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Abstract Let F, be a finite field with ¢ = p™, where p is an odd prime. In this paper, we
study the repeated-root self-dual negacyclic codes over Fy;. The enumeration of such codes
is investigated. We obtain all the self-dual negacyclic codes of length 2?p" over Fy, a > 1.
The construction of self-dual negacyclic codes of length 2%bp™ over Fj is also provided, where
ged(2,b) = ged(b,p) =1 and a > 1.
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1. Introduction

The class of constacyclic codes plays a significant role in the theory of error correcting
codes. These include cyclic and negacyclic codes, which have been well studied since 1950’s.
Constacyclic codes can be efficiently encoded using shift registers, which explains their preferred

role in engineering.

Definition 1.1 Let F; be the Galois field with q elements. For A € F}

o+ asubset C' of F' Is

called a \-constacyclic code of length n if

(1) C is a subspace of Fj}';

(2) ifc=(co,c1,-.-,Cn1) is a codeword of C, then Tx(c) = (A¢cp—1,C0,.-.,Cn2) is also a
codeword in C'.

Ty is called A-constacyclic shift. When A = 1, A-constacyclic codes are cyclic codes. When
A = —1, A-constacyclic codes are negacyclic codes.

If n is coprime to the characteristic of Fy, a A-constacyclic code of length n over Fj is called
simple-root A-constacyclic code; otherwise it is called repeated-root A-constacyclic code. Simple-
root A-constacyclic codes of a given length over finite fields have been studied extensively by

several authors [1-9]. Sharma et al. [7,8] studied simple-root cyclic codes of prime power length
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over a finite field. Repeated-root A-constacyclic codes, although, are known to be asymptotically
bad, nevertheless, are optimal in a few cases, which have motivated the researchers to further
study these codes.

If ¢ = 2™, then the negacyclic codes are just cyclic codes. Self-dual cyclic codes have been
studied in [10-12]. Jia et al.[10] showed that self-dual cyclic codes of length n over F, exist if
and only if n is even and g = 2" with m a positive integer. Thus we assume that ¢ is an odd
prime power while considering negacyclic codes.

Bakshi and Raka [13] explicitly determined all the simple root self-dual negacyclic codes
of length 2p™, n > 1, over F, where p is an odd prime coprime to gq. Bakshi and Raka [14]
obtained all the simple root self-dual negacyclic codes of length 2" over Fj,. Dinh [15] provided
the self-dual negacyclic codes of length 2p® over Fm. In this paper, self-dual negacyclic codes
are considered in a more general domain than in [14] and [15]. We study the repeated-root
self-dual negacyclic codes of length n'p” over the finite field F,m with p an odd prime such that
ged(n', p) = 1. The rest of this paper is organized as follows. In Section 2, the conditions for the
existence of self-dual negcyclic codes are given. We also give a characterization of the generator
polynomials of self-dual negacyclic codes. In Section 3, we provide the enumeration formula for
the self-dual negcyclic codes of length n = 2%p", @ > 1, 7 > 0. In Section 4, the construction of
self-dual negacyclic codes of length n = 2%bp" over Fy such that ged(2,b) = ged(b,p) = 1 and

a > 1 is presented.

2. Self-dual negacyclic codes

Let F, be the Galois field with ¢ elements. Let F,[z] denote the polynomials in the inde-
terminate x with coefficients in Fj,. In the following part of this paper we always assume that
q = p™ with p an odd prime except specific explanation. For A € F, let R = F,[z]/(z" — ),
where (2 — ) denotes the ideal generated by 2™ — A in Fy[z].

Each codeword ¢ = (cp, ¢1, ..., Cn—1) is customarily identified with its polynomial represen-
tation c(z) = co + 12 + -+ + 12" 1, and the code C' is in turn identified with the set of all
polynomial representations of its codewords. Then in the ring F,[z]/{z™ — A), zc(x) corresponds

to a A-constacyclic shift of ¢(z). The following facts are well known and straightforward.

Proposition 2.1 ([16]) A linear code C of length n is A-constacyclic over Fy if and only if C' is
an ideal of F,[x]/(z™ — A\). Moreover, F,[x]/{(z™ — A) is a principal ideal ring, whose ideals are

generated by monic factors of x™ — .

Proposition 2.2 ([16]) The dual of a A-constacyclic code is a A\~ !-constacyclic code.

In particular, the dual of a negacyclic code is also a nagacyclic code.

For any linear code C of length n over F,, the dual C* is defined as C*+ = {u € Fllu-v=
0,Vv € C}, where u - v denotes the standard inner product of u and v in F7'. The code is called
self-dual if C = C*.

- . B
For any polynomial f(xz) = > ,a;x"* of degree r (a, # 0) over Fy, let f(x) denote a
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polynomial given by

% =a"f(z7!) = zr:ar_isci.
i=0

Furthermore, if ag # 0, then let f*(z) = aalm, f*(z) is called the reciprocal polynomial of
f(x). Tt is clear that (f(x)g(z))* = f*(z)g*(x) for polynomials f(x),g(x) € F,[z]. In particular,
if a polynomial is equal to its reciprocal polynomial over F, then it is called self-reciprocal over
F,.

Let C be a g-ary negacyclic code of length n generated by g(z) which is monic. Then
g(x)|(z™ + 1). Let the annihilator of C', denoted by ann(C) be the set

ann(C) = {f(2) € Fyfa]/(a" +1) : f()g(x) = 0 mod (2 + 1)}.

Put h(z) = “gn(;)l. Clearly ann(C) is an ideal in F,[z] generated by h(z). h(x) is the check
polynomial of C'. The dimension of C' is deg(h(z)).

Suppose that h(z) = Zf:o b;x'. Notice that by = 1 and by # 0. Then h*(z) is a generator
polynomial of C*. Tt is known that the dual code C is generated by h*(x) (see [15]). Thus the

following proposition holds.

Proposition 2.3 A negacyclic code C of length n is self-dual if and only if g(x) = h*(z), where
g(x) is the generator polynomial of C, h(x) is the check polynomial of C+ and h*(x) is the
reciprocal polynomial of h(x).

Clearly, self-dual codes of odd length over F, do not exist. Suppose that C is a self-dual

negacyclic code of length n over F;. Then n must be even and deg(g(x)) = deg(h(x)) = 3.

Each negacyclic code over Fj is uniquely determined by its generator polynomial, a monic

divisor of 2™ + 1 over F,. Notice that ¢ = p” with p an odd prime. In order to describe the

)
" 4+ 1 over F,. Write n = n'p” with ged(n/,p) = 1, r is a nonnegative integer. Then n’ is even
and 2" + 1 = (" +1)?".

If 27 +1 = p(x)g(z), then 2™ +1 = (2™ 4 1)* = p*(2)¢*(x). Thus for any irreducible

polynomial dividing " +1 over Fy, its reciprocal polynomial also divides 2" +1 over Fy and

generator polynomials of [n ]q self-dual negacyclic codes, we need to know the factorization of

is also irreducible over Fj. Since ged(n/,p) = 1, the polynomial 2" + 1 can be factorized into

distinct irreducible polynomials as follows

2 1= fila) o fo@) ()b @) ()i (@),

where f;(z) (1 <14 < s) are monic irreducible self-reciprocal polynomials over F, while h;(z) and
its reciprocal polynomial h}(z) (1 < j <) are both monic irreducible polynomials over F,. We

say that h;(x) and h}(z) form a reciprocal polynomial pair. Therefore
= @) f ) @) B @ () B @) (2.1)

Note that s and ¢ both depend on n and q. We regard them as two functions of the pair
(n,q). As in [10], we give the following notation.
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Definition 2.4 Define s(n, q) to be the number of self-reciprocal polynomials in the factorization
of " +1 over F,, and t(n,q) be the number of reciprocal polynomial pairs in the factorization
of z™ +1 over F,.

We can describe the generator polynomials for the self-dual negacyclic codes as soon as we

know the factorization of ™ + 1 over Fj.

Theorem 2.5 Let 2™ + 1 be factorized as in (2.1). A negacyclic code C of length n is self-dual
over F, if and only if s(n,q) = 0 and its generator polynomial is of the form
ha (@) By ()P =0 - by ()% b ()P (2.2)

where t =t(n,q) and 0 < 8; < p" for each 1 <1i < t.

Proof Let C be a negacyclic code of length n over Fj, and g(x) be its generator polynomial.
We need to show that C' is self-dual if and only if g(x) is of the form as in (2.2).
Let s = s(n,q) and t = t(n,q). Since the generator polynomial g(z) of C is monic and

divides ™ + 1, we may assume that
g(x) = fu(@)™ - fo(@)* ha () By (2)" - he(2)? hi (),
where 0 < a; < p" for each 1 <4 <5, and 0 < 3;,v; < p” for each 1 < j <¢. Then the check
polynomial of C is
ha) = Al = L) B R T ) )
Hence
B (2) = Fu(@)” =0 o L@l T R @) O Ry @ b (@) (),
By Proposition 2.3, C' is self-dual if and only if g(z) = h*(z). Thus
a=p —q;; 1<1<s;
{ v =p" =B, 1<j<t
Since p is odd, so a; = p" — «; does not hold for any i, 1 < i < s. Thus C is self-dual if and

only if s = 0 and its generator polynomial g(z) is of the form as in (2.2). O

Corollary 2.6 Let 2™ + 1 be factorized over F, as in (2.1) with s = s(n,q) = 0. Then the

n
’ 2
We may give all the self-dual negacyclic codes of length n over Fj, following the factorization

of 2 + 1 over F,.

number of [n, %], self-dual negacyclic codes is exactly (p" + 1)1,

Example 2.7 Let ¢ =3, n =60 =n’ - 3 such that n’ = 20 = 22 - 5. We have
0 1=+ +2)@*+22+2)@ + 2+ + D@ + 22 F 22+ 1)
(x* + 2 + 2% + 1) (2* +22° + 2% + 1).
There are three reciprocal polynomial pairs:

(z? + 2 +2) and (22 + 22 + 2);
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Rep d If-dual negacycl d S field 7
(* + 2%+ x4+ 1) and (z* + 23 + 22 +1);

(z* + 2% 422 + 1) and (z* +22° + 22 +1).

Thus ¢(60,3) = 3 and there are 43 self-dual negacyclic codes of length 60 over F3. The generator

polynomials are
(22 +24+2) (@2 422+ 23 P (@t + 2?2 t o+ )Pt + 23 422 +1)37P
(z* + 2% 4 22 + )% (2* + 223 + 22 + 1),

where 0 < 3; <3,1<1¢<3.
Blackford [3] gave the necessary and sufficient conditions for the existence of self-dual ne-

gacyclic codes over Fy,.

Theorem 2.8 ([3]) Ifn = 2%b for some odd integer b, a > 1. Then self-dual negacyclic codes
over F, of length n exist if and only if ¢ # —1 (mod 2°T1). Thus let n be a positive integer and
factorize it as n = n'p” = 2%bp", where a > 1, b is an odd integer and ged(b,p) = 1. Since bp” is
odd, then self-dual negacyclic codes over F, of length n exist if and only if ¢ # —1 (mod 2°T1).

For convenience, we adopt a notation : 2¢ || m means 2¢|m but 2¢T! |/m, where e and m

are positive integers.

Example 2.9 (1) For ¢ = 3, 22 || 4. From Theorem 2.8 it follows that there exist self-dual
negacyclic codes over F3 of length n = n'p” = 293", where a > 1, b is an odd integer with
ged(b,3) = 1 if and only if a > 2.

(2) For ¢ =5, 2! || 6. From Theorem 2.8 it follows that there exist self-dual negacyclic
codes over Fj of length n = n/p” = 2%b5", where a > 1, b is an odd integer with ged(b,5) = 1 if
and only if a > 1.

(3) For ¢ =7, 2% | 8 From Theorem 2.8 it follows that there exist self-dual negacyclic
codes over Fy of length n = n/p" = 2%b7", where a > 1, b is an odd integer with ged(b,7) = 1 if
and only if a > 3.

(4) For ¢ =9, 2! || 10. From Theorem 2.8 it follows that there exist self-dual negacyclic
codes over Fy of length n = n/p” = 2%b3", where a > 1, b is an odd integer with ged(b,3) = 1 if
and only if @ > 1.

The following 4 tables list the numbers of self-dual negacyclic codes over F, of lengths n/
up to 448,144,576 and 224 for ¢ = 3,5,7,9, respectively. We use MAGMA software to perform
factorization. Notice that ¢(n,q) = t(n’, q) under the hypotheses.

=2 | 4|8 16|32 |64(20]40 |80 | 160 | 320 | 28 | 56 | 112 | 224 | 448
a 203|456 [2]3]4
b 111115555 |5 (7|77 |77
tn',q) |11l 1|1 ]1|3 |55 5 |53

Table 1 ¢ =3,n=n'3" =2%3",a>2,r>0, ged(2,b) = ged(b,3) = 1. The number of self-dual
negacyclic codes over F3 of length n is (3" + 1)’5(","1).
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n=2%/|2|4|8|16|6| 12|24 |48 |14 |28 |56 | 112 |18 | 36 | 72 | 144
a 11213] 4|1 4
b 11111 3

tn',g) (111|112

Table 2 ¢ =5,n=n'5"=2%5",a>1,r >0, gcd(2,b) = ged(b,5) = 1. The number of self-dual
negacyclic codes over Fy of length n is (5" + l)t(","”.

n' =29 | 8|16 | 32|64 |24 |48 |96 | 192 | 40 | 80 | 160 | 320 | 72 | 144 | 288 | 576
a 3/4 (563|456 3[4 5|6 (3| 4|56
b 1 5050990909

tn',q) |2 22|26 |6|6| 6 |6 |10 10| 1010] 10 | 10 | 10

Table 3 ¢ =7, n=n/7" =2%7",a>3,r >0, gcd(2,b) = ged(b,7) = 1. The number of self-dual
negacyclic codes over F7 of length n is (7" + 1)'5(","1).

=20 |2 4|8|16|32|10| 20|40 |80 | 160 | 14 | 28 | 56 | 112 | 224
a 1|23/ 4|5|1]2]3[4] 5|1
b 111|115 |5]|5]5]|5

tn',q) [1]2)22 |23 |3]10]10] 10

Table4d ¢=9,n=n'3" =2%3",a>1,r >0, ged(2,b) = ged(b,3) = 1. The number of self-dual
negacyclic codes over Fy of length n is (3" + 1)’5(","1).

3. Self-dual negacyclic codes of length 2¢p”

Let F, be the Galois field with ¢ elements, ¢ = p™, and p is an odd prime. Let n be a
positive integer such that n = n/p” = 2%" with a > 1.

For any s > 0, let Cys = {s,sq,5q>,...,5¢™ "'} denote the g-cyclotomic coset containing s
modulo 2% where m, is the least positive integer such that sg™s = s (mod 2%!). Let a be
a primitive 2¢*1-th root of unity in some extension field of F,. It is well known that [16]

My(z) = [] (@ —a)
i€Cy

is the minimal polynomial of a® over F|, and

27 1= [ M)

gives the factorization of 22" — 1 into irreducible factors over F,, where s runs over a complete
set of representatives from distinct g-cyclotomic cosets modulo 2%t1. We choose a, a primitive
20+1_th root of unity satisfying o> = —1. Such a choice of « is possible.

Since ¢ = p™ is odd, we can write ¢ = 1 + 2% or —1 + 2% for some integers ¢, d, d > 2 and

¢ odd, according as ¢ =1 (mod4) or ¢ = —1 (mod 4).
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In [14], the authors provided the following theorems.
Theorem 3.1 ([14]) Let a > 1, ¢ =1+ 2%, d > 2, c odd. Then

24-2_1 .
{ 122, " My (2)M_g:(2), ifa > d;

502{1 +1= ga—1_1
Iy  Msi(x)M_szi(x), ifa<d-—1.

Theorem 3.2 ([14]) Let a > 1, q= —1+ 2%, d > 2, c odd. Then

My (x)M3(x) -+ Mypa1_y)(x), ifa>d>3;
2 4+ 1= Mi(2)Ms(z) - Mypa1 4 (2), ifa<d—1,d>3;
Mi(x)M_4(z), ifa>2, d=2.

In the following we apply the above conclusions to the negacyclic codes of length 2%p™ over
F,.

Theorem 3.3 Suppose that ¢ = 1 + 2%, d > 2, ¢ odd. Then there exist self-dual negacyclic
codes of length 2% over F, if and only if a > 1. Suppose that ¢ = —1+ 2%c, d > 2, ¢ odd. Then
there exist self-dual negacyclic codes of length 2¢ over Fy if and only if a > d.

Proof If ¢q=1+2%,d > 2, codd, then ¢ +1 =2+ 2% = 2(1 +2971¢). Since 1 + 29" 1cis
odd, then 2 || (¢ +1). If ¢ = =1+ 2%¢, d > 2, ¢ odd, then ¢ + 1 = 2%¢. Since ¢ is odd, then
24 || (g +1). From Theorem 2.8 it follows the conclusion holds. OJ

Theorem 3.4 Letn = n/p” = 2%", wherea > 1,7 > 0. Let d be the integer such that 2% || (¢—1)
while ¢ = 1 (mod4) or 2¢ || (¢ + 1) while ¢ = —1 (mod 4). And let m = min{a — 1,d — 2} when
g =1 (mod4) or ¢ = —1 (mod4) and a > d. Then the number of self-dual negacyclic codes of
length n over F, is (p" +1)%".

Proof Suppose that ¢ = 14+2% and a > 1 or ¢ = —1+42% and a > d such that d > 2 and ¢ odd.
By Theorem 2.8, there exist self-dual negacyclic codes of length 2 over F;. Thus s(2%,¢) = 0 and
the irreducible polynomial factorization of z2" + 1 only contains distinct reciprocal polynomial

pairs. From Theorems 3.1 and 3.2 it follows that

t(2a ) 7 2min{a—17d—2}7 if q= 1+ 2dC,d Z 270 Odd,a 2 1,
7q 24-2, if g=—1+2%,d>2,codd,a> d.

Notice that ¢(n,q) = t(2%,¢q). From Corollary 2.6 and Theorem 3.3 it follows that the

number of self-dual negacyclic codes of length n is

(p" + 1)2"“11{&71’(172}, if g=1+2%,d>2,codd,a>1;
(" + 1)“”"” =< (p"+ 1)2d_2, ifg=—-142%,d>2,codd,a>d;
0, otherwise.

When @ > d, min{a — 1,d — 2} = d — 2. This completes the proof. [J

Example 3.5 Suppose that ¢ = 9 = 32. Then ¢ = 1 + 23 and we may note d = 3. Let
n =n'3" = 293", where a > 1. Then the number of self-dual negacyclic codes of length n over
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Fg is
(3" +1)% ifa>2

(37“ + l)t(n,Q) —
3 +1, ifa=1.

In particular, for n = 24 = 23 - 3 we have a = 3 and » = 1. Thus there are 4% = 16 self-dual
negacyclic codes of length 24 over Fy.

Furthermore, we may give the generator polynomials of the self-dual negacyclic codes of
length n = 2", a > 1.

Theorem 3.6 Let g = 1+2%,d > 2, codd. Letn =2%",a > 1,7 > 0 and m = min{a—1,d—2}.
Then the generator polynomials of the (p" + 1)2m self-dual negacyclic codes of length n over F,

are precisely
2m 1

H Mﬁl Mp */57( )

where 0 < 3, < p".
Proof Let S = {#+1,43,+3%, ..., 432"~} From Theorem 3.1 we have

2 +1= HMS(x)

ses
For any s € S,
M@ = [[ @), Mo@)= [[ @),
1€Cs 1€Cs
where « is the 2°+!-th primitive root of unity over F, satisfying a>" = —1. We have
@) = [ [[w-a)] = [[e-a) = [[(-o+a™) =M )
i€Cy 1€Cy i€Cy

The last equation holds because My (z) and M (x) are all monic.

Thus
om_1

2 1= H M () M ().

By Theorem 2.5, the conclusion holds. J

In the proof of Theorem 3.8, the following lemma plays an important role.

Lemma 3.7 ([14]) Let ¢ = —1+ 2%, d > 2, ¢ odd. For any a > d, there exists some integer 7,
0 <j<2mtl=d 1 guch that

2(172

32" "¢ = —1 (mod 2*T1).

Theorem 3.8 Let ¢ = —1 + 2%, d > 2, c odd. Let n = 2%", a > d, v > 0 and m =
min{a — 1,d — 2}. Then the generator polynomials of the (p" 4+ 1)?" self-dual negacyclic codes
of length n over F, are precisely

2m—1

[T M5:@)M? 5 ()

=0
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where 0 < 3; < p".
Proof (1) Suppose that d = 2, @ > 2. Then m = min{a —1,d — 2} = d — 2 = 0. We have
22" +1 = M;(x)M_;(z). As in Theorem 3.6 we have M_,(x) = M;(z). Thus

¥ +1 = M, (z)M; ().
By Theorem 2.5, the conclusion holds.

(2) Suppose that a > d > 3. Then m = min{a — 1,d — 2} = d — 2. By Theorem 3.2,
2? + 1= M (2)Ms(x) - Mypa o) ().

For any i € {0,1,2,...,2972 — 1},

My(@) = [] @02,

s€Clyi
where « is the 2%+!-th primitive root of unity over F, satisfying a?" = —1. As in Theorem 3.6
we have My (v) = M_3:(x).
By Lemma 3.7, there exists some integer j, 0 < j < 2"*1~¢ _ 1 such that

32di2qj = -1 (mod2**t).
Thus 372 "¢ = -3¢ (mod 2°+1). So
M_3i (.13) = M3i+2d—2 (J?)

For any i € {0,1,2,...,2972 — 1}. Then

2¢4-2_1 2421

I Ms(@)Myoao(@) = J[ Msi(x)M_5(),
=0

i=0
where M_s:i(x) = M, (x). By Theorem 2.5, the conclusion holds. [J

4. Construction of self-dual negacyclic codes of length 2¢0p”

Let Fj, be the Galois field with ¢ elements, ¢ = p™, and p is an odd prime. Let n be a
positive integer such that n = n/p” = 2%bp", where a > 1, b is an odd integer and ged(b,p) = 1.
In this section we always suppose that ¢ Z —1 (mod 2¢+1).

By Theorems 3.1 and 3.2, we have the following facts.

Theorem 4.1 Leta>1,q¢=1+2%, d> 2, ¢ odd. Then
2T My (22 M_yi (), ifa > d;
22041 = Hi:91 3i(2”)M_3i(2), ifa>d;
[T, " Myi(a?)M_gi(2), ifa<d—1.
Theorem 4.2 Let a > 1, ¢ = —14 2%, d > 2, ¢ odd. Then

My (x")M3(2b) - - Mya oy (2?), ifa>d > 3;
22 1= My (ab) Ms(a?) - Mooy (2%), ifa<d—1, d>3;
My (2% M _ 1(1'b) ifa>2, d=2.
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Suppose that f(x) € F,[x] is a polynomial whose leading coefficient and constant term are

non zero elements in F,. It is easy to verify by definition that [f(z®)]* = f*(2*). From Theorems
3.6 and 3.8 it follows the following facts.

Theorem 4.3 Let g =1+ 2%, d > 2, c odd. Let n = 2%p", a > 1, gcd(2,b) = ged(b,p) = 1,
r >0 and m = min{a — 1,d — 2}. Then the generator polynomials of self-dual negacyclic codes

of length n over Fy are given by

om_1

IT Me(a)m? P (b
=0

where 0 < 3; < p".

Theorem 4.4 Let g = —1+ 2%, d > 2, c odd. Let n =2%p", a > d, gcd(2,b) = ged(b,p) = 1,

r > 0. Then the generator polynomials of self-dual negacyclic codes of length n over F are given

by

24-2_1
H Mgﬁ; (mb)Mfg?Bi (CL‘b)
=0

where 0 < 38; < p".
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