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1. Introduction

Throughout this paper, we assume thatH is a real Hilbert space with inner product ⟨·, ·⟩ and
the induced norm ∥ · ∥, respectively. Let Ω be a nonempty closed convex subset of H, T : Ω → Ω

a self-mapping on Ω with a fixed point set denoted by Fix(T ) = {x ∈ Ω : Tx = x} ̸= ∅, and
C : Ω → Ω a contraction with modulus ρ ∈ [0, 1), i.e.,

∥Cx− Cy∥ ≤ ρ∥x− y∥, ∀x, y ∈ Ω. (1.1)

In this paper, we review the computation of fixed points of such general operators T , by means

of the so called viscosity approximation method, which formally consists of the sequence xn ∈ Ω

given by the iteration,

xn+1 = αnCxn + (1− αn)Txn, (1.2)

where (αn) ⊂ (0, 1) is a slowly vanishing sequence, i.e., limn→∞ αn = 0 and
∑

n αn = ∞.

Recall for instance that one of the main convergence results related to (1.2) goes back to

Moudafi [1], regarding the case when T belongs to the class of nonexpansive mappings (with

fixed points), i.e., ∥Tx− Ty∥ ≤ ∥x− y∥, for all x, y ∈ Ω.

It was proved in [1] (also see Xu [2]) that (1.2), under additional conditions on the slowly

vanishing parameters (αn), generates a sequence (xn) which converges strongly to the unique

solution of the variational inequality problem VI(I-C, Fix(T )): find x∗ in Fix(T ) such that

∀ν ∈ Fix(T ),

⟨(I − C)(x∗), ν − x∗⟩ ≥ 0, (1.3)
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or equivalently

x∗ = (PFix(T ) ◦ C)(x∗), (1.4)

where PFix(T ) denotes the metric projection from H onto Fix(T ) (see [3]) for more details on

the metric projection. Note that, as T is nonexpansive, Fix(T ) is well-known to be a closed and

convex subset of H, hence PFix(T ) is well-defined. Let us mention that the method (1.2) was

first considered with regard to the special case when C = u (u being any given element in C), in

1967 by Halpern [4] (for u = 0) and in 1977 by Lions [5] (also see [6]).

In 2009, Paul-Emile Maingé had showed how to ensure the strong convergence of the method

(1.2) when involving mapping T belongs to the more general class of (possibly discontinuous)

quasi-nonexpansive mappings, i.e., ∀(x, q) ∈ Ω × Fix(T ), ∥Tx − q∥ ≤ ∥x − q∥, which are op-

erators commonly encountered in the literature, and proposed a new analysis of the viscosity

approximation method, where attention will be focused on the following variant of algorithm:

xn+1 = αnCxn + (1− αn)Tωxn, (1.5)

where (αn) is a slowly vanishing sequence. ω ∈ (0, 1], and Tω := (1 − ω)I + ωT (I being the

identity mapping on Ω), with two main conditions on T :

(i) T is a quasi-nonexpansive mapping, i.e., ∥Tx− Tq∥ ≤ ∥x− q∥, ∀(x, q) ∈ Ω× Fix(T );

(ii) I − T is demiclosed at zero on Ω, that is

{zk} ⊂ Ω, zk ⇀ z weakly, (I − T )(zk) → 0 strongly ⇒ z ∈ Fix(T ). (1.6)

Paul-Emile Maingé established the strong convergence of the sequence given by (1.5) to the u-

nique solution in the above setting, no additional conditions are made on the operator T . To be

precise he proved the following convergence theorem:

Theorem 1.1 Let {xn} be the sequence given by (1.5) with T quasi-nonexpansive and demi-

closed at zero on Ω, ω ∈ (0, 1), and {αn} ⊂ (0, 1) such that

(C1) lim
n→∞

αn = 0; (C2)
∑
n

αn = ∞.

Then {xn} converges strongly to the unique element x∗ in Fix(T ) verifying x∗ = (PFix(T ) ◦C)x∗,

which equivalently solves the following variational inequality problem:

x∗ ∈ Fix(T ) (∀ν ∈ Fix(T )), ⟨(I − C)x∗, ν − x∗⟩ ≥ 0. (1.7)

At this point, we put forth the following two questions:

Question 1.2 If each quasi-nonexpansive mapping Ti is demiclosed at zero on Ω, is the convex

combination of finitely quasi-nonexpansive mappings demiclosed at zero?

Question 1.3 Can above Theorem 1.1 be extended to a finite family of quasi-nonexpansive

mappings in a Hilbert space?

Our purpose in this paper is to present two parallel algorithms and establish the strong

convergence of the proposed methods. The results presented in this paper improve and generalize

some known results by other authors recently.
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2. Preliminaries

In order to define our motivations, we recall some definitions of classes of operators often

used in fixed point theory. Let T : Ω :→ H be a mapping. Then

(i) T belongs to the class of firmly nonexpansive mappings if

∀x, y ∈ Ω, ∥Tx− Ty∥2 ≤ ∥x− y∥2 − ∥(x− y)− (Tx− Ty)∥2. (2.1)

(ii) T belongs to the class of firmly quasi-nonexpansive mappings if Fix(T ) ̸= ∅, such that

∀(x, q) ∈ Ω × Fix(T ), ∥Tx − q∥2 ≤ ∥x − q∥2 − ∥x − Tx∥2 . (2.2)

(iii) T is said to be averaged if there exist a real number λ ∈ (0, 1) and a nonexpansive

mapping S such that

T = (1− λ)I + λS. (2.3)

(iv) T is said to be quasi-averaged if Fix(T ) ̸= ∅ and there exist a real number λ ∈ (0, 1)

and a quasi-nonexpansive mapping S such that

T = (1− λ)I + λS. (2.4)

(v) T : Ω → Ω is called strictly pseudocontractive on Ω if there exists a constant ν ∈ [0, 1)

such that

∀(x, y) ∈ Ω × Ω , ∥Tx − Ty∥2 ≤ ∥x − y∥2 + ν∥x − y − (Tx − Ty)∥2 . (2.5)

(vi) T : Ω → Ω is called demicontractive on Ω if Fix(T ) ̸= ∅ and there exists a constant

β < 1, such that

∀(x, q) ∈ Ω× Fix(T ), ∥Tx− q∥2 ≤ ∥x− q∥2 + β∥x− Tx∥2. (2.6)

As usual, a mapping satisfying (2.3) is called λ-averaged and a mapping satisfying (2.6)

will be referred to as β-demicontractive. It is well known that a firmly nonexpansive mapping is
1
2 -averaged. It is worth noting that the class of demicontractive maps contains important classes

of operators such as firmly-quasinonexpansive maps for β = −1, quasi-nonexpansive for β = 0

and strictly pseudocontractive maps for β ∈ (0, 1).

Remark 2.1 Let T be a β-demicontractive mapping on Ω with Fix(T ) ̸= ∅ and set Tω :=

(1− ω)I + ωT for ω ∈ (0,∞):

(i) T β-demicontractive is equivalent to

⟨x− Tx, x− q⟩ ≥ (
1

2
)(1− β)∥x− Tx∥2, ∀(x, q) ∈ Ω× Fix(T );

(ii) Fix(T ) = Fix(Tω) if ω ̸= 0;

(iii) Tω is quasi-nonexpansive for ω ∈ [0, 1− β] and satisfies

∥Tωx− q∥2 ≤ ∥x− q∥2 − ω(1− β − ω)∥Tx− x∥2, ∀(x, q) ∈ Ω× Fix(T );

(iv) Fix(T ) is a closed convex subset of H.
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Remark 2.2 (As shown by Remark 2.1) When β = 0, we can immediately deduce the following

conclusions:

(i) Fix(T ) = Fix(Tω);

(ii) Tω is quasi-averaged, if ω ∈ (0, 1);

(iii) ∥Tωx− q∥2 ≤ ∥x− q∥2 − ω(1− ω)∥Tx− x∥2, ∀(x, q) ∈ Ω× Fix(T );

(iv) ⟨x− Tωx, x− q⟩ ≥ 1
2ω∥x− Tx∥2, ∀(x, q) ∈ Ω× Fix(T ).

Lemma 2.3 For all x, y ∈ H and λ ∈ [0, 1],

∥λx+ (1− λ)y∥2 = λ∥x∥2 + (1− λ)∥y∥2 − λ(1− λ)∥x− y∥2, (2.7)

which can be extended to the more general situation: For all x1, x2, . . . , xn ∈ H, λi ∈ [0, 1], and∑n
i=1 λi = 1, we have

∥λ1x1+λ2x2+· · ·+λnxn∥2 = λ1∥x1∥2+λ2∥x2∥2+· · ·+λn∥xn∥2−
∑

1≤i<j≤n

λiλj∥xi−xj∥2. (2.8)

Now we are in a proposition to prove the main results of this paper.

3. Main results

Theorem 3.1 Let Ti (i = 1, 2, . . . , r) be r quasi-nonexpansive mappings on Ω such that F =∩r
i=1 Fix(Ti) ̸= ∅ and I−Ti are demiclosed at zero. Put T =

∑r
i=1 λiTi, where

∑r
i=1 λi = 1. Let

(αn) ⊂ (0, 1) be a real sequence of numbers such that limn→∞ αn = 0 and
∑

n αn = ∞. Define

a sequence {xn} in Ω by the following algorithm:

x1 ∈ Ω, xn+1 = αnCxn + (1− αn)Tωxn, ∀n ≥ 1,

where ω ∈ (0, 1). Then (xn) converges strongly to the unique element x∗ in F verifying x∗ =

PF ◦ Cx∗, which equivalently solves the following variational inequality problem:

x∗ ∈ F, ∀ν ∈ F, ⟨(I − C)x∗, ν − x∗⟩ ≥ 0. (3.1)

Proof We split the proof into four steps.

Step 1. Show that F = Fix(T ) =
∩r

i=1 Fix(Ti).

First, we show that
∩r

i=1 Fix(Ti) ⊆ Fix(T ). For ∀p ∈
∩r

i=1 Fix(Ti), we have Tip = p (i =

1, 2, . . . , r) and Tp =
∑r

i=1 λiTip =
∑r

i=1 λip = p, hence
∩r

i=1 Fix(Ti) ⊆ Fix(T ).

Next, we show that Fix(T ) ⊆
∩r

i=1 Fix(Ti). For ∀x ∈ Fix(T ) and p ∈
∩r

i=1 Fix(Ti), we have

∥x− p∥ = ∥Tx− p∥ = ∥
r∑

i=1

λiTix− p∥.

Note that Ti (i = 1, 2, . . . , r) are quasi-nonexpansive, it follows immediately that

∥x− p∥ = ∥
r∑

i=1

λi(Tix− p)∥ ≤
r∑

i=1

λi∥Tix− p∥ ≤
r∑

i=1

λi∥x− p∥ = ∥x− p∥.

By using this inequality, we have

∥
r∑

i=1

λi(Tix− p)∥ =
r∑

i=1

λi∥Tix− p∥ = ∥x− p∥.
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Since H is strictly convex, there must be Tix = x (i = 1, 2, . . . , r), which means that

x ∈
r∩

i=1

Fix(Ti), i = 1, 2, . . . , r

so Fix(T ) ⊆
∩r

i=1 Fix(Ti), and the desired result follows.

Step 2. Show that T =
∑r

i=1 λiTi is a quasi-nonexpansive mapping. Let p ∈ Fix(T ). Then

p ∈
∩r

i=1 Fix(Ti) ̸= ∅ by Step 1. Noting that ∀x ∈ Ω,
∑r

i=1 λip = p for ∀p ∈ Ω. We have

∥Tx− p∥ = ∥
r∑

i=1

λiTix−
r∑

i=1

λip∥ = ∥
r∑

i=1

λi(Tix− p)∥

≤
r∑

i=1

λi∥Tix− p∥ ≤
r∑

i=1

λi∥x− p∥ = ∥x− p∥,

that is the desired result.

Step 3. Show that if Ti (i = 1, 2, . . . , r) are demiclosed at zero, then T =
∑r

i=1 λiTi with∑r
i=1 λi = 1 is also demiclosed at zero. We first show if ∥xn − Txn∥ → 0, then ∥xn − Tixn∥ →

0 (i = 1, 2, . . . , r).

From p ∈
∩r

i=1 F (Ti), by using the equality (2.8), and noting that Ti (i = 1, 2, . . . , r) are

quasi-nonexpansive mappings, we have

∥Txn − p∥2 = ∥λ1(T1xn − p) + λ2(T2xn − p) + · · ·+ λr(Trxn − p)∥2

=
r∑

i=1

λi∥Tixn − p∥2 −
∑

1≤i<j≤r

λiλj∥ui − vj∥2

≤ ∥xn − p∥2 −
∑

1≤i<j≤r

λiλj∥ui − vj∥2, (3.2)

where ui = Tixn − p, vj = Tjxn − p (i, j = 1, 2, . . . , r), it follows from (3.2) that∑
1≤i<j≤r

λiλj∥ui − vj∥2 ≤ ∥xn − p∥2 − ∥Txn − p∥2

≤ 2∥xn − p∥∥xn − Txn∥ −→ 0.

Noting that λiλj > 0, we have

∥ui − vj∥ = ∥Tixn − Tjxn∥ → 0. (3.3)

On the other hand, we have

Txn − T1xn = (λ1T1 + λ2T2 + · · ·+ λrTr)xn − T1xn

= −(λ2 + λ3 + · · ·+ λr)T1xn + λ2T2xn + · · ·+ λrTrxn

= −λ2(T1xn − T2xn)− λ3(T1xn − T3xn)− · · · − λr(T1xn − Trxn).

Consequently, we have

∥Txn − T1xn∥ ≤ λ2∥T1xn − T2xn∥+ λ3∥T1xn − T3xn∥+ · · ·+ λr∥T1xn − Trxn∥ → 0. (3.4)

In a similar way, we can obtain

∥Txn − T2xn∥, ∥Txn − T3xn∥, . . . , ∥Txn − Trxn∥ → 0. (3.5)
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Since xn − T1xn = xn − Txn + Txn + T1xn, we have

∥xn − T1xn∥ ≤ ∥xn − Txn∥+ ∥Txn − T1xn∥ → 0. (3.6)

Similarly, we have

∥xn − T2xn∥, ∥xn − T3xn∥, . . . , ∥xn − Trxn∥ → 0. (3.7)

Noting that Ti (i = 1, 2, . . . , r) are demiclosed at zero, and assume that xn ⇀ x, we obtain that

x = T1x, x = T2x, . . . , x = Trx, (3.8)

which implies that x ∈
∩r

i=1 Fix(Ti), then we entail the desired result.

Step 4. Show that xn → x, as n → ∞. Indeed, by using Theorem 1.1, we conclude that

{xn} converges strongly to the unique element x∗ in Fix(T ) verifying x∗ = PFix(T ) ◦Cx∗, which

equivalently solves the following variational inequality problem:

x∗ ∈ Fix(T ), ∀ν ∈ Fix(T )), ⟨(I − C)x∗, ν − x∗⟩ ≥ 0.

This completes the proof. �
In order to establish another strong convergence theorem, we first prove the following result.

Lemma 3.2 Let {Ti}ri=1 : Ω → Ω be r quasi-nonexpansive mappings such that F =
∩r

i=1 Fix(Ti) ̸=
∅, let {λi}ri=1 be a real sequence in (0, 1). Define r new mappings as follows:

U1 = λ1T1 + (1− λ1)I,

U2 = λ2T2U1 + (1− λ2)I,

U3 = λ3T3U2 + (1− λ3)I,

· · ·

Ur = λrTrUr−1 + (1− λr)I.

Then

(i) F =
∩r

i=1 Fix(Ui);

(ii) {Ui}ri=1 is a finite family of quasi-averaged mappings.

(iii) If Ti (i = 1, 2, . . . , r) are demiclosed at zero, then so are Ui (i = 1, 2, . . . , r).

(iv) F = Fix(Ur).

Proof (i) It is obvious that F ⊂
∩r

i=1 Fix(Ui). We show the converse inclusion relation.

Assume that x = Uix (i = 1, 2, . . . , r); then we have x = Tix (i = 1, 2, . . . , r), and therefore

x ∈
∩r

i=1 Fix(Ui) = F .

(ii) Since TiUi−1 is quasi-nonexpansive, and λi ∈ (0, 1), we know that Ui is quasi-averaged.

(iii) Next we shall prove that if xn − U1xn → 0 and xn ⇀ x, then x = U1x.

Indeed, from xn−U1xn = λ1(I−T1)xn → 0, and λ1 ∈ (0, 1), we have xn−T1xn → 0. Since

T1 is demi-closed at zero, we assert that x = T1x. Assume that xn − U2xn → 0 and xn ⇀ x,

then ∀p ∈ F ,

∥U2xn − p∥2 =∥λ2T2U1xn + (1− λ2)xn − p∥2
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=λ2∥T2U1xn − p∥2 + (1− λ2)∥xn − p∥2 − λ2(1− λ2)∥T2U1xn − xn∥2

≤λ2∥U1xn − p∥2 + (1− λ2)∥xn − p∥2 − λ2(1− λ2)∥T2U1xn − xn∥2

=λ2[λ1∥T1xn − p∥2 + (1− λ1)(xn − p)2 − λ1(1− λ1)∥xn − T1xn∥2]+

(1− λ2)∥xn − p∥2 − λ2(1− λ2)∥T2U1xn − xn∥2

≤λ2∥xn − p∥2 − λ2λ1(1− λ1)∥xn − T1xn∥2 + (1− λ2)∥xn − p∥2−

λ2(1− λ2)∥T2U1xn − xn∥2

=∥xn − p∥2 − λ2λ1(1− λ1)∥xn − T1xn∥2 − λ2(1− λ2)∥T2U1xn − xn∥2,

which implies that

λ2λ1(1− λ1)∥xn − T1xn∥2 ≤ ∥xn − p∥2 − ∥U2xn − p∥2 ≤ M1∥xn − U2xn∥ → 0.

Then we have that xn − T1xn → 0 and xn − U1xn → 0, which implies that x = U1x. We also

get that

λ2(1− λ2)∥T2U1xn − xn∥2 ≤ ∥xn − P∥2 − ∥U2xn − p∥2 ≤ M2∥xn − U2xn∥ → 0.

Then we deduce that T2U1xn − xn → 0 and T2U1xn − U1xn → 0.

Since U1xn ⇀ x and T2 is demiclosed at zero, T2x = x, also U2x = x. Assume Ur−1 is

demiclosed at zero for some r ≥ 1, we want to show Ur is demiclosed at zero. To this end, assume

that xn − Urxn → 0 and xn ⇀ x, we plan to show x = Urx. Indeed, ∀p ∈ F and from (2.2) we

get that

∥Urxn − p∥2 =λr∥TrUr−1xn − p∥2 + (1− λr)∥xn − p∥2 − λr(1− λr)∥TrUr−1xn − xn∥2

≤λr∥Ur−1xn − p∥2 + (1− λr)∥xn − p∥2 − λr(1− λr)∥TrUr−1xn − xn∥2

≤∥xn − p∥2 − λrλr−1(1− λr−1)∥xn − Tr−1Ur−2xn∥2−

λr(1− λr)∥TrUr−1xn − xn∥2.

Then we could conclude that TrUr−1xn−xn → 0 and Tr−1Ur−2xn−xn → 0, which implies that

Ur−1xn − xn → 0 and TrUr−1xn − Ur−1xn → 0.

Since Ur−1 is demiclosed at zero, then Ur−1xn ⇀ x, for the results we have got TrUr−1xn−
Ur−1xn → 0, we see that x = Urx immediately, as claimed.

(iv) The inclusion relation that F ⊂ Fix(Ur) is obvious, we only show the reverse inclusion

relation. Assume that x = Urx; then ∀p ∈ F , by the definition of Ur, we get that

∥x− p∥2 =∥Urx− p∥2

=λr∥TrUr−1x− p∥2 + (1− λr)∥x− p∥2 − λr(1− λr)∥TrUr−1x− x∥2

≤λr∥Ur−1x− p∥2 + (1− λr)∥x− p∥2 − λr(1− λr)∥TrUr−1x− x∥2

≤∥x− p∥2 − λrλr−1(1− λr−1)∥x− Tr−1Ur−2x∥2−

λr(1− λr)∥TrUr−1x− x∥2,

which implies that x = TrUr−1x and x = Tr−1Ur−2x. It follows the definition of Ur−1 that

x = Ur−1x, which turns out that x = Trx. In a similar way, we can show that x = Tr−1x =
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Tr−2x = · · · = T1x, thus, we have x ∈ F . This completes the proof. �

Theorem 3.3 Let Ti (i = 1, 2, . . . , r) be r quasi-nonexpansive mappings Ω such that I −Ti are

demiclosed at zero and F =
∩r

i=1 Fix(Ti) ̸= ∅. Let Ui (i = 1, 2, . . . , r) be defined as in Lemma

3.1. Let (αn) ⊂ (0, 1) be a real sequence of numbers such that limn→∞ αn = 0 and
∑

n αn = ∞.

Let {xn} be generated by the following algorithm:

x1 ∈ Ω, xn+1 = αnCxn + (1− αn)Urxn, ∀n ≥ 1.

Then (xn) converges strongly to the unique element x∗ in F verifying x∗ = (PF ◦ C)x∗, which

equivalently solves the following variational inequality problem:

x∗ ∈ F, ∀ν ∈ F, ⟨(I − C)x∗, ν − x∗⟩ ≥ 0.

Proof By Lemma 3.2, we know that F = Fix(Ur), Ur is averaged on Ω and I−Ur is demiclosed at

zero. Now the conclusion of Theorem 3.3 follows from Theorem 1.1 immediately. This completes

the proof. �.
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