Journal of Mathematical Research with Applications May, 2016, Vol. 36, No. 3, pp. 359–362 DOI:10.3770/j.issn:2095-2651.2016.03.011 Http://jmre.dlut.edu.cn

A Note on Invertible Weighted Composition Operators on the Fock Space of \mathbb{C}^N

Liankuo ZHAO

School of Mathematics and Computer Science, Shanxi Normal University, Shanxi 041004, P. R. China

Abstract This paper shows that a bounded invertible weighted composition operator on the Fock space of \mathbb{C}^N is nonzero multiples of a unitary operator, which is an addition to the recent result on invertible weighted composition operator on the Fock space of \mathbb{C}^N and an extension to the corresponding result on the Fock space of \mathbb{C} .

Keywords Fock space; weighted composition operator; invertible; unitary

MR(2010) Subject Classification 47B35

1. Introduction

In [1] the author gave a characterization for bounded invertible weighted composition operators on the Fock space of \mathbb{C}^N . By analyzing the conditions satisfied by invertible weighted composition operators carefully, this paper shows that a bounded invertible weighted composition operator is nonzero multiples of a unitary operator on the Fock space of \mathbb{C}^N , which extends a corresponding result on the Fock space of \mathbb{C} (see [2]) also.

Firstly, we recall some basic knowledge on Fock space.

The Fock space \mathcal{F}^2 is the space of analytic functions f on \mathbb{C}^N for which

$$||f||^2 = \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} |f(z)|^2 e^{-\frac{|z|^2}{2}} dm_{2N}(z),$$

where dm_{2N} is the usual Lebesgue measure on \mathbb{C}^N and |z| denotes the norm for $z \in \mathbb{C}^N$. $\frac{1}{(2\pi)^N}e^{-\frac{|z|^2}{2}}dm_{2N}(z)$ is called Gaussian measure on \mathbb{C}^N also.

It is well-known that \mathcal{F}^2 is a reproducing kernel Hilbert space with reproducing kernel functions

$$K_w(z) = \exp(\frac{\langle z, w \rangle}{2}), \quad w, z \in \mathbb{C}^N$$

and inner product

$$\langle f, g \rangle = \frac{1}{(2\pi)^N} \int_{\mathbb{C}^N} f(z) \overline{g(z)} e^{-\frac{|z|^2}{2}} dm_{2N}(z), \quad f, g \in \mathcal{F}^2.$$

Note that we use $\langle z, w \rangle$ to denote the inner product for $z, w \in \mathbb{C}^N$ also. $|z|^2 = \langle z, z \rangle$.

Let ψ be an analytic function and φ be an analytic self-mapping on \mathbb{C}^N . Define the weighted composition operator $C_{\psi,\varphi}$ on \mathcal{F}^2 as $C_{\psi,\varphi}f = \psi(f \circ \varphi), f \in \mathcal{F}^2$.

Received June 21, 2015; Accepted September 7, 2015

Supported by the National Natural Science Foundation of China (Grant Nos. 11201274; 11471189).

E-mail address: liankuozhao@sina.com

360 Liankuo ZHAO

The main result reads as follows.

Theorem 1.1 Let ψ be an analytic function and φ be an analytic self-mapping on \mathbb{C}^N . Then $C_{\psi,\varphi}$ is a bounded invertible operator on \mathcal{F}^2 if and only if $C_{\psi,\varphi}$ is nonzero multiples of a unitary weighted composition operator on \mathcal{F}^2 .

A complete characterization of unitary weighted composition operators and their spectrum on the Fock space of \mathbb{C}^N has been obtained in [3]. In [4,5], the bounded, compact and Hilbert-Schmidt weighted composition operators on the Fock space of \mathbb{C} were characterized respectively, the corresponding results can be extended to the Fock space of \mathbb{C}^N word by word. In [6], relative simple conditions were given for bounded and compact weighted composition operators on the Fock space of \mathbb{C} , as applications, normal and isometric weighted composition operators on the Fock space of \mathbb{C} are characterized completely. The characterization of self-adjoint and Fredholm weighted composition operators on the Fock space of \mathbb{C} appeared in [7] and [2], respectively. The book [8] is a good reference for the Fock space of \mathbb{C} and operators. We refer to [9,10] for other studies on weighted composition operators between different Fock spaces.

2. Proof of the main result

For an operator A on \mathbb{C}^N , denote by |A| the norm of A. The proof of our main result is based on the following results.

Lemma 2.1 ([1, Theorem 1]) Let ψ be an analytic function and φ be an analytic self-mapping on \mathbb{C}^N . Then $C_{\psi,\varphi}$ is a bounded invertible operator on \mathcal{F}^2 if and only if

$$\varphi(z) = Az + b$$

for some invertible operator A on \mathbb{C}^N with |A|=1, $b\in\mathbb{C}^N$, and there exist positive constants M,L such that

$$L \le |\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2}) \le M, \ z \in \mathbb{C}^N.$$

Let k_w be the normalization of K_w , i.e.,

$$k_w(z) = \exp(\frac{\langle z, w \rangle}{2} - \frac{|w|^2}{4}), \quad z, w \in \mathbb{C}^N.$$

Lemma 2.2 ([3, Theorem 1.1]) Let ψ be an analytic function and φ be an analytic self-mapping on \mathbb{C}^N . Then $C_{\psi,\varphi}$ is a unitary operator on \mathcal{F}^2 if and only if there exists a unitary operator A on \mathbb{C}^N , $b \in \mathbb{C}^N$ and a constant α with $|\alpha| = 1$ such that

$$\varphi(z) = Az + b, \quad \psi(z) = \alpha k_{-A*b}(z), \ z \in \mathbb{C}^N.$$

In the following, we give a deep analysis of the conditions presented in Lemma 2.1.

Lemma 2.3 Let ψ be an analytic function and A be an operator on \mathbb{C}^N with $|A| \leq 1$, $b \in \mathbb{C}^N$. Let $\varphi(z) = Az + b$, $z \in \mathbb{C}^N$. If there exists a positive constant L such that

$$L \le |\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2}), \quad z \in \mathbb{C}^N,$$
 (2.1)

then there exists a nonzero constant s such that

$$\psi(z) = sk_{-A*b}(z), \quad z \in \mathbb{C}^N$$

and A is a unitary operator on \mathbb{C}^N .

Proof By (2.1), ψ has no zeros in \mathbb{C}^N . Since $|A| \leq 1$, we have

$$|\varphi(z)|^2 - |z|^2 = |Az + b|^2 - |z|^2 = |Az|^2 - |z|^2 + \langle Az, b \rangle + \langle b, Az \rangle + |b|^2 \le \langle Az, b \rangle + \langle b, Az \rangle + |b|^2.$$

It follows from (2.1) that

$$L \leq |\psi(z)|^2 \exp(\frac{\langle Az,b\rangle + \langle b,Az\rangle + |b|^2}{2}) = \left|\psi(z)\exp(\frac{\langle Az,b\rangle}{2} + \frac{|b|^2}{4})\right|^2,$$

i.e.,

$$\left|\frac{1}{\psi(z)\exp(\frac{\langle Az,\ b\rangle}{2} + \frac{|b|^2}{4})}\right|^2 \le \frac{1}{L}.$$

By Liouville Theorem, there exists a constant t such that $\frac{1}{\psi(z)\exp(\frac{\langle Az,\ b\rangle}{2}+\frac{|b|^2}{4})}=t$. Obviously $t\neq 0$. Let $s=\frac{1}{t}\exp(\frac{|A^*b|^2-|b|^2}{4})$. Then

$$\psi(z) = sk_{-A*b}(z), \ z \in \mathbb{C}^N.$$

Substituting the equation above into (2.1), we obtain that there exists a positive constant l such that

$$\exp(\frac{|Az|^2 - |z|^2}{2}) \ge l, \quad z \in \mathbb{C}^N.$$

i.e., $|Az|^2 - |z|^2 \ge \log l^2$, $z \in \mathbb{C}^N$. Since $|A| \le 1$, $0 < l \le 1$. Let $\delta = -\log l^2$. Then $\delta \ge 0$ and

$$|z|^2 - \delta \le |Az|^2, \quad z \in \mathbb{C}^N.$$

For $t \in \mathbb{R}^+$, we have $|tz|^2 - \delta \le |Atz|^2$, $z \in \mathbb{C}^N$. i.e.,

$$|z|^2 - \frac{1}{t^2}\delta \le |Az|^2, \quad z \in \mathbb{C}^N.$$

Let $t \to \infty$. Then $|z|^2 \le |Az|^2$, $z \in \mathbb{C}^N$.

On the other hand, $|A| \leq 1$. So we have |Az| = |z|, $z \in \mathbb{C}^N$, which implies that A is a unitary operator on \mathbb{C}^N . \square

Combining Lemmas 2.1–2.3, we obtain Theorem 1.1. Explicitly, we have the following corollary.

Corollary 2.4 Let ψ be an analytic function and φ be an analytic self-mapping on \mathbb{C}^N . Then $C_{\psi,\varphi}$ is a bounded invertible operator on \mathcal{F}^2 if and only if there exist a unitary operator A on \mathbb{C}^N , $b \in \mathbb{C}^N$ and a nonzero constant s such that

$$\varphi(z) = Az + b$$
, $\psi(z) = sk_{-A*b}(z)$, $z \in \mathbb{C}^N$.

In the following, we give another application of Lemma 2.3.

Recall an operator T on a Hilbert space \mathcal{H} is called co-isometric if TT^* is the identity on \mathcal{H} . The following lemma is part of [1, Proposition 7].

362 Liankuo ZHAO

Lemma 2.5 Let ψ be a nonzero analytic function and φ be an analytic self-mapping on \mathbb{C}^N . If $C_{\psi,\varphi}$ is a bounded operator on \mathcal{F}^2 , then there exists an operator A on \mathbb{C}^N with $|A| \leq 1$ and $b \in \mathbb{C}^N$ such that $\varphi(z) = Az + b$, $z \in \mathbb{C}^N$.

Corollary 2.6 Let ψ be an analytic function and φ be an analytic self-mapping on \mathbb{C}^N . $C_{\psi,\varphi}$ is bounded on \mathcal{F}^2 . Then $C_{\psi,\varphi}$ is a co-isometric operator on \mathcal{F}^2 if and only if $C_{\psi,\varphi}$ is a unitary operator.

Proof The sufficiency is obvious.

If $C_{\psi,\varphi}$ is co-isometric on \mathcal{F}^2 , then $C_{\psi,\varphi}^*$ is bounded below. There exists a positive constant L such that $\|C_{\psi,\varphi}^*K_z\|^2 \geq L\|K_z\|^2$, $z \in \mathbb{C}^N$. In fact, L = 1 since $C_{\psi,\varphi}$ is co-isometric. So we have

$$1 \le |\psi(z)|^2 \exp(\frac{|\varphi(z)|^2 - |z|^2}{2}), \quad z \in \mathbb{C}^N.$$

On the other hand, since $C_{\psi,\varphi}$ is bounded, by Lemma 2.5,

$$\varphi(z) = Az + b, \quad z \in \mathbb{C}^N$$

for some operator A on \mathbb{C}^N with $|A| \leq 1$ and $b \in \mathbb{C}^N$.

By Lemma 2.3, A is a unitary operator on \mathbb{C}^N and there is a non-zero constant s such that $C_{\psi,\varphi}$ can be represented by

$$(C_{\psi,\varphi}f)(z) = sk_{-A^*b}(z) \cdot f(Az+b), \quad f \in \mathbb{C}^N.$$

Put $Uf(z) = k_{-A^*b}(z) \cdot f(Az + b)$, $z \in \mathbb{C}^N$. Then $C_{\psi,\varphi} = sU$ and U is a unitary operator on \mathcal{F}^2 by Lemma 2.2. Since $C_{\psi,\varphi}$ is co-isometric, |s| = 1. Hence $C_{\psi,\varphi}$ is unitary on \mathcal{F}^2 also. \square

Acknowledgements The author thanks the referee for suggesting to explain the proof of Corollary 2.6 precisely and for pointing out many typos to make this paper more readable.

References

- Liankuo ZHAO. Invertible weighted composition operators on the Fock space of C^N. J. Funct. Spaces 2015, Art. ID 250358, 5 pp.
- [2] Lixia FENG, Liankuo ZHAO. A note on weighted composition operators on the Fock space. Commun. Math. Res., 2015, 31(3): 281–284.
- [3] Liankuo ZHAO. Unitary weighted composition operaors on the Fock space of Cⁿ. Complex Anal. Oper. Theory, 2014, 8(2): 581−590.
- [4] S. UEKI. Weighted composition operator on the Fock space. Proc. Amer. Math. Soc., 2007, 135(5): 1405–1410.
- [5] S. UEKI. Hilbert-Schmidt weighted composition operator on the Fock space. Int. J. Math. Anal. (Ruse), 2007, 1(13-16): 769-774.
- [6] T. LE. Normal and isometric weighted composition operators on the Fock space. Bull. Lond. Math. Soc., 2014, 46(4): 847–856.
- [7] Liankuo ZHAO, Changbao PANG. A class of weighted composition operators on the Fock space. J. Math. Res. Appl., 2015, **35**(3): 303–310.
- [8] Kehe ZHU. Analysis of Fock Space. Springer, New-York, 2012.
- [9] S. STEVIĆ. Weighted composition operators between Fock-type spaces in Cⁿ. Appl. Math. Comput., 2009, 215(7): 2750–2760.
- [10] S. UEKI. Weighted composition operators on some function spaces of entire functions. Bull. Belg. Math. Soc. Simon Stevin, 2010, 17(2): 343–353.