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Abstract Variable-weight optical orthogonal codes (OOCs) were introduced by G. C. YANG

for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. In

this paper, some infinite classes of optimal cyclic packing are presented. Optimal (24u, {3, 4}, 1,
{2/3, 1/3})-OOCs for any positive integer u > 1 are established.
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1. Introduction

Optical orthogonal codes (OOCs) were introduced by Salehi, as signature sequences to

facilitate multiple access in optical fibre networks [1,2]. OOCs had been found wide ranges of

applications such as mobile radio, frequency-hopping spread-spectrum communications, radar,

sonar, collision channel without feedback, and neuromorphic networks [3–7].

Most existing works on OOCs have assumed that all codewords have the same weight,

see [3,8–27] for the examples. In general, the code size of OOCs depends upon the weights

of codewords, the variable-weight OOCs can generate larger code size than that of constant-

weight OOCs [28]. In 1996, Yang introduced multimedia optical CDMA communication system

employing variable-weight OOCs [29]. In this CDMA system, the subscribers with different

code weights will have different bit error rate(BER) performance. The codewords of low code

weight can be assigned to the low-QoS (Quality of Services) applications and high code weight

codewords can be assigned to high-QoS requirement applications [28]. Hence, the multi-weight

property of the OOCs enables the system to meet multiple QoS requirements. The interested

reader may refer to [28–40] for recent results on variable-weight OOCs.

Based on the notations of [29], throughout this paper, let W , L, and Q denote the sets

{w0, w1, . . . , wp}, {λ0
a, λ

1
a, . . . , λ

p
a} and {q0, q1, . . . , qp}, respectively. Without loss of generality,

we may assume that w0 < w1 < · · · < wp.

A (v,W,L, λc, Q) variable-weight optical orthogonal code C, or (v,W,L, λc, Q)-OOC, is a

collection of binary v-tuples such that the following three properties hold:
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(1) Weight Distribution: Every v-tuple in C has a Hamming weight contained in the set

W ; furthermore, there are exactly qi|C| codewords of weight wi, i.e., qi indicates the fraction of

codewords of weight wi. It is clear that
∑p

i=0 qi = 1.

(2) Periodic Auto-correlation: For any X = (x0, x1, . . . , xv−1) ∈ C with Hamming weight

wi ∈ W , and any integer τ , 0 < τ < v,

v−1∑
t=0

xtxt⊕τ ≤ λi
a,

where the summation is carried out by treating binary symbols as reals.

(3) Periodic Cross-correlation: Similarly, for x ̸= y,x = (x0, x1, . . . , xv−1) ∈ C, y =

(y0, y1, . . . , yv−1) ∈ C, and any integer τ ,

v−1∑
t=0

xtyt⊕τ ≤ λc.

The notation (v,W, λ,Q)-OOC is used to denote a (v,W,L, λc, Q)-OOC with the property

that λ0
a = λ1

a = · · · = λp
a = λc = λ. The term variable-weight optical orthogonal code, or

variable-weight OOC, is also used if there is no need to list the parameters.

The number of codewords of an OOC is called its size. For fixed v, W , λ, and Q, the largest

size among all (v,W, λ,Q)-OOCs is denoted by Φ(v,W, λ,Q). Typically, whenW = {3, 4}, λ = 1,

and Q = {2/3, 1/3}, we get the following upper bound for the value of Φ(v, {3, 4}, 1, {2/3, 1/3})
from Lemma 1 of [30].

Lemma 1.1 ([30]) It holds that Φ(v, {3, 4}, 1, {2/3, 1/3}) ≤ 3⌊ v−1
24 ⌋ for any positive integer v.

In view of Lemma 1.1, a (v, {3, 4}, 1, {2/3, 1/3})-OOC is said to be optimal if its size reaches

the bound of 3⌊ v−1
24 ⌋.

Optimal optical orthogonal codes are closely related to some combinatorial configurations.

For example, Yin [27] showed that an optimal (v, k, 1)-OOC is equivalent to an optimal cyclic

packing CP(k, 1; v). In [36], a CP(W, 1; v) was also called 2-CP(W, 1; v), and optimal 2-CP(W, 1,

Q; v)s were introduced to construct optimal (v,W, 1, Q)-OOCs. Throughout this paper, we al-

ways denote by Zv the additive group of integers modulo v.

For B ⊂ Zv, the list differences from B is defined to be ∆B = {x−y (mod v) : x, y ∈ B, x ̸=
y}. Suppose that F is a set of subsets (base blocks) of Zv, and for each B ∈ F , |B| ∈ W . Then

F is called a cyclic packing CP(W, 1; v) if it satisfies that ∆F =
∪

B∈F ∆B covers each nonzero

element of Zv at most once, and for each B = {b1, b2, . . . , b|B|} ∈ F , B + i, 0 ≤ i ≤ v − 1, are

pairwise distinct, where B + i = {b1 + i, b2 + i, . . . , b|B| + i} ⊂ Zv. A CP(W, 1, Q; v) is defined

to be a CP(W, 1; v) with the property that the fraction of number of blocks of size wi is qi,

0 ≤ i ≤ p. From the definition, it is not difficult to see that the largest possible number of base

blocks of a CP({3, 4}, 1, {2/3, 1/3}; v) is 3⌊v−1
24 ⌋. A CP({3, 4}, 1, {2/3, 1/3}; v) is called optimal

if the number of its base blocks reaches this bound.

Example 1.2 There exists an optimal CP({3, 4}, 1, {2/3, 1/3}; v) for v ∈ {48, 72}.
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Proof For v = 48, the 3⌊ v−1
24 ⌋ = 3 base blocks of an optimal CP({3, 4}, 1, {2/3, 1/3}; 48) are

{0, 1, 3, 7}, {0, 5, 13}, {0, 9, 19}.
For v = 72, the 3⌊ v−1

24 ⌋ = 6 base blocks of an optimal CP({3, 4}, 1, {2/3, 1/3}; 72) are

{0, 1, 3, 7}, {0, 5, 13, 22}, {0, 10, 21}, {0, 12, 26}, {0, 15, 31}, {0, 18, 37}. �
Suppose that F is a CP(W, 1, Q; v). The difference leave of F , denoted by DL(F), is defined

to be the set of all nonzero integers in Zv which are not covered by ∆F . A CP(W, 1, Q; v) F is

called g-regular if the difference leave DL(F) along with zero forms an additive subgroup of Zv

having order g, which must be generated by the integer v/g.

Example 1.3 There exists a 3h-regular CP({3, 4}, 1, {2/3, 1/3}; 9h× 3) for h ∈ {1, 2}.

Proof For h = 1, the 3 base blocks of a 3-regular CP({3, 4}, 1, {2/3, 1/3}; 9×3) are {0, 1, 4, 17},
{0, 2, 8}, {0, 5, 12}.

For h = 2, the 6 base blocks of a 6-regular CP({3, 4}, 1, {2/3, 1/3}; 18× 3) are {0, 1, 3, 31},
{0, 4, 10, 47}, {0, 5, 21}, {0, 8, 20}, {0, 13, 32}, {0, 14, 29}. �

The following results were stated in [36].

Lemma 1.4 ([36]) An optimal CP(W, 1, Q; v) is equivalent to an optimal (v,W, 1, Q)-OOC.

Lemma 1.5 ([36]) If 1 ≤ g ≤ 24, then a g-regular CP({3, 4}, 1, {2/3, 1/3}; v) is optimal.

Some results of optimal (v, {3, 4}, 1, {2/3, 1/3})-OOCs were obtained in [32,35]. The follow-

ing results come from Theorem 4 in [32].

Lemma 1.6 ([32]) If v ≡ 24, 120 (mod 144) is an integer, and v > 24, then there exists an

optimal (v, {3, 4}, 1, {2/3, 1/3})-OOC.

The following existence results of cyclic packings were induced by checking the proof of

Theorem 4 in [32]. We quote the lemma for later use.

Lemma 1.7 ([32]) If u is an integer such that gcd(6, u) = 1, u > 1, then there exists a 24-regular

CP({3, 4}, 1, {2/3, 1/3}; 24u).
In this paper, we shall investigate the existence of an optimal (v, {3, 4}, 1, {2/3, 1/3})-OOC.

As the main result of the paper, we are to extend Lemma 1.6 to the following theorem.

Theorem 1.8 There exists an optimal (24u, {3, 4}, 1, {2/3, 1/3})-OOC for any positive integer

u > 1.

2. Direct constructions

In this section, we will describe two new direct constructions, which make use of skew

starters, for g-regular CP({3, 4}, 1, {2/3, 1/3}; v)s. Let (G,+) be an Abelian group of order

u > 1. A skew starter in G is a set of unordered pairs

S = {{xi, yi} : 1 ≤ i ≤ (u− 1)/2}

which satisfies the following three properties:



382 Shihua HUANG and Xiaomiao WANG

(1) {xi : 1 ≤ i ≤ (u− 1)/2} ∪ {yi : 1 ≤ i ≤ (u− 1)/2} = G \ {0};
(2) {±(xi − yi) : 1 ≤ i ≤ (u− 1)/2} = G \ {0};
(3) {±(xi + yi) : 1 ≤ i ≤ (u− 1)/2} = G \ {0}.
According to the definition, a skew starter in G can exist only if u is odd. Furthermore, if we

writeX = {xi : 1 ≤ i ≤ (u−1)/2} and Y = {yi : 1 ≤ i ≤ (u−1)/2}, then we may assume, without

loss of generality, that X = −Y , and hence we have X ∪ (−X) = Y ∪ (−Y ) = X ∪ Y = G \ {0}.
Skew starters have been extensively investigated. We summarize the existence results on skew

starters in Zu in the following lemma.

Lemma 2.1 ([14]) There exists a skew starter in Zu for each positive integer u such that

gcd(u, 150) = 1 or 25. There does not exist any skew starter in Zu if u ≡ 0 (mod 3).

In what follows, suppose that B is a set of subsets of Zu × Zh, define the list of differences

Dj={d : (d, j) is a difference from B}.

Lemma 2.2 Let u be a positive integer such that gcd(u, 150) = 1 or 25. Then there exists a

48-regular CP({3, 4}, 1, {2/3, 1/3}; 48u).

Proof By Lemma 2.1, there exists a skew starter S = {{xi, yi} : 1 ≤ i ≤ t} in Zu, where

t = (u− 1)/2. Since gcd(u, 48) = 1, Zu ×Z48 is isomorphic to Z48u. The 6(u− 1) base blocks of

a 48-regular CP({3, 4}, 1, {2/3, 1/3}; 48u) on Zu × Z48 are listed as follows.

A1
i = {(xi, 0), (yi, 0), (xi + yi, 1), (0, 25)}, A2

i = {(xi, 0), (−yi, 2), (−xi, 10), (yi, 28)},
A3

i = {(−xi, 0), (yi, 2), (xi, 10), (−yi, 28)}, A4
i = {(xi, 0), (−yi, 3), (−xi, 12), (yi, 39)},

A5
i = {(0, 0), (xi + yi, 3), (−xi − yi, 14)}, A6

i = {(yi, 0), (0, 4), (−xi, 17)},
A7

i = {(−xi − yi, 0), (0, 5), (xi + yi, 11)}, A8
i = {(yi, 0), (−xi, 6), (0, 19)},

A9
i = {(−xi, 0), (yi − xi, 7), (yi, 14)}, A10

i = {(xi, 0), (−yi, 15), (0, 19)},
A11

i = {(0, 0), (2xi + 2yi, 16), (xi + yi, 21)}, A12
i = {(−xi − yi, 0), (0, 17), (xi + yi, 32)},

where 1 ≤ i ≤ t. Since Ds = −D48−s for 25 ≤ s ≤ 47, we only need to consider the differences

Ds for 0 ≤ s ≤ 24. Then we get

Ds =



t∪
i=1

{±(xi − yi)}, if s ∈ {0, 8, 9, 20},
t∪

i=1

{±(xi + yi)}, if s ∈ {2, 3, 5, 6, 14, 15, 17, 18, 21, 24},
t∪

i=1

{xi, yi}, if s ∈ {1, 7, 23},

D4 =
t∪

i=1

{±yi}, D10 =
t∪

i=1

{±2xi}, D11 = D16 =
t∪

i=1

{±(2xi + 2yi)},

D12 =
t∪

i=1

{−2xi,−2yi}, D13 =
t∪

i=1

{±xi}, D19 =
t∪

i=1

{−xi,−yi},

D22 =
t∪

i=1

{±2yi}.

.
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Let F = {Aj
i : 1 ≤ i ≤ t, 1 ≤ j ≤ 12}. Then ∆F covers each element of (Zu × Z48) \ ({0} ×

Z48) exactly once, while any element of the additive subgroup {0} × Z48 is not covered at all.

Therefore, F forms the desired 48-regular CP({3, 4}, 1, {2/3, 1/3}; 48u). �

Lemma 2.3 Let u be a positive integer such that gcd(u, 150) = 1 or 25. Then there exists a

72-regular CP({3, 4}, 1, {2/3, 1/3}; 72u).

Proof By Lemma 2.1, there exists a skew starter S = {{xi, yi} : 1 ≤ i ≤ t} in Zu, where

t = (u− 1)/2. Since gcd(u, 72) = 1, Zu ×Z72 is isomorphic to Z72u. The 9(u− 1) base blocks of

a 72-regular CP({3, 4}, 1, {2/3, 1/3}; 72u) on Zu × Z72 are listed as follows.

A1
i = {(xi, 0), (yi, 0), (0, 1), (xi + yi, 37)}, A2

i = {(−xi, 0), (yi, 2), (xi, 25), (−yi, 40)},
A3

i = {(xi, 0), (−yi, 2), (−xi, 25), (yi, 40)}, A4
i = {(−xi, 0), (yi, 3), (xi, 27), (−yi, 44)},

A5
i = {(xi, 0), (−yi, 3), (−xi, 27), (yi, 44)}, A6

i = {(−xi, 0), (−yi, 4), (0, 26), (−xi − yi, 46)},
A7

i = {(xi, 0), (yi, 4), (xi + yi, 33)}, A8
i = {(xi + yi, 0), (−xi − yi, 5), (0, 56)},

A9
i = {(0, 0), (2xi + 2yi, 6), (xi + yi, 58)}, A10

i = {(0, 0), (xi, 7), (−yi, 65)},
A11

i = {(xi + yi, 0), (0, 8), (−xi − yi, 67)}, A12
i = {(−yi, 0), (0, 9), (xi, 62)},

A13
i = {(−xi − yi, 0), (0, 10), (xi + yi, 66)}, A14

i = {(yi, 0), (0, 11), (−xi, 64)},
A15

i = {(0, 0), (yi, 12), (−xi, 30)}, A16
i = {(0, 0), (−yi − xi, 13), (−xi, 63)},

A17
i = {(−yi, 0), (xi, 18), (0, 29)}, A18

i = {(−xi, 0), (yi, 21), (0, 33)},

where 1 ≤ i ≤ t. Note that Ds = −D72−s for 37 ≤ s ≤ 71, we only need to consider the

differences Ds for 0 ≤ s ≤ 36. We have

Ds =



t∪
i=1

{±(xi − yi)}, if s ∈ {0, 4, 23, 24, 28, 32},
t∪

i=1

{±(xi + yi)}, if s ∈ {2, 3, 8, 10, 13, 14, 15, 16, 17, 18, 20, 21, 36},
t∪

i=1

{xi, yi}, if s ∈ {7, 9, 26, 29, 33},
t∪

i=1

{−xi,−yi}, if s ∈ {1, 11, 35},

D5 = D6 =
t∪

i=1

{±(2xi + 2yi)}, D12 = D22 =
t∪

i=1

{±yi}, D19 = D30 =
t∪

i=1

{±xi},

D25 = D27 =
t∪

i=1

{±2xi}, D31 = D34 =
t∪

i=1

{±2yi}.

Let F = {Aj
i : 1 ≤ i ≤ t, 1 ≤ j ≤ 18}. Then it is readily checked that ∆F = (Zq × Z72) \

({0} × Z72). Therefore, F forms the desired 72-regular CP({3, 4}, 1, {2/3, 1/3}; 72u). �

3. Recursive constructions

Let (G, ·) be a finite group of order v and H a subgroup of order h in G. An H-regular

(v, k;λ)-incomplete difference matrix in G is a k× λ(v− h) martix D = (dij), 0 ≤ i ≤ k− 1, 1 ≤
j ≤ λ(v − h), with entries from G, such that for any 0 ≤ i < j ≤ k − 1, the multiset {dil · d−1

jl :
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1 ≤ l ≤ λ(v−h)} contains every element of G \H exactly λ times. When G is an abelian group,

typically additive notation is used, so that the difference dil−djl is employed. In what follows, we

assume that G = Zv, andH is a subgroup of order h in Zv. ThenH = {i·v/h : 0 ≤ i ≤ h−1}. We

usually denote an H-regular (v, k;λ)-incomplete difference matrix over Zv by h-regular (v, k;λ)-

ICDM if |H| = h. When H = ∅ or h = 0, an H-regular (v, k;λ)-incomplete difference matrix

over Zv is termed as (v, k;λ)-CDM.

Lemma 3.1 ([41]) If m ≥ 5 is odd and gcd(m, 27) ̸= 9, then there exists an (m, 4; 1)-CDM.

Lemma 3.2 ([13]) There exists a 2-regular (m, 4; 1)-ICDM for m ∈ {12, 18}, or m = 2n and

n ≥ 3.

The following two constructions were stated with Theorems 11 and 12 in [36], which were

similar to the constructions in [27].

Construction 3.3 ([36]) Suppose that both a g-regular CP(W, 1, Q; v) and an optimal CP(W, 1,

Q; g) exist, then an optimal CP(W, 1, Q; v) exists. Moreover, if the given CP(W, 1, Q; g) is r-

regular, then so is the derived CP(W, 1, Q; v).

Construction 3.4 ([36]) Suppose that there exist a g-regular CP(W, 1, Q; v), an (m,wp; 1)-

CDM, and an optimal CP(W, 1, Q; gm). Then there exists an optimal CP(W, 1, Q;mv). More-

over, if the given CP(W, 1, Q; gm) is r-regular, then so is the derived CP(W, 1, Q;mv).

Similar to the constructions in [13] and [40], the following results of Constructions 3.5 and

3.7 are obtained.

Construction 3.5 Let v andm be positive integers such that gcd(m, v) = 1. Suppose that there

exist a g-regular CP(W, 1, Q; v), an h-regular (m,wp; 1)-ICDM, and an hg-regular CP(W, 1, Q;hv)

(or a gh-regular CP(W, 1, Q; gm), respectively). Then there exists a gm-regular CP(W, 1, Q;mv)

(or an hv-regular CP(W, 1, Q;mv), respectively).

Proof Suppose that F1 is the family of base blocks of the given g-regular CP(W, 1, Q; v), whose d-

ifference leave plus the singleton {0} consists of the additive subgroup U = {0, v/g, 2v/g, . . . , (g−
1)v/g} of Zv. Let D = (dij) be an h-regular (m,wp; 1)-ICDM, where dij ∈ Zm for 0 ≤ i ≤ wp−1

and 1 ≤ j ≤ m−h. Then for 0 ≤ i ̸= j ≤ wp−1, the multiset {dil−djl : 1 ≤ l ≤ m−h} = Zm\H,

where H = {0,m/h, . . . , (h− 1)m/h}.

Let G = Zv × Zm, H1 = U × Zm, and H2 = Zv ×H. Since gcd(m, v) = 1, G is isomorphic

to Zmv. Similarly, H1
∼= Zgm and H2

∼= Zhv. Let F2 be the family of base blocks of the

given hg-regular CP(W, 1, Q;hv) (or a gh-regular CP(W, 1, Q; gm), respectively) in H2 (or H1,

respectively) whose difference leave plus the singleton {(0, 0)} is U × H. Next, construct a

gm-regular CP(W, 1, Q;mv) (or an hv-regular CP(W, 1, Q;mv), respectively) in G so that its

difference leave plus the singleton {(0, 0)} is H1 (or H2, respectively) as follows:

For each base block B = {b0, b1, . . . , bwr−1} ∈ F1, where wr ∈ W , r ∈ {0, 1, . . . , p}, we take
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m− h base blocks

Bj = {(b0, d0j), (b1, d1j), . . . , (bwr−1, dwr−1,j)},

for 1 ≤ j ≤ m− h.

Let F = {Bj : B ∈ F1, 1 ≤ j ≤ m − h} ∪ F2. It is readily checked that ∆F covers each

integer in G \H1 (or G \H2, respectively) exactly once. �
Let g be a divisor of v such that v = gv0. Suppose that F = {Bi : i = 1, 2, . . . , t} is the

family of base blocks of an hg-regular CP(W, 1, Q;hv), where Bi = {0, b1i, b2i, . . . , bwr−1,i} for

wr ∈ W , r ∈ {0, 1, . . . , p}, and i = 1, 2, . . . , t. Define

ele(F) =

t∪
i=1

{b1i, b2i, . . . , bwr−1,i}.

The hg-regular CP(W, 1, Q;hv) is said to be h-perfect, denoted by hg-regular h-perfect CP(W, 1, Q;hv),

if

ele(F) ⊆ {a+ bυ : 0 ≤ a ≤ ⌊v
2
⌋, a ̸= 0, v0, 2υ0, . . . , (g − 1)v0; b = 0, 1, . . . , h− 1}.

Some useful examples of hg-regular h-perfect CP(W, 1, Q;hv) are exhibited in the following

example.

Example 3.6 There exists an hg-regular h-perfect CP({3, 4}, 1, {2/3, 1/3};hv) for h ∈ {1, 2}
and (v, g) ∈ {(32, 8), (108, 12), (96, 24), (144, 24)}.

Proof The base blocks of an hg-regular h-perfect CP({3, 4}, 1, {2/3, 1/3};hv) are listed below.

(h, v, g) = (1, 32, 8):

{0, 1, 6, 15}, {0, 2, 13}, {0, 3, 10}.
(h, v, g) = (2, 32, 8):

{0, 1, 3, 10}, {0, 13, 34, 39}, {0, 14, 33}, {0, 15, 37}, {0, 35, 46}, {0, 41, 47}.
(h, v, g) = (1, 108, 12):

{0, 1, 3, 29}, {0, 4, 10, 34}, {0, 5, 21, 52}, {0, 7, 39, 53}, {0, 8, 48}, {0, 11, 44},
{0, 12, 49}, {0, 13, 51}, {0, 15, 50}, {0, 17, 42}, {0, 19, 41}, {0, 20, 43}.

(h, v, g) = (2, 108, 12):

{0, 1, 40, 110}, {0, 2, 43, 114}, {0, 3, 47, 116}, {0, 4, 132, 156}, {0, 5, 51, 129},
{0, 6, 148, 155}, {0, 10, 131, 160}, {0, 25, 111, 143}, {0, 11, 134}, {0, 17, 154},
{0, 19, 52}, {0, 12, 49}, {0, 13, 48}, {0, 14, 133}, {0, 15, 151},
{0, 16, 157}, {0, 20, 159}, {0, 21, 161}, {0, 23, 53}, {0, 26, 115},
{0, 28, 50}, {0, 31, 122}, {0, 34, 42}, {0, 38, 158}.

(h, v, g) = (1, 96, 24):

{0, 1, 3, 26}, {0, 5, 22, 43}, {0, 6, 35, 45}, {0, 7, 41}, {0, 9, 46}, {0, 11, 30},
{0, 13, 31}, {0, 14, 47}, {0, 15, 42}.

(h, v, g) = (2, 96, 24):
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{0, 1, 34, 99}, {0, 2, 43, 109}, {0, 5, 42, 111}, {0, 6, 101, 131}, {0, 7, 110, 129},
{0, 18, 47, 137}, {0, 9, 114}, {0, 10, 143}, {0, 11, 141}, {0, 13, 134},
{0, 15, 46}, {0, 17, 135}, {0, 21, 138}, {0, 22, 45}, {0, 25, 39},
{0, 26, 139}, {0, 27, 142}, {0, 35, 38}.

(h, v, g) = (1, 144, 24):

{0, 1, 32, 51}, {0, 2, 35, 55}, {0, 3, 37, 52}, {0, 4, 43, 65}, {0, 5, 62, 69},
{0, 8, 71}, {0, 9, 38}, {0, 10, 68}, {0, 11, 67}, {0, 13, 59},
{0, 14, 41}, {0, 16, 44}, {0, 17, 40}, {0, 21, 47}, {0, 25, 70}.

(h, v, g) = (2, 144, 24):

{0, 14, 51, 145}, {0, 15, 53, 148}, {0, 16, 55, 146}, {0, 17, 52, 151}, {0, 19, 59, 147},
{0, 20, 61, 159}, {0, 21, 64, 173}, {0, 22, 56, 175}, {0, 23, 67, 184}, {0, 25, 70, 188},
{0, 27, 191}, {0, 28, 195}, {0, 29, 62}, {0, 32, 208}, {0, 46, 211},
{0, 47, 58}, {0, 196, 203}, {0, 49, 215}, {0, 50, 63}, {0, 65, 68},
{0, 69, 172}, {0, 71, 177}, {0, 178, 187}, {0, 181, 183}, {0, 26, 57},
{0, 199, 207}, {0, 201, 206}, {0, 202, 212}, {0, 205, 209}, {0, 213, 214}. �

Construction 3.7 Suppose that there exist a g-regular 1-perfect CP(W, 1, Q; v), an hg-regular

h-perfect CP(W, 1, Q;hv), and an h-regular (m,wp; 1)-ICDM, then there exists an mg-regular

m-perfect CP(W, 1, Q;mv).

Proof Suppose that A = {Ai = {0, x1i, x2i, . . . , xwr−1,i} : i = 1, 2, . . . , t}, wr ∈ W , r ∈
{0, 1, . . . , p} is a g-regular 1-perfect CP(W, 1, Q; v). Let B = {Bj = {0, a1j + vb1j , a2j +

vb2j , . . . , awr−1,j + vbwr−1,j} : j = 1, 2, . . . , s}, wr ∈ W , r ∈ {0, 1, . . . , p} be an hg-regular

h-perfect CP(W, 1, Q;hv), where a1j , a2j , . . . , awr−1,j ∈ {0, 1, . . . , ⌊v/2⌋} \ {0, v/g, 2v/g, . . . , (g−
1)v/g}, and b1j , b2j , . . . , bwr−1,j ∈ {0, 1, . . . , h− 1} for 1 ≤ j ≤ s.

Let D = (dij) be an h-regular (m,wp; 1)-ICDM, where dij ∈ Zm for 0 ≤ i ≤ wp− 1 and 1 ≤
j ≤ m−h such that the multiset {dil−djl : 1 ≤ l ≤ m−h} = Zm\{0,m/h, 2m/h, . . . , (h−1)m/h}.
Now the desired mg-regular CP(W, 1, Q;mv) will be based on Zmv whose difference leave plus the

singleton {0} forms the subgroupH = {i+jv : i = 0, v/g, 2v/g, . . . , (g−1)v/g; j = 0, 1, . . . ,m−1}.
The required base blocks come from the following two parts:

Part 1: For each base block Ai = {0, x1i, x2i, . . . , xwr−1,i} ∈ A, we take m− h base blocks

Ail = {0, x1i + (d1l − d0l) · v, x2i + (d2l − d0l) · v, . . . , xwr−1,i + (dwr−1,l − d0l) · v},

for l = 1, 2, . . . ,m − h, where the additive operation is performed in Zmv. Let F1 = {Ail :

1 ≤ i ≤ t, 1 ≤ l ≤ m − h}. Then, by noting that x1i, x2i, . . . , xwr−1,i ∈ {0, 1, 2, . . . , ⌊v/2⌋} \
{0, v/g, 2v/g, . . . , (g − 1)v/g} so that −⌊v/2⌋ ≤ xei − xfi ≤ ⌊v/2⌋ for 1 ≤ e ̸= f ≤ wr − 1 and

1 ≤ i ≤ t, it is readily checked from the property of the h-regular (m,wp; 1)-ICDM that

∆F1 = ±{a+ bv : 0 ≤ a ≤ ⌊v/2⌋, a ̸= 0, v/g, 2v/g, . . . , (g − 1)v/g, b ∈ M},

where M = {0, 1, . . . ,m− 1} \ {0,m/h, . . . , (h− 1)m/h}.
Part 2: For each base block Bj = {0, a1j + vb1j , a2j + vb2j , . . . , awr−1,j + vbwr−1,j} ∈ B, we
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take a base block

B′
j = {0, a1j + b1j ·mv/h, a2j + b2j ·mv/h, . . . , awr−1,j + bwr−1,j ·mv/h}.

Let F2 = {B′
j : 1 ≤ j ≤ s}. Then similarly it can be readily checked that

∆F2 = ±{a+ bv : 0 ≤ a ≤ ⌊v/2⌋, a ̸= 0, v/g, 2v/g, . . . , (g − 1)v/g;

b = 0,m/h, . . . , (h− 1)m/h}.

The differences arising from these base blocks F1 ∪F2 cover each element in Zmv \ {i · v/g : 0 ≤
i ≤ gm−1} exactly once. Therefore, this construction produces an mg-regular CP(W, 1, Q;mv).

It is straightforward to check that it is m-perfect. �

4. Proof of Theorem 1.8

Lemma 4.1 There exists a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24× 3i) for any integer i ≥ 2.

Proof For i = 2, a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24 × 32) comes from Example 3.6. For

i = 3, the 78 base blocks of a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24× 33) are listed as follows.

{0, 51, 181, 325}, {0, 52, 185, 327}, {0, 53, 190, 326}, {0, 55, 182, 335}, {0, 56, 196, 372},
{0, 57, 202, 328}, {0, 58, 197, 404}, {0, 59, 205, 397}, {0, 66, 204, 383}, {0, 67, 210, 403},
{0, 68, 223, 337}, {0, 69, 226, 384}, {0, 70, 201, 435}, {0, 71, 225, 620}, {0, 72, 231, 411},
{0, 73, 233, 357}, {0, 74, 235, 418}, {0, 75, 198, 361}, {0, 76, 240, 424}, {0, 77, 199, 426},
{0, 60, 194, 341}, {0, 61, 209, 329}, {0, 62, 211, 340}, {0, 63, 195, 345}, {0, 64, 215, 330},
{0, 65, 217, 342}, {0, 100, 206}, {0, 101, 208}, {0, 102, 212}, {0, 109, 220},
{0, 113, 232}, {0, 116, 285}, {0, 117, 238}, {0, 118, 288}, {0, 172, 173},
{0, 175, 177}, {0, 247, 256}, {0, 249, 261}, {0, 250, 263}, {0, 252, 267},
{0, 254, 289}, {0, 619, 623}, {0, 255, 292}, {0, 257, 290}, {0, 258, 294},
{0, 259, 293}, {0, 260, 298}, {0, 78, 165}, {0, 79, 167}, {0, 80, 166},
{0, 82, 171}, {0, 83, 168}, {0, 84, 174}, {0, 91, 186}, {0, 92, 188},
{0, 93, 187}, {0, 97, 200}, {0, 98, 141}, {0, 104, 295}, {0, 105, 334},
{0, 112, 156}, {0, 128, 178}, {0, 203, 214}, {0, 218, 221}, {0, 219, 236},
{0, 228, 242}, {0, 239, 246}, {0, 241, 262}, {0, 248, 272}, {0, 279, 301},
{0, 296, 343}, {0, 599, 617}, {0, 600, 606}, {0, 602, 607}, {0, 603, 622},
{0, 608, 616}, {0, 618, 628}, {0, 609, 625}.

Now we deal with i = 4. Applying Construction 3.7, we get a 24 × 9-regular 18-perfect

CP({3, 4}, 1, {2/3, 1/3}; 24× 34), where the needed 12-regular 1-perfect CP({3, 4}, 1, {2/3, 1/3};
12×32), 24-regular 2-perfect CP({3, 4}, 1, {2/3, 1/3}; 24×32) and 2-regular (18, 4; 1)-ICDM come

from Example 3.6 and Lemma 3.2. Start from this 24×9-regular CP({3, 4}, 1, {2/3, 1/3}; 24×34),

and apply Construction 3.3 with a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24 × 32) to obtain a 24-

regular CP({3, 4}, 1, {2/3, 1/3}; 24× 34).
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For i ≥ 5, start from a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24 × 3t) from above with t ≡
i (mod 3) and t ∈ {2, 3, 4}. Apply, recursively, Construction 3.4 with a (33, 4; 1)-CDM from

Lemma 3.1. This gives a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24× 3i) for i ≥ 5. �

Lemma 4.2 There exists a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 48× 3i) for any integer i ≥ 1.

Proof For i = 1, the 15 base blocks of a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 48× 3) are

{0, 1, 3, 76}, {0, 4, 41, 81}, {0, 5, 43, 87}, {0, 7, 46, 93}, {0, 8, 53, 88},
{0, 9, 61}, {0, 10, 122}, {0, 11, 127}, {0, 13, 123}, {0, 14, 125},
{0, 15, 128}, {0, 20, 79}, {0, 23, 50}, {0, 26, 55}, {0, 25, 74}.

For i = 2, the 51 base blocks of a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 48× 32) are

{0, 1, 3, 221}, {0, 4, 129, 223}, {0, 5, 135, 222}, {0, 6, 137, 230}, {0, 7, 139, 235},
{0, 8, 141, 233}, {0, 9, 143, 238}, {0, 10, 146, 237}, {0, 11, 149, 247}, {0, 12, 152, 254},
{0, 13, 155, 239}, {0, 14, 159, 245}, {0, 15, 163, 263}, {0, 16, 166, 265}, {0, 17, 164, 267},
{0, 19, 170, 259}, {0, 20, 176, 264}, {0, 21, 175}, {0, 22, 179}, {0, 23, 200},
{0, 42, 321}, {0, 24, 347}, {0, 25, 186}, {0, 26, 351}, {0, 27, 402},
{0, 28, 359}, {0, 31, 350}, {0, 29, 189}, {0, 32, 352}, {0, 33, 355},
{0, 34, 362}, {0, 35, 389}, {0, 39, 366}, {0, 37, 363}, {0, 41, 394},
{0, 45, 305}, {0, 46, 174}, {0, 47, 364}, {0, 60, 251}, {0, 48, 356},
{0, 65, 374}, {0, 44, 379}, {0, 49, 171}, {0, 50, 361}, {0, 52, 368},
{0, 51, 365}, {0, 55, 370}, {0, 56, 369}, {0, 61, 373}, {0, 40, 358},
{0, 75, 349}.

Now we deal with i = 3. Applying Construction 3.7, we get a 12 × 12-regular 12-perfect

CP({3, 4}, 1, {2/3, 1/3}; 48× 33), where the needed 12-regular 1-perfect CP({3, 4}, 1, {2/3, 1/3};
12×32), 24-regular 2-perfect CP({3, 4}, 1, {2/3, 1/3}; 24×32) and 2-regular (12, 4; 1)-ICDM comes

from Example 3.6 and Lemma 3.2. Start from this 12× 12-regular CP({3, 4}, 1, {2/3, 1/3}; 48×
33), and apply Construction 3.3 with a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 48 × 3) to obtain a

24-regular CP({3, 4}, 1, {2/3, 1/3}; 48× 33).

For i ≥ 4, write i = 3s+ t where s ≥ 1 and t = 1, 2, 3. Take a 24-regular CP({3, 4}, 1, {2/3,
1/3}; 48 × 3t) from above. Apply Construction 3.4 with g = 24, m = 33s, and v = 48 × 3t

to obtain a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 48 × 3i) for i ≥ 4, where the needed 24-regular

CP({3, 4}, 1, {2/3, 1/3}; 24× 33s) and (33s, 4; 1)-CDM exist by Lemmas 4.1 and 3.1. �

Lemma 4.3 If u > 1 is an integer such that gcd(6, u) = 1, then there exists a 24-regular

CP({3, 4}, 1, {2/3, 1/3}; gu× 3i) for g = 48, 72 and i ≥ 1.

Proof For i ≥ 1, there exists a 24-regular CP({3, 4}, 1, {2/3, 1/3}; g × 3i) for g = 48, 72 by

Lemmas 4.2 and 4.1, respectively. Take a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24u) for gcd(6, u) =
1 and u > 1 from Lemma 1.7. Then apply Construction 3.4 with a (u, 4; 1)-CDM from Lemma

3.1 to obtain a 24-regular CP({3, 4}, 1, {2/3, 1/3}; gu× 3i). �
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Lemma 4.4 There exists a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24× 2i) for any integer i ≥ 2.

Proof For i = 2, a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24 × 22) exists by Example 3.6. For

i = 3, 4, the base blocks of the desired CPs are listed as follows.

i = 3: {0, 1, 60, 101}, {0, 2, 63, 105}, {0, 3, 65, 102}, {0, 4, 70, 113}, {0, 5, 73, 111},
{0, 6, 116, 123}, {0, 10, 94, 145}, {0, 11, 177}, {0, 12, 67}, {0, 14, 167},
{0, 17, 165}, {0, 18, 95}, {0, 19, 159}, {0, 21, 179}, {0, 28, 74},
{0, 29, 78}, {0, 30, 172}, {0, 31, 170}, {0, 35, 169}, {0, 36, 107},
{0, 45, 183}.

i = 4:

{0, 21, 150, 221}, {0, 22, 152, 225}, {0, 23, 154, 222}, {0, 24, 151, 226}, {0, 25, 157, 223},
{0, 26, 164, 231}, {0, 27, 166, 228}, {0, 28, 165, 235}, {0, 29, 155, 238}, {0, 34, 270, 273},
{0, 35, 169, 278}, {0, 36, 287, 295}, {0, 30, 170, 242}, {0, 31, 167, 241}, {0, 33, 168, 237},
{0, 45, 319}, {0, 46, 323}, {0, 47, 326}, {0, 49, 325}, {0, 50, 321},
{0, 51, 171}, {0, 52, 344}, {0, 53, 346}, {0, 56, 345}, {0, 57, 347},
{0, 76, 178}, {0, 77, 193}, {0, 84, 187}, {0, 85, 189}, {0, 86, 371},
{0, 87, 283}, {0, 41, 302}, {0, 42, 305}, {0, 43, 303}, {0, 44, 330},
{0, 55, 379}, {0, 78, 369}, {0, 88, 382}, {0, 100, 365}, {0, 115, 377},
{0, 117, 383}, {0, 173, 190}, {0, 364, 373}, {0, 366, 372}, {0, 370, 374}.

Now we deal with the case of i ≥ 5. Start from a 24-regular 1-perfect CP({3, 4}, 1, {2/3, 1/3};
24× 22) and a 48-regular 2-perfect CP({3, 4}, 1, {2/3, 1/3}; 48× 22) by Example 3.6. Take a 2-

regular (2i−2, 4; 1)-ICDM from Lemma 3.2. Then apply Construction 3.7 with g = 24, m = 2i−2,

h = 2 and v = 24×22 to obtain a 24×2i−2-regular CP({3, 4}, 1, {2/3, 1/3}; 24×2i). Combine with

a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24 × 23) and a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24 × 24)

from above, we apply Construction 3.3 inductively on i to get a 24-regular CP({3, 4}, 1, {2/3, 1/3};
24× 2i) for any integer i ≥ 5. �

Lemma 4.5 There exists a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 72× 2i) for any integer i ≥ 1.

Proof For i = 1, a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 72× 2) exists by Example 3.6. For i = 2,

the 33 base blocks of a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 72× 22) are listed as follows.

{0, 1, 115, 164}, {0, 2, 112, 167}, {0, 3, 119, 162}, {0, 4, 122, 185}, {0, 5, 136, 187},
{0, 6, 139, 189}, {0, 7, 141, 186}, {0, 8, 143, 196}, {0, 9, 146, 193}, {0, 10, 148, 205},
{0, 11, 209, 232}, {0, 13, 130}, {0, 14, 127}, {0, 15, 215}, {0, 16, 217},
{0, 17, 128}, {0, 18, 220}, {0, 19, 222}, {0, 20, 227}, {0, 21, 234},
{0, 22, 236}, {0, 25, 94}, {0, 26, 91}, {0, 27, 253}, {0, 28, 98},
{0, 29, 258}, {0, 31, 230}, {0, 32, 242}, {0, 33, 97}, {0, 34, 246},
{0, 37, 248}, {0, 39, 247}, {0, 38, 244}.

There exist a 8-regular 1-perfect CP({3, 4}, 1, {2/3, 1/3}; 32), a 16-regular 2-perfect CP({3,
4}, 1, {2/3, 1/3}; 64) and a 2-regular (18, 4; 1)-ICDM from Example 3.6 and Lemma 3.2. Then
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apply Construction 3.7 with g = 8, m = 18, h = 2 and v = 32 to obtain a 72 × 2-regular

CP({3, 4}, 1, {2/3, 1/3}; 72× 23). Combine with the existence of a 24-regular CP({3, 4}, 1, {2/3,
1/3}; 72× 2), then a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 72× 23) follows from Construction 3.3.

For i ≥ 4, start from a 24-regular 1-perfect CP({3, 4}, 1, {2/3, 1/3}; 24 × 6) and a 48-

regular 2-perfect CP({3, 4}, 1, {2/3, 1/3}; 48 × 6), which exist by Example 3.6. Then take a

2-regular(2i−1, 4; 1)-ICDM from Lemma 3.2, and apply Construction 3.7 with g = 24, m = 2i−1,

h = 2, v = 24× 6, to obtain a 24× 2i−1-regular CP({3, 4}, 1, {2/3, 1/3}; 72× 2i). By Lemma 4.4

there is a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24× 2i−1). Then apply Construction 3.3 to obtain

a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 72× 2i). �

Lemma 4.6 There exists a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24×2i3j) for any integer i, j ≥ 2.

Proof When i ≥ 2 and j = 2. Start from a 3-regular CP({3, 4}, 1, {2/3, 1/3}; 9 × 3) and

a 6-regular CP({3, 4}, 1, {2/3, 1/3}; 18 × 3), which exist by Example 1.3. Take a 2-regular

(2i+3, 4; 1)-ICDM from Lemma 3.2. Then apply Construction 3.5 with g = 3, m = 2i+3, h = 2,

v = 9×3, to obtain a 24×2i-regular CP({3, 4}, 1, {2/3, 1/3}; 24×2i32). There exists a 24-regular

CP({3, 4}, 1, {2/3, 1/3}; 24×2i) by Lemma 4.4. We apply Construction 3.3 to obtain a 24-regular

CP({3, 4}, 1, {2/3, 1/3}; 24× 2i32).

When i ≥ 2 and j ≥ 3. Start from a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24×2i), a (3j , 4; 1)-

CDM, and a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24 × 3j), which exist by Lemmas 4.4, 3.1 and

4.1, respectively. Then apply Construction 3.4 with v = 24× 2i, g = 24, and m = 3j , to obtain

a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24× 2i3j). �

Lemma 4.7 There exists a g-regular CP({3, 4}, 1, {2/3, 1/3}; g × 5i) for g = 48, 72 and i ≥ 1.

Proof For (g, i) = (48, 1), the 24 base blocks of a 48-regular CP({3, 4}, 1, {2/3, 1/3}; 48× 5) are

{0, 1, 77, 128}, {0, 2, 81, 133}, {0, 3, 86, 129}, {0, 4, 78, 136}, {0, 6, 88, 144},
{0, 7, 91, 148}, {0, 8, 97, 214}, {0, 9, 103, 201}, {0, 11, 224}, {0, 12, 118},
{0, 13, 181}, {0, 14, 186}, {0, 17, 193}, {0, 18, 87}, {0, 21, 194},
{0, 22, 221}, {0, 23, 124}, {0, 29, 198}, {0, 32, 209}, {0, 33, 212},
{0, 37, 204}, {0, 38, 216}, {0, 44, 93}, {0, 53, 119}.

For (g, i) = (72, 1), the 36 base blocks of a 72-regular CP({3, 4}, 1, {2/3, 1/3}; 72× 5) are

{0, 31, 122, 183}, {0, 32, 121, 188}, {0, 33, 126, 184}, {0, 34, 131, 182}, {0, 36, 123, 189},
{0, 37, 129, 181}, {0, 38, 124, 187}, {0, 39, 147, 201}, {0, 41, 139, 332}, {0, 43, 137, 186},
{0, 44, 127, 243}, {0, 46, 128, 264}, {0, 62, 133}, {0, 64, 132}, {0, 72, 146},
{0, 73, 154}, {0, 76, 164}, {0, 77, 134}, {0, 78, 157}, {0, 84, 333},
{0, 99, 358}, {0, 102, 158}, {0, 103, 222}, {0, 104, 351}, {0, 106, 352},
{0, 109, 301}, {0, 141, 253}, {0, 118, 166}, {0, 163, 169}, {0, 307, 318},
{0, 313, 331}, {0, 334, 346}, {0, 336, 343}, {0, 337, 341}, {0, 338, 339},
{0, 344, 347}.
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For i > 1, start from a g-regular CP({3, 4}, 1, {2/3, 1/3}; g×5), then apply Construction 3.4

inductively with a (5, 4; 1)-CDM from Lemma 3.1 to obtain a g-regular CP({3, 4}, 1, {2/3, 1/3}; g×
5i). �

Lemma 4.8 If u > 1 is an integer such that gcd(6, u) = 1, then there exists a g-regular

CP({3, 4}, 1, {2/3, 1/3}; gu) for g = 48, 72.

Proof For u > 1 such that gcd(6, u) = 1, write u = 5iu′ where i ≥ 0 and 5 - u′. If u′ = 1,

then i ≥ 1, the conclusion follows from Lemma 4.7. If u′ > 1, then gcd(u′, 30) = 1. When i = 0

and u′ > 1, there exists a g-regular CP({3, 4}, 1, {2/3, 1/3}; gu′) by Lemmas 2.2 and 2.3. When

i ≥ 1 and u′ > 1, take a g-regular CP({3, 4}, 1, {2/3, 1/3}; gu′), a (5i, 4; 1)-CDM from Lemma

3.1, and a g-regular CP({3, 4}, 1, {2/3, 1/3}; g × 5i) from Lemma 4.7, then apply Construction

3.4 to obtain a g-regular CP({3, 4}, 1, {2/3, 1/3}; gu). �

Lemma 4.9 There exists an optimal CP({3, 4}, 1, {2/3, 1/3}; 24u) for any positive integer u > 1.

Proof Let u = 2i3ju′, where gcd(6, u′) = 1. We have the following two cases.

Case 1 When u′ = 1, then 24u = 24× 2i3j .

If i = 0, then j ≥ 1. When j = 1, there is an optimal CP({3, 4}, 1, {2/3, 1/3}; 72) by

Example 1.2. When j ≥ 2, there is a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24× 3j) by Lemma 4.1.

If i = 1, then j ≥ 0. When j = 0, there is an optimal CP({3, 4}, 1, {2/3, 1/3}; 48) by Example

1.2. When j ≥ 1, there is a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 48× 3j) by Lemma 4.2. If i ≥ 2,

then j ≥ 0, there exists a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24× 2i3j) by Lemmas 4.4–4.6.

Case 2 When u′ > 1, then 24u = 24× 2i3ju′.

Case 2.1 If i = 0, then j ≥ 0. When j = 0, there is a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24u) by
Lemma 1.7. When j = 1, start from a 72-regular CP({3, 4}, 1, {2/3, 1/3}; 72u′) from Lemma 4.8,

then apply Construction 3.3 to get an optimal CP({3, 4}, 1, {2/3, 1/3}; 72u′), where the needed

optimal CP({3, 4}, 1, {2/3, 1/3}; 72) comes from Example 1.2. When j ≥ 2, there is a 24-regular

CP({3, 4}, 1, {2/3, 1/3}; 24× 3ju′) by Lemma 4.3.

Case 2.2 If i = 1, then j ≥ 0. When j = 0, there exist a 48-regular CP({3, 4}, 1, {2/3, 1/3}; 48u′),

and an optimal CP({3, 4}, 1, {2/3, 1/3}; 48), which come from Lemma 4.8 and Example 1.2, re-

spectively. Then apply Construction 3.3 to obtain an optimal CP({3, 4}, 1, {2/3, 1/3}; 48u′).

When j ≥ 1, there is a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 48× 3j) by Lemma 4.3.

Case 2.3 If i ≥ 2, then j ≥ 0. Start from a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24 × 2i3j),

which exists by Lemmas 4.4–4.6. Take a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24u′) from Lemma

1.7. Then apply Construction 3.4 with a (u′, 4; 1)-CDM from Lemma 3.1, to obtain a 24-regular

CP({3, 4}, 1, {2/3, 1/3}; 24× 2i3ju′). That is a 24-regular CP({3, 4}, 1, {2/3, 1/3}; 24u).
By Lemma 1.5, the resulting 24-regular CPs from above are also optimal. �
Combine the results of Lemmas 1.4 and 4.9, we complete the proof of Theorem 1.8.
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