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Abstract Let f be a homeomorphism of a compact tvs-cone metric space. In this paper,

we show that f is tvs-cone expansive if and only if f has a generator. Further, it is proved

that if f is tvs-cone expansive, then the set of points having converging semiorbits under f is

a countable set. Results of this paper improve some expansive homeomorphisms theorems in

topological dynamics, which will help to research dynamical properties for homeomorphisms

of tvs-cone metric spaces.
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1. Introduction

Ordered normed spaces and cones have many applications in applied mathematics, for in-

stance, in using Newton’s approximation method [1–4] and in optimization theory [5]. By using

an ordered Banach space instead of the set of real numbers as the codomain for a metric, Kan-

torovich [2] introduced K-metric and K-normed spaces in the mid-20th century [3,4,6]. Such

spaces under the name of cone metric spaces were re-introduced by Huang and Zhang in [7],

and many relevant results have been obtained [7–11]. In particular, Khani and Pourmahdian

[11] proved that each cone metric space is metrizable, which results in that many results around

cone metric spaces were trivial. However, just as stated in [11], “considering certain topological

groups in place of Banach spaces may result in the construction of new spaces which are not in

general metrizable. This can serve as a topic for further studies”. In [12], Du introduced and

investigated tvs-cone metric spaces by replacing Banach spaces with topological vector spaces

in the definition of cone metric spaces. Over the past years, tvs-cone metric spaces had aroused

many mathematical scholars’ interests and the following question was investigated [12–16].

Question 1.1 Can what results on metric spaces be generalized to tvs-cone metric spaces?

As expansive behaviours for homeomorphism of spaces, the following results play an impor-

tant role in study of dynamical systems.
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Proposition 1.2 ([17]) Let f be a homeomorphism of a compact metric space. Then f is

expansive if and only if f has a generator.

Proposition 1.3 ([18]) Let f be an expansive homeomorphism of a compact metric space.

Then the set of points having converging semiorbits under f is a countable set.

In this paper, we investigate Question 1.1 combining the above two propositions. As the

main results of this paper, we prove that “metric” and “expansive” in Proposition 1.2 (resp.,

Proposition 1.3) can be relaxed to “tvs-cone metric space” and “tvs-cone expansive”, respec-

tively. Results of this paper improve some expansive homeomorphisms theorems in topological

dynamics, which will be of help to research dynamical properties for homeomorphisms of tvs-cone

metric spaces.

Throughout this paper, N, Z, R+ and R∗ denote the set of all natural numbers, the set

of all integral numbers, the set of all positive real numbers and the set of all nonnegative real

numbers, respectively.

2. tvs-Cone metric spaces

Definition 2.1 ([12]) Let E be a topological vector space with its zero vector θ. A subset P of

E is called a tvs-cone in E if the following are satisfied.

(i) P is a closed subset in E with a nonempty interior.

(ii) α, β ∈ P and a, b ∈ R∗ =⇒ aα+ bβ ∈ P .

(iii) α,−α ∈ P =⇒ α = θ.

Remark 2.2 Let P be a tvs-cone in a topological vector space E. The interior of P is always

denoted by P ◦. It is known that θ ∈ P − P ◦ (see [16]).

Definition 2.3 ([12]) Let E be a topological vector space with a tvs-cone P . Some partial

orderings ≤, < and ≪ on E with respect to P are defined as follows, respectively. Let α, β ∈ E.

(i) α ≤ β if β − α ∈ P .

(ii) α < β if α ≤ β and α ̸= β.

(iii) α ≪ β if β − α ∈ P ◦.

Then pair (E,P ) is called an ordered topological vector space.

Remark 2.4 ([16]) For the sake of conveniences, we also use notations “≥”, “>” and “≫” on

E with respect to P . The meanings of these notations are clear and the following hold.

(i) α ≥ β ⇐⇒ α− β ≥ θ ⇐⇒ α− β ∈ P .

(ii) α > β ⇐⇒ α− β > θ ⇐⇒ α− β ∈ P − {θ}.
(iii) α ≫ β ⇐⇒ α− β ≫ θ ⇐⇒ α− β ∈ P ◦.

(iv) α ≫ β =⇒ α > β =⇒ α ≥ β.

Lemma 2.5 ([16]) Let (E,P ) be an ordered topological vector space. Then the following hold.

(i) If α ≫ θ, then rα ≫ θ for each r ∈ R+.

(ii) If α1 ≫ β1 and α2 ≥ β2, then α1 + α2 ≫ β1 + β2.
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(iii) If α ≫ θ and β ≫ θ, then there is γ ≫ θ such that γ ≪ α and γ ≪ β.

Definition 2.6 ([12]) Let (E,P ) be an ordered topological vector space and let X be a non-

empty set. A mapping d : X×X −→ E is called a tvs-cone metric and (X, d) is called a tvs-cone

metric space if the following are satisfied.

(i) d(x, y) ≥ θ for all x, y ∈ X and d(x, y) = θ if and only if x = y.

(ii) d(x, y) = d(y, x) for all x, y ∈ X.

(iii) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.

Remark 2.7 It is clear that every metric is a tvs-cone metric and a tvs-cone metric need not

to be a metric. In [14,15], it was obtained that every tvs-cone metric space is metrizable under

assumption that the topological vector space is locally convex and Hausdorff. Recently, it was

proved that the above assumption can be omitted [19, Theorem 3.2].

In this paper, we always suppose that

(i) A tvs-cone metric space (X, d) deals with an ordered topological vector space (E,P );

(ii) A tvs-cone metric space (X, d) is a topological space with the topology T described in

the following Proposition 2.8.

Proposition 2.8 ([16]) Let (X, d) be a tvs-cone metric space. For x ∈ X and ε ≫ 0, put

B(x, ε) = {y ∈ X : d(x, y) ≪ ε}. Put B = {B(x, ε) : x ∈ X and ε ≫ θ}, and put T = {U ⊆ X:

there is B′ ⊆ B such that U =
∪

B′}. Then T is a topology on X and B is a base for T .

Definition 2.9 Let (X, d) be a tvs-cone metric space and U be an open cover of X. ε ≫ θ is

called a Lebesgue element of U if for every A ⊆ X, d(A) ≪ ε implies A ⊆ U for some U ∈ U .

Lemma 2.10 Let (X, d) be a compact tvs-cone metric space. Then every open cover of X has

a Lebesgue element.

Proof Let U be an open cover of X. For every x ∈ X, there are εx ≫ θ and Ux ∈ U such that

B(x, εx) ⊆ Ux. Since X is compact, there is a finite subset F of X such that {B(x, εx/2) : x ∈ F}
covers X. By Lemma 2.5(iii), there is ε ≫ θ such that ε ≪ εx/2 for every x ∈ F . Let A ⊆ X

satisfying d(A) ≪ ε. Pick y ∈ A, then there is x ∈ F such that y ∈ B(x, εx/2). For every z ∈ A,

d(z, x) ≤ d(z, y)+ d(y, x) ≪ ε+ εx/2 ≪ εx, so z ∈ B(x, εx) ⊆ Ux. This proves that A ⊆ Ux, and

it follows that ε is a Lebesgue element of U . �

3. Expansive behaviours of tvs-cone metric spaces

Definition 3.1 ([19]) Let f : X −→ X be a homeomorphism of a space X. f is called tvs-cone

expansive if there are a tvs-cone metric d on X and ε ≫ θ such that x, y ∈ X with x ̸= y implies

d(fn(x), fn(y)) ≫ ε for some n ∈ Z. Here, ε is called a tvs-cone expansive constant for f .

Remark 3.2 If “tvs-cone metric”, “≫” and “θ” in Definition 3.1 are replaced by “metric”, “>”

and “0”, respectively, then the definition of expansive homeomorphism of a space X is obtained
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[20].

Definition 3.3 ([17]) Let f : X −→ X be a homeomorphism of a space X. A finite open cover

F of X is called a generator for f if for every bisequence {Fn : n ∈ Z} consisting of members of

F ,
∩
{f−n(Fn) : n ∈ Z} is at most one point.

Definition 3.4 ([18]) Let f : X −→ X be a homeomorphism of a space X, and x ∈ X. α-limit

set α(x) and ω-limit set ω(x) are defined as follows.

α(x) = {y = lim
k→+∞

fnk(x) : {nk} is a strictly decreasing sequence in Z};

ω(x) = {y = lim
k→+∞

fnk(x) : {nk} is a strictly increasing sequence in Z}.

x is called to have converging semiorbits under f if α(x) and ω(x) each consists of a single point.

The following theorem gives a necessary and sufficient condition such that a homeomorphism

of a compact tvs-cone metric space is tvs-cone expansive.

Theorem 3.5 Let f be a homeomorphism of a compact tvs-cone metric space X. Then the

following are equivalent.

(i) f is tvs-cone expansive.

(ii) f has a generator.

Proof (i) =⇒ (ii). Assume that (i) holds. Let ε ≫ θ be a tvs-cone expansive constant for f

with respect to a tvs-cone metric d. Pick θ ≪ α ≪ ε/2 and put U = {B(x, α) : x ∈ X}. Then

U is an open cover of X. Since X is compact, U has a finite subcover F of U . It suffices to

prove that F is a generator for f . If F is not a generator for f , then there are a bisequence

{Fn : n ∈ Z} and x, y ∈
∩
{f−n(Fn) : n ∈ Z}, where Fn ∈ F for every n ∈ Z and x ̸= y. Since ε

is a tvs-cone expansive constant for f , there is i ∈ Z such that d(f i(x), f i(y)) ≫ ε. We can write

Fi = B(z, α) for some z ∈ X. Put β = d(f i(x), f i(y))−ε, then β ≫ θ. Since x, y ∈ f−i(B(z, α)),

f i(x), f i(y) ∈ B(z, α). Pick θ ≪ γ ≪ β/2, then there is u ∈ B(f i(x), γ) ∩B(z, α) ̸= ∅, and then

d(f i(x), z) ≤ d(f i(x), u) + d(u, z) ≪ γ + α. By the same way, we have d(f i(y), z) ≪ γ + α. It

follows that d(f i(x), f i(y)) ≤ d(f i(x), z)+d(f i(y), z) ≪ 2γ+2α ≪ β+ ε = d(f i(x), f i(y)). This

contradicts that d(f i(x), f i(y)) = d(f i(x), f i(y)).

(ii)=⇒(i). It holds by Remark 2.7 and Proposition 1.2. �
Now we discuss the set of points having converging semiorbits under a tvs-cone expansive

homeomorphism.

Lemma 3.6 Let f be a homeomorphism of a compact tvs-cone metric space X. If f is tvs-cone

expansive, then f has at most finitely many fixed points.

Proof Let f be tvs-cone expansive. By Theorem 3.5, f has a generator F . Note that F is

finite. If f has infinitely many fixed points, then there is A ∈ F such that A contains at least

two fixed points x, y. Thus, for every n ∈ Z, fn(x) = x, fn(y) = y ∈ A, i.e., x, y ∈ f−n(A). It

follows that x, y ∈
∩
{f−n(A) : n ∈ Z}. This contradicts that F is a generator.
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Lemma 3.7 Let f be a homeomorphism of a compact space X. If x has converging semiorbits

under f , then α(x) and ω(x) each consists of a fixed point.

Proof Let x have converging semiorbits under f . If u ∈ α(x), then u = limk→+∞ fnk(x) for

some strictly decreasing sequence {nk} in Z. Note that {nk+1} is a strictly decreasing sequence

in Z and f(u) = limk→+∞ fnk+1(x). So f(u) ∈ α(x). Since α(x) consists of a single point,

f(u) = u, i.e., α(x) = {u} and u is a fixed point. Similarly, ω(x) = {v} for some v ∈ X and v is

a fixed point. �

Lemma 3.8 Let f be a homeomorphism of a compact tvs-cone metric space (X, d). Then, for

any ε ≫ θ and any k ∈ N, there is δ ≫ θ such that d(x, y) ≪ δ implies d(fn(x), fn(y)) ≪ ε for

all x, y ∈ X and all n ∈ Z with |n| ≤ k.

Proof Let ε ≫ θ and k ∈ N. If n ∈ Z with |n| ≤ k, then fn is continuous. So, for every

x ∈ X, there is δn(x) ≫ θ such that y ∈ B(x, δn(x)) implies fn(y) ∈ B(fn(x), ε/2). Thus,

U = {B(x, δn(x)) : x ∈ X} is an open cover of X, so there is a Lebesgue element δn of U from

Lemma 2.10. If x, y ∈ X with d(x, y) ≪ δn, then there is z ∈ X such that x, y ∈ B(z, δn(z)),

hence fn(x), fn(y) ∈ B(fn(z), ε/2), i.e., d(fn(x), fn(z)) ≪ ε/2 and d(fn(y), fn(z)) ≪ ε/2. It

follows that d(fn(x), fn(y)) ≤ d(fn(x), fn(z)) + d(fn(y), fn(z)) ≪ ε. By Lemma 2.5(iii), there

is δ ≫ θ such that δ ≪ δn for every n ∈ Z with |n| ≤ k. Consequently, for all x, y ∈ X and all

n ∈ Z with |n| ≤ k, if d(x, y) ≪ δ, then d(x, y) ≪ δn, hence d(fn(x), fn(y)) ≪ ε. �

Theorem 3.9 Let f be a tvs-cone expansive homeomorphism of a compact tvs-cone metric

space X. Then the set A of points having converging semiorbits under f is a countable set.

Proof Let ε ≫ θ be a tvs-cone expansive constant for f with respect to a tvs-cone metric d.

By Lemma 3.6, f has at most finitely many fixed points, say a1, a2, . . . , at. Suppose that A is

uncountable. For every x ∈ A, α(x) and ω(x) each consists of a fixed point from Lemma 3.7.

Put A(i, j) = {x ∈ A : α(x) = {ai} and ω(x) = {aj}}. It is easy to see that A =
∪
{A(i, j) :

i, j = 1, 2, . . . , t}. Thus, A(i0, j0) is uncountable for some i0, j0 = 1, 2, . . . , t. For every k ∈ N,
put A(k) = {x ∈ A(i0, j0) : d(fn(x), aj0) ≪ ε/2 and d(f−n(x), ai0) ≪ ε/2 for all n > k}.
We claim that A(i0, j0) =

∪
{A(k) : k ∈ N}. In fact, if x ∈ A(i0, j0), then α(x) = {ai0} and

ω(x) = {aj0}, hence limn→+∞ fn(x) = aj0 and limn→+∞ f−n(x) = ai0 . So there is k ∈ N such

that d(fn(x), aj0) ≪ ε/2 and d(f−n(x), ai0) ≪ ε/2 for all n > k. It follows that x ∈ A(k). This

shows that A(i0, j0) ⊆
∪
{A(k) : k ∈ N}. Note that A(i0, j0) ⊇

∪
{A(k) : k ∈ N}. So A(i0, j0) =∪

{A(k) : k ∈ N}. Thus, A(k0) is infinite for some k0 ∈ N. Let δ ≫ θ be described as in Lemma

3.9 (for k = k0). By compactness of X, there are x, y ∈ A(k0) such that x ̸= y and d(x, y) ≪ δ.

Since ε is a tvs-cone expansive constant for f , there is n0 ∈ Z such that d(fn0(x), fn0(y)) ≫ ε,

i.e., d(fn0(x), fn0(y))−ε ≫ θ. On the other hand, we can obtain d(fn0(x), fn0(y)) ≪ ε. In fact,

if |n0| ≤ k0, then d(fn0(x), fn0(y)) ≪ ε from Lemma 3.8; if n0 > k0, then d(fn0(x), aj0) ≪ ε/2

and d(fn0(y), aj0) ≪ ε/2, hence d(fn0(x), fn0(y)) ≪ ε; if n0 < −k0, then d(fn0(x), ai0) ≪ ε/2

and d(fn0(y), ai0) ≪ ε/2, hence d(fn0(x), fn0(y)) ≪ ε. Thus, ε − d(fn0(x), fn0(y)) ≫ θ. By
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Lemma 2.5(ii), θ = (d(fn0(x), fn0(y)) − ε) + (ε − d(fn0(x), fn0(y))) ≫ θ i.e., θ ∈ P ◦. This

contradicts Remark 2.2. �
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