That is, there exists a set A C G
such that 1 < o4(g) < 18 and 1 < d4(g) < 14 for all g € G. For the related problems we refer
to [5-10].

In this paper, we obtain the following result.

Theorem 1.1 Let K be a finite field of characteristic # 2, k1, ko be integers not divisible by
the characteristic p of K with (k1,ke) = 1 and G the additive group of K x K. Then there exists
a set B C G such that ki B + koB = G, and oy, 1, (B, g) < 16.

Remark 1.2 Indeed, if, for instance k; is divisible by the characteristic p of K, then, for any

Received May 14, 2015; Accepted September 18, 2015
Supported by the National Natural Science Foundation of China (Grant No.11471017).
E-mail address: wangyujie9291@126.com



A second note on a result of Haddad and Helou 273

subset B of G, we have k1B = {(0,0)} and then ki B + ko B = k9B is in bijection with B (since
obviously ks will not be divisible by p, as (k1,k2) = 1), so that k; B + ko B = G if and only if
B = @, and in that case, for any g € G, we have

Oty ks (G, 9) = [{(1,v) € G X G : kypp + kov = kov = g}| = |G X {k;lg}\ =|G|.

Throughout this paper, we denote by K* = K\{0} the multiplicative group of K and
by S(K*) = {2? : 2 € K*} the subgroup of the square elements of K*. For a € K*, let

Qo ={(p,op?) :pe K} CG.

2. Proofs

Lemma 2.1 Let k1, ko be integers not divisible by the characteristic p of K with (k1,k2) = 1.
For g = (a,b) € G and fixed «, 8 € K*, consider the equation

9:k1$+k2y7 erav yeQB
If aky + Bk1 # 0, then the set k1Qq + k2Qp consists of all elements (a,b) € G such that
kiko(aks + Bk1)b — kiksaBa® is a square in K, and for any g € G, 0, k,(Qa,Qp,9) < 2. If
ake + Bk = 0, then the equation has at most one solution except if g = 0, when it has |K]|

solutions.
Proof Let g = (a,b) € G. Consider the system of equations
a=kip+ kv, (1)
b= kiap® + ky v (2)
Substituting the value of u from (1) into (2), we get the equation
k1b = ko(aks + Bk1)v? — 2ackav + aa®. (3)

Case 1 aky+ Bk # 0. This is a quadratic equation in v, and it has exactly one or two solutions
in the field K if and only if its discriminant 4[k1kq(cks + Bk1)b — k1kocBa?] is a square in K.
Since the characteristic of K is # 2, the non-zero square factor 4 can be discarded in the latter

condition. Thus for any g = (a,b) € G, we have ok, k,(Qa, @s,9) < 2.

Case 2 aks + Bk; = 0. Then (3) is an equation of degree 1. If a # 0, (3) has one solution. If
a="b=0, (3) has | K| solutions. If a = 0, b # 0, (3) has no solution.
This completes the proof of Lemma 2.1. [J

Lemma 2.2 ([3, Lemma 3.7]) If K is a finite field of characteristic # 2, then the index of the
subgroup S(K*) in the multiplicative group of K* is 2. Thus the product of two non-square

elements of K* is a square element of K*.

Lemma 2.3 Let k1, ko be integers not divisible by the characteristic p of K with (ki,k2) = 1.
If K is a finite field of characteristic # 2 and |K| > 5, then there exist elements «, 8 € K* such
that « € S(K*), 8 ¢ S(K*), and aks + Sk1 # 0.
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Proof By Lemma 2.2, S(K*) # K* and |S(K*)| = |K*|/2 > 2, thus we can choose o € S(K™*),
B € K*\S(K*), and aky + Bk # 0. O

Proof of Theorem 1.1 If K =F5; = {0,1,2}, put B = {(0,0),(0,1),(0,2),(1,1),(1,0)}, then
B C F3 x F3, we have k1B + ko B = G with oy, 1, (B, g) < 5.

Now we consider K to be a finite field of characteristic # 2 and |K| > 5.

Let o, 8 € K* such that o € S(K*), 8 ¢ S(K*), and aks + fk1 # 0. Put v = af(k +
k2)/(Bk1 + aks), B = Qa0 UQpUQ,. By the fact that 8 # a, we have o # v, 8 # ~.

Case 1 If k1ky = —1, then v = 0. Let n = 2a8/(a — 3). By [4], B = Qo UQp U Q,, is a basis
of G, we have
Thiks(Bo9) < D Ok (@, Qs g) < 14
r,s€{a,B,n}
Case 2 If k1ko # —1, then v # 0. We have aks + Sk1 # 0 and ko + vk # 0. By Lemma 2.1,

lea =+ kQQB = {(a, b) cG: klkg(akg + 6]{51)1) — klkgaﬂaz S S(K*) U {O}},
k1Qy + k2@ = {(a,b) € G : kyka(vka + vk1)b — k1kaey?a® € S(K*) U {0}}.

Let
e = k‘lk‘g(ak’g + Bk‘l)b — klk‘gaﬁGQ, f = klkg(’yk‘g + ’Yk)l)b - ]ﬁkg’yQaQ.

Thus an element (a,b) # (0,0) of G lies in k1Qq + k2@Qp (resp., in k1Q4 + k2Q-) if and only if e
(resp., f) is square in K.

By simple calculation, we have f = Bay~2e. Since a € S(K*), v~2 € S(K*), by Lemma
2.2, we have Bay=2 ¢ S(K*), and thus f € S(K*) if and only if e ¢ S(K*). Hence, if an
element (a,b) # (0,0) of G does not lie in k1Qqn + k2Q 3, then it lies in k1Q~ + k2Q~. Therefore,
G = (k1Qa + k2Q8) U (k1Q, + k2Q~), which is stronger than the required k1B + koB = G.

Hence, ok, k,(B,g) < Er,se{a,,é’,’y} Ok ks (Qr, Qs,9) < 16. This completes the proof of
Theorem 1.1. OJ

Acknowledgement We would like to thank the referee for his/her helpful comments.

References

[1] P. ERDOS, P. TURAN. On a problem of Sidon in additive number theory, and on some related problems.
J. London Math. Soc., 1941, 16(4): 212-215.

[2] V. PUS. On multiplicative bases in abelian groups. Czechoslovak Math. J., 1991, 41(2): 282-287.

[3] L. HADDAD, C. HELOU. Bases in some additive groups and the Erdos-Turdn conjecture. J. Combin.
Theory Ser. A, 2004, 108(1): 147-153.

[4] Chiwu TANG, Min TANG. Note on a result of Haddad and Helou. Integers, 2010, 10(18): 229-232.

[5] Yonggao CHEN. The analogue of Erdés-Turdn conjecture in Zy,. J. Number Theory, 2008, 128(9): 2573—
2581.

[6] M. B. NATHANSON. Unique representation bases for integers. Acta Arith., 2003, 108(1): 1-8.

[7] S. V. KONYAGIN, V. F. LEV. The Erdos-Turdn Problem in Infinite Groups. Additive Number Theory,
Springer, New York, 2010.

[8] I. Z. RUZSA. A just basis. Monatsh. Math., 1990, 109(2): 145-151.

[9] Min TANG, Yonggao CHEN. A basis of Z. Collog. Math., 2006, 104(1): 99-103.

[10] Min TANG, Yonggao CHEN. A basis of Z (II). Collog. Math., 2007, 108(1), 141-145.



