Optimal (24u, \{3, 4\}, 1, \{2/3, 1/3\}) Optical Orthogonal Codes

Shihua HUANG, Xiaomiao WANG*
Department of Mathematics, Ningbo University, Zhejiang 315211, P. R. China

Abstract

Variable-weight optical orthogonal codes (OOCs) were introduced by G. C. YANG for multimedia optical CDMA systems with multiple quality of service (QoS) requirements. In this paper, some infinite classes of optimal cyclic packing are presented. Optimal ($24 u,\{3,4\}, 1$, $\{2 / 3,1 / 3\}$)-OOCs for any positive integer $u>1$ are established.

Keywords cyclic packing; optical orthogonal code; perfect cyclic packing; skew starter; variable-weight optical orthogonal code

MR(2010) Subject Classification 05B05; 05B40

1. Introduction

Optical orthogonal codes (OOCs) were introduced by Salehi, as signature sequences to facilitate multiple access in optical fibre networks $[1,2]$. OOCs had been found wide ranges of applications such as mobile radio, frequency-hopping spread-spectrum communications, radar, sonar, collision channel without feedback, and neuromorphic networks [3-7].

Most existing works on OOCs have assumed that all codewords have the same weight, see $[3,8-27]$ for the examples. In general, the code size of OOCs depends upon the weights of codewords, the variable-weight OOCs can generate larger code size than that of constantweight OOCs [28]. In 1996, Yang introduced multimedia optical CDMA communication system employing variable-weight OOCs [29]. In this CDMA system, the subscribers with different code weights will have different bit error rate(BER) performance. The codewords of low code weight can be assigned to the low-QoS (Quality of Services) applications and high code weight codewords can be assigned to high-QoS requirement applications [28]. Hence, the multi-weight property of the OOCs enables the system to meet multiple QoS requirements. The interested reader may refer to [28-40] for recent results on variable-weight OOCs.

Based on the notations of [29], throughout this paper, let W, L, and Q denote the sets $\left\{w_{0}, w_{1}, \ldots, w_{p}\right\},\left\{\lambda_{a}^{0}, \lambda_{a}^{1}, \ldots, \lambda_{a}^{p}\right\}$ and $\left\{q_{0}, q_{1}, \ldots, q_{p}\right\}$, respectively. Without loss of generality, we may assume that $w_{0}<w_{1}<\cdots<w_{p}$.

A $\left(v, W, L, \lambda_{c}, Q\right)$ variable-weight optical orthogonal code C, or $\left(v, W, L, \lambda_{c}, Q\right)$-OOC, is a collection of binary v-tuples such that the following three properties hold:

[^0](1) Weight Distribution: Every v-tuple in C has a Hamming weight contained in the set W; furthermore, there are exactly $q_{i}|C|$ codewords of weight w_{i}, i.e., q_{i} indicates the fraction of codewords of weight w_{i}. It is clear that $\sum_{i=0}^{p} q_{i}=1$.
(2) Periodic Auto-correlation: For any $X=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right) \in C$ with Hamming weight $w_{i} \in W$, and any integer $\tau, 0<\tau<v$,
$$
\sum_{t=0}^{v-1} x_{t} x_{t \oplus \tau} \leq \lambda_{a}^{i}
$$
where the summation is carried out by treating binary symbols as reals.
(3) Periodic Cross-correlation: Similarly, for $\mathbf{x} \neq \mathbf{y}, \mathbf{x}=\left(x_{0}, x_{1}, \ldots, x_{v-1}\right) \in C, \mathbf{y}=$ $\left(y_{0}, y_{1}, \ldots, y_{v-1}\right) \in C$, and any integer τ,
$$
\sum_{t=0}^{v-1} x_{t} y_{t \oplus \tau} \leq \lambda_{c}
$$

The notation (v, W, λ, Q)-OOC is used to denote a $\left(v, W, L, \lambda_{c}, Q\right)$-OOC with the property that $\lambda_{a}^{0}=\lambda_{a}^{1}=\cdots=\lambda_{a}^{p}=\lambda_{c}=\lambda$. The term variable-weight optical orthogonal code, or variable-weight OOC, is also used if there is no need to list the parameters.

The number of codewords of an OOC is called its size. For fixed v, W, λ, and Q, the largest size among all (v, W, λ, Q)-OOCs is denoted by $\Phi(v, W, \lambda, Q)$. Typically, when $W=\{3,4\}, \lambda=1$, and $Q=\{2 / 3,1 / 3\}$, we get the following upper bound for the value of $\Phi(v,\{3,4\}, 1,\{2 / 3,1 / 3\})$ from Lemma 1 of [30].

Lemma 1.1 ([30]) It holds that $\Phi(v,\{3,4\}, 1,\{2 / 3,1 / 3\}) \leq 3\left\lfloor\frac{v-1}{24}\right\rfloor$ for any positive integer v.
In view of Lemma 1.1, a $(v,\{3,4\}, 1,\{2 / 3,1 / 3\})$-OOC is said to be optimal if its size reaches the bound of $3\left\lfloor\frac{v-1}{24}\right\rfloor$.

Optimal optical orthogonal codes are closely related to some combinatorial configurations. For example, Yin [27] showed that an optimal ($v, k, 1$)-OOC is equivalent to an optimal cyclic packing $\mathrm{CP}(k, 1 ; v)$. In $[36]$, a $\mathrm{CP}(W, 1 ; v)$ was also called $2-\mathrm{CP}(W, 1 ; v)$, and optimal $2-\mathrm{CP}(W, 1$, $Q ; v)$ s were introduced to construct optimal $(v, W, 1, Q)$-OOCs. Throughout this paper, we always denote by Z_{v} the additive group of integers modulo v.

For $B \subset Z_{v}$, the list differences from B is defined to be $\Delta B=\{x-y(\bmod v): x, y \in B, x \neq$ $y\}$. Suppose that \mathcal{F} is a set of subsets (base blocks) of Z_{v}, and for each $B \in \mathcal{F},|B| \in W$. Then \mathcal{F} is called a cyclic packing $\mathrm{CP}(W, 1 ; v)$ if it satisfies that $\Delta \mathcal{F}=\bigcup_{B \in \mathcal{F}} \Delta B$ covers each nonzero element of Z_{v} at most once, and for each $B=\left\{b_{1}, b_{2}, \ldots, b_{|B|}\right\} \in \mathcal{F}, B+i, 0 \leq i \leq v-1$, are pairwise distinct, where $B+i=\left\{b_{1}+i, b_{2}+i, \ldots, b_{|B|}+i\right\} \subset Z_{v}$. A $\mathrm{CP}(W, 1, Q ; v)$ is defined to be a $\mathrm{CP}(W, 1 ; v)$ with the property that the fraction of number of blocks of size w_{i} is q_{i}, $0 \leq i \leq p$. From the definition, it is not difficult to see that the largest possible number of base blocks of a $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; v)$ is $3\left\lfloor\frac{v-1}{24}\right\rfloor$. $\mathrm{A} \mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; v)$ is called optimal if the number of its base blocks reaches this bound.

Example 1.2 There exists an optimal $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; v)$ for $v \in\{48,72\}$.

Proof For $v=48$, the $3\left\lfloor\frac{v-1}{24}\right\rfloor=3$ base blocks of an optimal $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48)$ are $\{0,1,3,7\},\{0,5,13\},\{0,9,19\}$.

For $v=72$, the $3\left\lfloor\frac{v-1}{24}\right\rfloor=6$ base blocks of an optimal $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72)$ are $\{0,1,3,7\},\{0,5,13,22\},\{0,10,21\},\{0,12,26\},\{0,15,31\},\{0,18,37\}$.

Suppose that \mathcal{F} is a $\operatorname{CP}(W, 1, Q ; v)$. The difference leave of \mathcal{F}, denoted by $\operatorname{DL}(\mathcal{F})$, is defined to be the set of all nonzero integers in Z_{v} which are not covered by $\Delta \mathcal{F}$. A $\mathrm{CP}(W, 1, Q ; v) \mathcal{F}$ is called g-regular if the difference leave $\mathrm{DL}(\mathcal{F})$ along with zero forms an additive subgroup of Z_{v} having order g, which must be generated by the integer v / g.

Example 1.3 There exists a $3 h$-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 9 h \times 3)$ for $h \in\{1,2\}$.
Proof For $h=1$, the 3 base blocks of a 3-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 9 \times 3)$ are $\{0,1,4,17\}$, $\{0,2,8\},\{0,5,12\}$.

For $h=2$, the 6 base blocks of a 6 -regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 18 \times 3)$ are $\{0,1,3,31\}$, $\{0,4,10,47\},\{0,5,21\},\{0,8,20\},\{0,13,32\},\{0,14,29\}$.

The following results were stated in [36].
Lemma $1.4([36])$ An optimal $C P(W, 1, Q ; v)$ is equivalent to an optimal $(v, W, 1, Q)$-OOC.
Lemma 1.5 ([36]) If $1 \leq g \leq 24$, then a g-regular $C P(\{3,4\}, 1,\{2 / 3,1 / 3\} ; v)$ is optimal.
Some results of optimal $(v,\{3,4\}, 1,\{2 / 3,1 / 3\})$-OOCs were obtained in [32,35]. The following results come from Theorem 4 in [32].

Lemma $1.6([32])$ If $v \equiv 24,120(\bmod 144)$ is an integer, and $v>24$, then there exists an optimal ($v,\{3,4\}, 1,\{2 / 3,1 / 3\})$-OOC.

The following existence results of cyclic packings were induced by checking the proof of Theorem 4 in [32]. We quote the lemma for later use.

Lemma 1.7 ([32]) If u is an integer such that $\operatorname{gcd}(6, u)=1, u>1$, then there exists a 24-regular $C P(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 u)$.

In this paper, we shall investigate the existence of an optimal ($v,\{3,4\}, 1,\{2 / 3,1 / 3\})$-OOC. As the main result of the paper, we are to extend Lemma 1.6 to the following theorem.

Theorem 1.8 There exists an optimal ($24 u,\{3,4\}, 1,\{2 / 3,1 / 3\})$-OOC for any positive integer $u>1$.

2. Direct constructions

In this section, we will describe two new direct constructions, which make use of skew starters, for g-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; v) \mathrm{s}$. Let $(G,+)$ be an Abelian group of order $u>1$. A skew starter in G is a set of unordered pairs

$$
S=\left\{\left\{x_{i}, y_{i}\right\}: 1 \leq i \leq(u-1) / 2\right\}
$$

which satisfies the following three properties:
(1) $\left\{x_{i}: 1 \leq i \leq(u-1) / 2\right\} \cup\left\{y_{i}: 1 \leq i \leq(u-1) / 2\right\}=G \backslash\{0\}$;
(2) $\left\{ \pm\left(x_{i}-y_{i}\right): 1 \leq i \leq(u-1) / 2\right\}=G \backslash\{0\}$;
(3) $\left\{ \pm\left(x_{i}+y_{i}\right): 1 \leq i \leq(u-1) / 2\right\}=G \backslash\{0\}$.

According to the definition, a skew starter in G can exist only if u is odd. Furthermore, if we write $X=\left\{x_{i}: 1 \leq i \leq(u-1) / 2\right\}$ and $Y=\left\{y_{i}: 1 \leq i \leq(u-1) / 2\right\}$, then we may assume, without loss of generality, that $X=-Y$, and hence we have $X \cup(-X)=Y \cup(-Y)=X \cup Y=G \backslash\{0\}$. Skew starters have been extensively investigated. We summarize the existence results on skew starters in Z_{u} in the following lemma.

Lemma 2.1 ([14]) There exists a skew starter in Z_{u} for each positive integer u such that $\operatorname{gcd}(u, 150)=1$ or 25 . There does not exist any skew starter in Z_{u} if $u \equiv 0(\bmod 3)$.

In what follows, suppose that \mathcal{B} is a set of subsets of $Z_{u} \times Z_{h}$, define the list of differences

$$
D_{j}=\{d:(d, j) \text { is a difference from } \mathcal{B}\} .
$$

Lemma 2.2 Let u be a positive integer such that $\operatorname{gcd}(u, 150)=1$ or 25 . Then there exists a 48 -regular $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 u)$.

Proof By Lemma 2.1, there exists a skew starter $S=\left\{\left\{x_{i}, y_{i}\right\}: 1 \leq i \leq t\right\}$ in Z_{u}, where $t=(u-1) / 2$. Since $\operatorname{gcd}(u, 48)=1, Z_{u} \times Z_{48}$ is isomorphic to $Z_{48 u}$. The $6(u-1)$ base blocks of a 48-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 u)$ on $Z_{u} \times Z_{48}$ are listed as follows.

$$
\begin{array}{ll}
A_{i}^{1}=\left\{\left(x_{i}, 0\right),\left(y_{i}, 0\right),\left(x_{i}+y_{i}, 1\right),(0,25)\right\}, & A_{i}^{2}=\left\{\left(x_{i}, 0\right),\left(-y_{i}, 2\right),\left(-x_{i}, 10\right),\left(y_{i}, 28\right)\right\} \\
A_{i}^{3}=\left\{\left(-x_{i}, 0\right),\left(y_{i}, 2\right),\left(x_{i}, 10\right),\left(-y_{i}, 28\right)\right\}, & A_{i}^{4}=\left\{\left(x_{i}, 0\right),\left(-y_{i}, 3\right),\left(-x_{i}, 12\right),\left(y_{i}, 39\right)\right\} \\
A_{i}^{5}=\left\{(0,0),\left(x_{i}+y_{i}, 3\right),\left(-x_{i}-y_{i}, 14\right)\right\}, & A_{i}^{6}=\left\{\left(y_{i}, 0\right),(0,4),\left(-x_{i}, 17\right)\right\}, \\
A_{i}^{7}=\left\{\left(-x_{i}-y_{i}, 0\right),(0,5),\left(x_{i}+y_{i}, 11\right)\right\}, & A_{i}^{8}=\left\{\left(y_{i}, 0\right),\left(-x_{i}, 6\right),(0,19)\right\}, \\
A_{i}^{9}=\left\{\left(-x_{i}, 0\right),\left(y_{i}-x_{i}, 7\right),\left(y_{i}, 14\right)\right\}, & A_{i}^{10}=\left\{\left(x_{i}, 0\right),\left(-y_{i}, 15\right),(0,19)\right\}, \\
A_{i}^{11}=\left\{(0,0),\left(2 x_{i}+2 y_{i}, 16\right),\left(x_{i}+y_{i}, 21\right)\right\}, & A_{i}^{12}=\left\{\left(-x_{i}-y_{i}, 0\right),(0,17),\left(x_{i}+y_{i}, 32\right)\right\},
\end{array}
$$

where $1 \leq i \leq t$. Since $D_{s}=-D_{48-s}$ for $25 \leq s \leq 47$, we only need to consider the differences D_{s} for $0 \leq s \leq 24$. Then we get

$$
\begin{aligned}
& D_{s}= \begin{cases}\bigcup_{i=1}^{t}\left\{ \pm\left(x_{i}-y_{i}\right)\right\}, & \text { if } s \in\{0,8,9,20\}, \\
\bigcup_{i=1}^{t}\left\{ \pm\left(x_{i}+y_{i}\right)\right\}, & \text { if } s \in\{2,3,5,6,14,15,17,18,21,24\}, \\
\bigcup_{i=1}^{t}\left\{x_{i}, y_{i}\right\}, & \text { if } s \in\{1,7,23\},\end{cases} \\
& D_{4}=\bigcup_{i=1}^{t}\left\{ \pm y_{i}\right\}, \\
& D_{12}=\bigcup_{i=1}^{t}\left\{-2 x_{i},-2 y_{i=1}^{t}\left\{ \pm 2 x_{i}\right\}, \quad D_{11}=D_{16}=\bigcup_{i=1}^{t}\left\{ \pm x_{i}\right\}, \quad D_{19}=\bigcup_{i=1}^{t}\left\{-x_{i},-y_{i}\right\},\right. \\
& D_{22}=\bigcup_{i=1}^{t}\left\{ \pm 2 x_{i}\right\} .
\end{aligned}
$$

Let $\mathcal{F}=\left\{A_{i}^{j}: 1 \leq i \leq t, 1 \leq j \leq 12\right\}$. Then $\Delta \mathcal{F}$ covers each element of $\left(Z_{u} \times Z_{48}\right) \backslash(\{0\} \times$ Z_{48}) exactly once, while any element of the additive subgroup $\{0\} \times Z_{48}$ is not covered at all. Therefore, \mathcal{F} forms the desired 48-regular $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 u)$.

Lemma 2.3 Let u be a positive integer such that $\operatorname{gcd}(u, 150)=1$ or 25 . Then there exists a 72 -regular $C P(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 u)$.

Proof By Lemma 2.1, there exists a skew starter $S=\left\{\left\{x_{i}, y_{i}\right\}: 1 \leq i \leq t\right\}$ in Z_{u}, where $t=(u-1) / 2$. Since $\operatorname{gcd}(u, 72)=1, Z_{u} \times Z_{72}$ is isomorphic to $Z_{72 u}$. The $9(u-1)$ base blocks of a 72 -regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 u)$ on $Z_{u} \times Z_{72}$ are listed as follows.

$$
\begin{array}{ll}
A_{i}^{1}=\left\{\left(x_{i}, 0\right),\left(y_{i}, 0\right),(0,1),\left(x_{i}+y_{i}, 37\right)\right\}, & A_{i}^{2}=\left\{\left(-x_{i}, 0\right),\left(y_{i}, 2\right),\left(x_{i}, 25\right),\left(-y_{i}, 40\right)\right\}, \\
A_{i}^{3}=\left\{\left(x_{i}, 0\right),\left(-y_{i}, 2\right),\left(-x_{i}, 25\right),\left(y_{i}, 40\right)\right\}, & A_{i}^{4}=\left\{\left(-x_{i}, 0\right),\left(y_{i}, 3\right),\left(x_{i}, 27\right),\left(-y_{i}, 44\right)\right\}, \\
A_{i}^{5}=\left\{\left(x_{i}, 0\right),\left(-y_{i}, 3\right),\left(-x_{i}, 27\right),\left(y_{i}, 44\right)\right\}, & A_{i}^{6}=\left\{\left(-x_{i}, 0\right),\left(-y_{i}, 4\right),(0,26),\left(-x_{i}-y_{i}, 46\right)\right\}, \\
A_{i}^{7}=\left\{\left(x_{i}, 0\right),\left(y_{i}, 4\right),\left(x_{i}+y_{i}, 33\right)\right\}, & A_{i}^{8}=\left\{\left(x_{i}+y_{i}, 0\right),\left(-x_{i}-y_{i}, 5\right),(0,56)\right\}, \\
A_{i}^{9}=\left\{(0,0),\left(2 x_{i}+2 y_{i}, 6\right),\left(x_{i}+y_{i}, 58\right)\right\}, & A_{i}^{10}=\left\{(0,0),\left(x_{i}, 7\right),\left(-y_{i}, 65\right)\right\}, \\
A_{i}^{11}=\left\{\left(x_{i}+y_{i}, 0\right),(0,8),\left(-x_{i}-y_{i}, 67\right)\right\}, & A_{i}^{12}=\left\{\left(-y_{i}, 0\right),(0,9),\left(x_{i}, 62\right)\right\}, \\
A_{i}^{13}=\left\{\left(-x_{i}-y_{i}, 0\right),(0,10),\left(x_{i}+y_{i}, 66\right)\right\}, & A_{i}^{14}=\left\{\left(y_{i}, 0\right),(0,11),\left(-x_{i}, 64\right)\right\}, \\
A_{i}^{15}=\left\{(0,0),\left(y_{i}, 12\right),\left(-x_{i}, 30\right)\right\}, & A_{i}^{16}=\left\{(0,0),\left(-y_{i}-x_{i}, 13\right),\left(-x_{i}, 63\right)\right\}, \\
A_{i}^{17}=\left\{\left(-y_{i}, 0\right),\left(x_{i}, 18\right),(0,29)\right\}, & A_{i}^{18}=\left\{\left(-x_{i}, 0\right),\left(y_{i}, 21\right),(0,33)\right\},
\end{array}
$$

where $1 \leq i \leq t$. Note that $D_{s}=-D_{72-s}$ for $37 \leq s \leq 71$, we only need to consider the differences D_{s} for $0 \leq s \leq 36$. We have

$$
\begin{aligned}
& D_{s}= \begin{cases}\bigcup_{i=1}^{t}\left\{ \pm\left(x_{i}-y_{i}\right)\right\}, & \text { if } s \in\{0,4,23,24,28,32\}, \\
\bigcup_{i=1}^{t}\left\{ \pm\left(x_{i}+y_{i}\right)\right\}, & \text { if } s \in\{2,3,8,10,13,14,15,16,17,18,20,21,36\}, \\
\bigcup_{i=1}^{t}\left\{x_{i}, y_{i}\right\}, & \text { if } s \in\{7,9,26,29,33\}, \\
\bigcup_{i=1}^{t}\left\{-x_{i},-y_{i}\right\}, & \text { if } s \in\{1,11,35\},\end{cases} \\
& D_{5}=D_{6}=\bigcup_{i=1}^{t}\left\{ \pm\left(2 x_{i}+2 y_{i}\right)\right\}, \quad D_{12}=D_{22}=\bigcup_{\substack{i=1 \\
t}}^{t}\left\{ \pm y_{i}\right\}, \quad D_{19}=D_{30}=\bigcup_{i=1}^{t}\left\{ \pm x_{i}\right\}, \\
& D_{25}=D_{27}=\bigcup_{i=1}\left\{ \pm 2 x_{i}\right\}, \quad D_{31}=D_{34}=\bigcup_{i=1}\left\{ \pm 2 y_{i}\right\} .
\end{aligned}
$$

Let $\mathcal{F}=\left\{A_{i}^{j}: 1 \leq i \leq t, 1 \leq j \leq 18\right\}$. Then it is readily checked that $\Delta \mathcal{F}=\left(Z_{q} \times Z_{72}\right) \backslash$ $\left(\{0\} \times Z_{72}\right)$. Therefore, \mathcal{F} forms the desired 72 -regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 u)$.

3. Recursive constructions

Let (G, \cdot) be a finite group of order v and H a subgroup of order h in G. An H-regular $(v, k ; \lambda)$-incomplete difference matrix in G is a $k \times \lambda(v-h)$ martix $D=\left(d_{i j}\right), 0 \leq i \leq k-1,1 \leq$ $j \leq \lambda(v-h)$, with entries from G, such that for any $0 \leq i<j \leq k-1$, the multiset $\left\{d_{i l} \cdot d_{j l}^{-1}\right.$:
$1 \leq l \leq \lambda(v-h)\}$ contains every element of $G \backslash H$ exactly λ times. When G is an abelian group, typically additive notation is used, so that the difference $d_{i l}-d_{j l}$ is employed. In what follows, we assume that $G=Z_{v}$, and H is a subgroup of order h in Z_{v}. Then $H=\{i \cdot v / h: 0 \leq i \leq h-1\}$. We usually denote an H-regular $(v, k ; \lambda)$-incomplete difference matrix over Z_{v} by h-regular $(v, k ; \lambda)$ ICDM if $|H|=h$. When $H=\emptyset$ or $h=0$, an H-regular $(v, k ; \lambda)$-incomplete difference matrix over Z_{v} is termed as $(v, k ; \lambda)$-CDM.

Lemma 3.1 ([41]) If $m \geq 5$ is odd and $\operatorname{gcd}(m, 27) \neq 9$, then there exists an $(m, 4 ; 1)$-CDM.
Lemma 3.2 ([13]) There exists a 2-regular ($m, 4 ; 1$)-ICDM for $m \in\{12,18\}$, or $m=2^{n}$ and $n \geq 3$.

The following two constructions were stated with Theorems 11 and 12 in [36], which were similar to the constructions in [27].

Construction 3.3 ([36]) Suppose that both a g-regular $C P(W, 1, Q ; v)$ and an optimal $C P(W, 1$, $Q ; g)$ exist, then an optimal $C P(W, 1, Q ; v)$ exists. Moreover, if the given $C P(W, 1, Q ; g)$ is r regular, then so is the derived $C P(W, 1, Q ; v)$.

Construction 3.4 ([36]) Suppose that there exist a g-regular $C P(W, 1, Q ; v)$, an ($m, w_{p} ; 1$)$C D M$, and an optimal $C P(W, 1, Q ; g m)$. Then there exists an optimal $C P(W, 1, Q ; m v)$. Moreover, if the given $C P(W, 1, Q ; g m)$ is r-regular, then so is the derived $C P(W, 1, Q ; m v)$.

Similar to the constructions in [13] and [40], the following results of Constructions 3.5 and 3.7 are obtained.

Construction 3.5 Let v and m be positive integers such that $\operatorname{gcd}(m, v)=1$. Suppose that there exist a g-regular $C P(W, 1, Q ; v)$, an h-regular $\left(m, w_{p} ; 1\right)$-ICDM, and an hg-regular $C P(W, 1, Q ; h v)$ (or a gh-regular $C P(W, 1, Q ; g m)$, respectively). Then there exists a gm-regular $C P(W, 1, Q ; m v)$ (or an hv-regular $C P(W, 1, Q ; m v)$, respectively).

Proof Suppose that \mathcal{F}_{1} is the family of base blocks of the given g-regular $\operatorname{CP}(W, 1, Q ; v)$, whose difference leave plus the singleton $\{0\}$ consists of the additive subgroup $U=\{0, v / g, 2 v / g, \ldots,(g-$ 1) $v / g\}$ of Z_{v}. Let $D=\left(d_{i j}\right)$ be an h-regular $\left(m, w_{p} ; 1\right)$-ICDM, where $d_{i j} \in Z_{m}$ for $0 \leq i \leq w_{p}-1$ and $1 \leq j \leq m-h$. Then for $0 \leq i \neq j \leq w_{p}-1$, the multiset $\left\{d_{i l}-d_{j l}: 1 \leq l \leq m-h\right\}=Z_{m} \backslash H$, where $H=\{0, m / h, \ldots,(h-1) m / h\}$.

Let $G=Z_{v} \times Z_{m}, H_{1}=U \times Z_{m}$, and $H_{2}=Z_{v} \times H$. Since $\operatorname{gcd}(m, v)=1, G$ is isomorphic to $Z_{m v}$. Similarly, $H_{1} \cong Z_{g m}$ and $H_{2} \cong Z_{h v}$. Let \mathcal{F}_{2} be the family of base blocks of the given $h g$-regular $\mathrm{CP}(W, 1, Q ; h v)$ (or a $g h$-regular $\mathrm{CP}(W, 1, Q ; g m)$, respectively) in H_{2} (or H_{1}, respectively) whose difference leave plus the singleton $\{(0,0)\}$ is $U \times H$. Next, construct a $g m$-regular $\mathrm{CP}(W, 1, Q ; m v)$ (or an $h v$-regular $\mathrm{CP}(W, 1, Q ; m v)$, respectively) in G so that its difference leave plus the singleton $\{(0,0)\}$ is H_{1} (or H_{2}, respectively) as follows:

For each base block $B=\left\{b_{0}, b_{1}, \ldots, b_{w_{r}-1}\right\} \in \mathcal{F}_{1}$, where $w_{r} \in W, r \in\{0,1, \ldots, p\}$, we take
$m-h$ base blocks

$$
B_{j}=\left\{\left(b_{0}, d_{0 j}\right),\left(b_{1}, d_{1 j}\right), \ldots,\left(b_{w_{r}-1}, d_{w_{r}-1, j}\right)\right\}
$$

for $1 \leq j \leq m-h$.
Let $\mathcal{F}=\left\{B_{j}: B \in \mathcal{F}_{1}, 1 \leq j \leq m-h\right\} \cup \mathcal{F}_{2}$. It is readily checked that $\Delta \mathcal{F}$ covers each integer in $G \backslash H_{1}$ (or $G \backslash H_{2}$, respectively) exactly once.

Let g be a divisor of v such that $v=g v_{0}$. Suppose that $\mathcal{F}=\left\{B_{i}: i=1,2, \ldots, t\right\}$ is the family of base blocks of an $h g$-regular $\mathrm{CP}(W, 1, Q ; h v)$, where $B_{i}=\left\{0, b_{1 i}, b_{2 i}, \ldots, b_{w_{r}-1, i}\right\}$ for $w_{r} \in W, r \in\{0,1, \ldots, p\}$, and $i=1,2, \ldots, t$. Define

$$
e l e(\mathcal{F})=\bigcup_{i=1}^{t}\left\{b_{1 i}, b_{2 i}, \ldots, b_{w_{r}-1, i}\right\}
$$

The $h g$-regular $\mathrm{CP}(W, 1, Q ; h v)$ is said to be h-perfect, denoted by $h g$-regular h-perfect $\mathrm{CP}(W, 1, Q ; h v)$, if

$$
\operatorname{ele}(\mathcal{F}) \subseteq\left\{a+b v: 0 \leq a \leq\left\lfloor\frac{v}{2}\right\rfloor, a \neq 0, v_{0}, 2 v_{0}, \ldots,(g-1) v_{0} ; b=0,1, \ldots, h-1\right\}
$$

Some useful examples of $h g$-regular h-perfect $\mathrm{CP}(W, 1, Q ; h v)$ are exhibited in the following example.

Example 3.6 There exists an $h g$-regular h-perfect $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; h v)$ for $h \in\{1,2\}$ and $(v, g) \in\{(32,8),(108,12),(96,24),(144,24)\}$.

Proof The base blocks of an $h g$-regular h-perfect $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; h v)$ are listed below.

$$
\begin{aligned}
& (h, v, g)=(1,32,8): \\
& \{0,1,6,15\}, \quad\{0,2,13\}, \quad\{0,3,10\} . \\
& (h, v, g)=(2,32,8): \\
& \{0,1,3,10\}, \quad\{0,13,34,39\}, \quad\{0,14,33\}, \quad\{0,15,37\}, \quad\{0,35,46\}, \quad\{0,41,47\} . \\
& (h, v, g)=(1,108,12): \\
& \{0,1,3,29\}, \quad\{0,4,10,34\}, \quad\{0,5,21,52\}, \quad\{0,7,39,53\}, \quad\{0,8,48\}, \quad\{0,11,44\}, \\
& \{0,12,49\}, \quad\{0,13,51\}, \quad\{0,15,50\}, \quad\{0,17,42\}, \quad\{0,19,41\}, \quad\{0,20,43\} \text {. } \\
& (h, v, g)=(2,108,12): \\
& \begin{array}{lllll}
\{0,1,40,110\}, & \{0,2,43,114\}, & \{0,3,47,116\}, & \{0,4,132,156\}, & \{0,5,51,129\}, \\
\{0,6,148,155\}, & \{0,10,131,160\}, & \{0,25,111,143\}, & \{0,11,134\}, & \{0,17,154\}, \\
\{0,19,52\}, & \{0,12,49\}, & \{0,13,48\}, & \{0,14,133\}, & \{0,15,151\}, \\
\{0,16,157\}, & \{0,20,159\}, & \{0,21,161\}, & \{0,23,53\}, & \{0,26,115\}, \\
\{0,28,50\}, & \{0,31,122\}, & \{0,34,42\}, & \{0,38,158\} . &
\end{array} \\
& (h, v, g)=(1,96,24) \text { : } \\
& \{0,1,3,26\}, \quad\{0,5,22,43\}, \quad\{0,6,35,45\}, \quad\{0,7,41\}, \quad\{0,9,46\}, \quad\{0,11,30\}, \\
& \{0,13,31\}, \quad\{0,14,47\}, \quad\{0,15,42\} \text {. } \\
& (h, v, g)=(2,96,24):
\end{aligned}
$$

| $\{0,1,34,99\}$, | $\{0,2,43,109\}$, | $\{0,5,42,111\}$, | $\{0,6,101,131\}$, | $\{0,7,110,129\}$, |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\{0,18,47,137\}$, | $\{0,9,114\}$, | $\{0,10,143\}$, | $\{0,11,141\}$, | $\{0,13,134\}$, |
| $\{0,15,46\}$, | $\{0,17,135\}$, | $\{0,21,138\}$, | $\{0,22,45\}$, | $\{0,25,39\}$, |
| $\{0,26,139\}$, | $\{0,27,142\}$, | $\{0,35,38\}$. | | |
| $(h, v, g)=(1,144,24):$ | | | | |
| $\{0,1,32,51\}$, | $\{0,2,35,55\}$, | $\{0,3,37,52\}$, | $\{0,4,43,65\}$, | $\{0,5,62,69\}$, |
| $\{0,8,71\}$, | $\{0,9,38\}$, | $\{0,10,68\}$, | $\{0,11,67\}$, | $\{0,13,59\}$, |
| $\{0,14,41\}$, | $\{0,16,44\}$, | $\{0,17,40\}$, | $\{0,21,47\}$, | $\{0,25,70\}$ |
| $(h, v, g)=(2,144,24):$ | | | | |
| $\{0,14,51,145\}$, | $\{0,15,53,148\}$, | $\{0,16,55,146\}$, | $\{0,17,52,151\}$, | $\{0,19,59,147\}$, |
| $\{0,20,61,159\}$, | $\{0,21,64,173\}$, | $\{0,22,56,175\}$, | $\{0,23,67,184\}$, | $\{0,25,70,188\}$, |
| $\{0,27,191\}$, | $\{0,28,195\}$, | $\{0,29,62\}$, | $\{0,32,208\}$, | $\{0,46,211\}$, |
| $\{0,47,58\}$, | $\{0,196,203\}$, | $\{0,49,215\}$, | $\{0,50,63\}$, | $\{0,65,68\}$, |
| $\{0,69,172\}$, | $\{0,71,177\}$, | $\{0,178,187\}$, | $\{0,181,183\}$, | $\{0,26,57\}$, |
| $\{0,199,207\}$, | $\{0,201,206\}$, | $\{0,202,212\}$, | $\{0,205,209\}$, | $\{0,213,214\}$. |

Construction 3.7 Suppose that there exist a g-regular 1-perfect $C P(W, 1, Q ; v)$, an $h g$-regular h-perfect $C P(W, 1, Q ; h v)$, and an h-regular ($m, w_{p} ; 1$)-ICDM, then there exists an $m g$-regular m-perfect $C P(W, 1, Q ; m v)$.

Proof Suppose that $\mathcal{A}=\left\{A_{i}=\left\{0, x_{1 i}, x_{2 i}, \ldots, x_{w_{r}-1, i}\right\}: i=1,2, \ldots, t\right\}, w_{r} \in W, r \in$ $\{0,1, \ldots, p\}$ is a g-regular 1 -perfect $\operatorname{CP}(W, 1, Q ; v)$. Let $\mathcal{B}=\left\{B_{j}=\left\{0, a_{1 j}+v b_{1 j}, a_{2 j}+\right.\right.$ $\left.\left.v b_{2 j}, \ldots, a_{w_{r}-1, j}+v b_{w_{r}-1, j}\right\}: j=1,2, \ldots, s\right\}, w_{r} \in W, r \in\{0,1, \ldots, p\}$ be an $h g$-regular h-perfect $\mathrm{CP}(W, 1, Q ; h v)$, where $a_{1 j}, a_{2 j}, \ldots, a_{w_{r}-1, j} \in\{0,1, \ldots,\lfloor v / 2\rfloor\} \backslash\{0, v / g, 2 v / g, \ldots,(g-$ 1) $v / g\}$, and $b_{1 j}, b_{2 j}, \ldots, b_{w_{r}-1, j} \in\{0,1, \ldots, h-1\}$ for $1 \leq j \leq s$.

Let $D=\left(d_{i j}\right)$ be an h-regular ($m, w_{p} ; 1$)-ICDM, where $d_{i j} \in Z_{m}$ for $0 \leq i \leq w_{p}-1$ and $1 \leq$ $j \leq m-h$ such that the multiset $\left\{d_{i l}-d_{j l}: 1 \leq l \leq m-h\right\}=Z_{m} \backslash\{0, m / h, 2 m / h, \ldots,(h-1) m / h\}$. Now the desired $m g$-regular $\mathrm{CP}(W, 1, Q ; m v)$ will be based on $Z_{m v}$ whose difference leave plus the singleton $\{0\}$ forms the subgroup $H=\{i+j v: i=0, v / g, 2 v / g, \ldots,(g-1) v / g ; j=0,1, \ldots, m-1\}$. The required base blocks come from the following two parts:

Part 1: For each base block $A_{i}=\left\{0, x_{1 i}, x_{2 i}, \ldots, x_{w_{r}-1, i}\right\} \in \mathcal{A}$, we take $m-h$ base blocks

$$
A_{i l}=\left\{0, x_{1 i}+\left(d_{1 l}-d_{0 l}\right) \cdot v, x_{2 i}+\left(d_{2 l}-d_{0 l}\right) \cdot v, \ldots, x_{w_{r}-1, i}+\left(d_{w_{r}-1, l}-d_{0 l}\right) \cdot v\right\},
$$

for $l=1,2, \ldots, m-h$, where the additive operation is performed in $Z_{m v}$. Let $\mathcal{F}_{1}=\left\{A_{i l}\right.$: $1 \leq i \leq t, 1 \leq l \leq m-h\}$. Then, by noting that $x_{1 i}, x_{2 i}, \ldots, x_{w_{r}-1, i} \in\{0,1,2, \ldots,\lfloor v / 2\rfloor\} \backslash$ $\{0, v / g, 2 v / g, \ldots,(g-1) v / g\}$ so that $-\lfloor v / 2\rfloor \leq x_{e i}-x_{f i} \leq\lfloor v / 2\rfloor$ for $1 \leq e \neq f \leq w_{r}-1$ and $1 \leq i \leq t$, it is readily checked from the property of the h-regular ($m, w_{p} ; 1$)-ICDM that

$$
\Delta \mathcal{F}_{1}= \pm\{a+b v: 0 \leq a \leq\lfloor v / 2\rfloor, a \neq 0, v / g, 2 v / g, \ldots,(g-1) v / g, b \in M\},
$$

where $M=\{0,1, \ldots, m-1\} \backslash\{0, m / h, \ldots,(h-1) m / h\}$.
Part 2: For each base block $B_{j}=\left\{0, a_{1 j}+v b_{1 j}, a_{2 j}+v b_{2 j}, \ldots, a_{w_{r}-1, j}+v b_{w_{r}-1, j}\right\} \in \mathcal{B}$, we
take a base block

$$
B_{j}^{\prime}=\left\{0, a_{1 j}+b_{1 j} \cdot m v / h, a_{2 j}+b_{2 j} \cdot m v / h, \ldots, a_{w_{r}-1, j}+b_{w_{r}-1, j} \cdot m v / h\right\} .
$$

Let $\mathcal{F}_{2}=\left\{B_{j}^{\prime}: 1 \leq j \leq s\right\}$. Then similarly it can be readily checked that

$$
\begin{gathered}
\Delta \mathcal{F}_{2}= \pm\{a+b v: 0 \leq a \leq\lfloor v / 2\rfloor, a \neq 0, v / g, 2 v / g, \ldots,(g-1) v / g \\
b=0, m / h, \ldots,(h-1) m / h\}
\end{gathered}
$$

The differences arising from these base blocks $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ cover each element in $Z_{m v} \backslash\{i \cdot v / g: 0 \leq$ $i \leq g m-1\}$ exactly once. Therefore, this construction produces an $m g$-regular $\mathrm{CP}(W, 1, Q ; m v)$. It is straightforward to check that it is m-perfect. \square

4. Proof of Theorem 1.8

Lemma 4.1 There exists a 24-regular $C P\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{i}\right)$ for any integer $i \geq 2$.
Proof For $i=2$, a 24-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{2}\right)$ comes from Example 3.6. For $i=3$, the 78 base blocks of a 24-regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{3}\right)$ are listed as follows.

$\{0,51,181,325\}$,	$\{0,52,185,327\}$,	$\{0,53,190,326\}$,	$\{0,55,182,335\}$,	$\{0,56,196,372\}$,
$\{0,57,202,328\}$,	$\{0,58,197,404\}$,	$\{0,59,205,397\}$,	$\{0,66,204,383\}$,	$\{0,67,210,403\}$,
$\{0,68,223,337\}$,	$\{0,69,226,384\}$,	$\{0,70,201,435\}$,	$\{0,71,225,620\}$,	$\{0,72,231,411\}$,
$\{0,73,233,357\}$,	$\{0,74,235,418\}$,	$\{0,75,198,361\}$,	$\{0,76,240,424\}$,	$\{0,77,199,426\}$,
$\{0,60,194,341\}$,	$\{0,61,209,329\}$,	$\{0,62,211,340\}$,	$\{0,63,195,345\}$,	$\{0,64,215,330\}$,
$\{0,65,217,342\}$,	$\{0,100,206\}$,	$\{0,101,208\}$,	$\{0,102,212\}$,	$\{0,109,220\}$,
$\{0,113,232\}$,	$\{0,116,285\}$,	$\{0,117,238\}$,	$\{0,118,288\}$,	$\{0,172,173\}$,
$\{0,175,177\}$,	$\{0,247,256\}$,	$\{0,249,261\}$,	$\{0,250,263\}$,	$\{0,252,267\}$,
$\{0,254,289\}$,	$\{0,619,623\}$,	$\{0,255,292\}$,	$\{0,257,290\}$,	$\{0,258,294\}$,
$\{0,259,293\}$,	$\{0,260,298\}$,	$\{0,78,165\}$,	$\{0,79,167\}$,	$\{0,80,166\}$,
$\{0,82,171\}$,	$\{0,83,168\}$,	$\{0,84,174\}$,	$\{0,91,186\}$,	$\{0,92,188\}$,
$\{0,93,187\}$,	$\{0,97,200\}$,	$\{0,98,141\}$,	$\{0,104,295\}$,	$\{0,105,334\}$,
$\{0,112,156\}$,	$\{0,128,178\}$,	$\{0,203,214\}$,	$\{0,218,221\}$,	$\{0,219,236\}$,
$\{0,228,242\}$,	$\{0,239,246\}$,	$\{0,241,262\}$,	$\{0,248,272\}$,	$\{0,279,301\}$,
$\{0,296,343\}$,	$\{0,599,617\}$,	$\{0,600,606\}$,	$\{0,602,607\}$,	$\{0,603,622\}$,
$\{0,608,616\}$,	$\{0,618,628\}$,	$\{0,609,625\}$.		

Now we deal with $i=4$. Applying Construction 3.7, we get a 24×9-regular 18 -perfect $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{4}\right)$, where the needed 12 -regular 1-perfect $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\}$; 12×3^{2}), 24-regular 2-perfect $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{2}\right)$ and 2 -regular (18,$4 ; 1$)-ICDM come from Example 3.6 and Lemma 3.2. Start from this 24×9-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{4}\right)$, and apply Construction 3.3 with a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{2}\right)$ to obtain a 24 regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{4}\right)$.

For $i \geq 5$, start from a 24-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{t}\right)$ from above with $t \equiv$ $i(\bmod 3)$ and $t \in\{2,3,4\}$. Apply, recursively, Construction 3.4 with a $\left(3^{3}, 4 ; 1\right)$-CDM from Lemma 3.1. This gives a 24-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{i}\right)$ for $i \geq 5$.

Lemma 4.2 There exists a 24-regular $C P\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3^{i}\right)$ for any integer $i \geq 1$.
Proof For $i=1$, the 15 base blocks of a 24-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3)$ are

$$
\begin{array}{lllll}
\{0,1,3,76\}, & \{0,4,41,81\}, & \{0,5,43,87\}, & \{0,7,46,93\}, & \{0,8,53,88\}, \\
\{0,9,61\}, & \{0,10,122\}, & \{0,11,127\}, & \{0,13,123\}, & \{0,14,125\}, \\
\{0,15,128\}, & \{0,20,79\}, & \{0,23,50\}, & \{0,26,55\}, & \{0,25,74\} .
\end{array}
$$

For $i=2$, the 51 base blocks of a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3^{2}\right)$ are

$\{0,1,3,221\}$,	$\{0,4,129,223\}$,	$\{0,5,135,222\}$,	$\{0,6,137,230\}$,	$\{0,7,139,235\}$,
$\{0,8,141,233\}$,	$\{0,9,143,238\}$,	$\{0,10,146,237\}$,	$\{0,11,149,247\}$,	$\{0,12,152,254\}$,
$\{0,13,155,239\}$,	$\{0,14,159,245\}$,	$\{0,15,163,263\}$,	$\{0,16,166,265\}$,	$\{0,17,164,267\}$,
$\{0,19,170,259\}$,	$\{0,20,176,264\}$,	$\{0,21,175\}$,	$\{0,22,179\}$,	$\{0,23,200\}$,
$\{0,42,321\}$,	$\{0,24,347\}$,	$\{0,25,186\}$,	$\{0,26,351\}$,	$\{0,27,402\}$,
$\{0,28,359\}$,	$\{0,31,350\}$,	$\{0,29,189\}$,	$\{0,32,352\}$,	$\{0,33,355\}$,
$\{0,34,362\}$,	$\{0,35,389\}$,	$\{0,39,366\}$,	$\{0,37,363\}$,	$\{0,41,394\}$,
$\{0,45,305\}$,	$\{0,46,174\}$,	$\{0,47,364\}$,	$\{0,60,251\}$,	$\{0,48,356\}$,
$\{0,65,374\}$,	$\{0,44,379\}$,	$\{0,49,171\}$,	$\{0,50,361\}$,	$\{0,52,368\}$,
$\{0,51,365\}$,	$\{0,55,370\}$,	$\{0,56,369\}$,	$\{0,61,373\}$,	$\{0,40,358\}$,
$\{0,75,349\}$.				

Now we deal with $i=3$. Applying Construction 3.7, we get a 12×12-regular 12 -perfect $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3^{3}\right)$, where the needed 12 -regular 1-perfect $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\}$; 12×3^{2}), 24-regular 2-perfect $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{2}\right)$ and 2 -regular (12,$4 ; 1$)-ICDM comes from Example 3.6 and Lemma 3.2. Start from this 12×12-regular $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times$ $\left.3^{3}\right)$, and apply Construction 3.3 with a 24 -regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3)$ to obtain a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3^{3}\right)$.

For $i \geq 4$, write $i=3 s+t$ where $s \geq 1$ and $t=1,2,3$. Take a 24 -regular $\operatorname{CP}(\{3,4\}, 1,\{2 / 3$, $\left.1 / 3\} ; 48 \times 3^{t}\right)$ from above. Apply Construction 3.4 with $g=24, m=3^{3 s}$, and $v=48 \times 3^{t}$ to obtain a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3^{i}\right)$ for $i \geq 4$, where the needed 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{3 s}\right)$ and $\left(3^{3 s}, 4 ; 1\right)$-CDM exist by Lemmas 4.1 and 3.1.

Lemma 4.3 If $u>1$ is an integer such that $\operatorname{gcd}(6, u)=1$, then there exists a 24 -regular $C P\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g u \times 3^{i}\right)$ for $g=48,72$ and $i \geq 1$.

Proof For $i \geq 1$, there exists a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g \times 3^{i}\right)$ for $g=48,72$ by Lemmas 4.2 and 4.1, respectively. Take a 24 -regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 u)$ for $\operatorname{gcd}(6, u)=$ 1 and $u>1$ from Lemma 1.7. Then apply Construction 3.4 with a $(u, 4 ; 1)$-CDM from Lemma 3.1 to obtain a 24 -regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g u \times 3^{i}\right)$.

Lemma 4.4 There exists a 24-regular $C P\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i}\right)$ for any integer $i \geq 2$.
Proof For $i=2$, a 24 -regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{2}\right)$ exists by Example 3.6. For $i=3,4$, the base blocks of the desired CPs are listed as follows.

$i=3:$	$\{0,1,60,101\}$,	$\{0,2,63,105\}$,	$\{0,3,65,102\}$,	$\{0,4,70,113\}$,	$\{0,5,73,111\}$,
$\{0,6,116,123\}$,	$\{0,10,94,145\}$,	$\{0,11,177\}$,	$\{0,12,67\}$,	$\{0,14,167\}$,	
$\{0,17,165\}$,	$\{0,18,95\}$,	$\{0,19,159\}$,	$\{0,21,179\}$,	$\{0,28,74\}$,	
$\{0,29,78\}$,	$\{0,30,172\}$,	$\{0,31,170\}$,	$\{0,35,169\}$,	$\{0,36,107\}$,	
$\{0,45,183\}$.					
$i=4:$					
$\{0,21,150,221\}$,	$\{0,22,152,225\}$,	$\{0,23,154,222\}$,	$\{0,24,151,226\}$,	$\{0,25,157,223\}$,	
$\{0,26,164,231\}$,	$\{0,27,166,228\}$,	$\{0,28,165,235\}$,	$\{0,29,155,238\}$,	$\{0,34,270,273\}$,	
$\{0,35,169,278\}$,	$\{0,36,287,295\}$,	$\{0,30,170,242\}$,	$\{0,31,167,241\}$,	$\{0,33,168,237\}$,	
$\{0,45,319\}$,	$\{0,46,323\}$,	$\{0,47,326\}$,	$\{0,49,325\}$,	$\{0,50,321\}$,	
$\{0,51,171\}$,	$\{0,52,344\}$,	$\{0,53,346\}$,	$\{0,56,345\}$,	$\{0,57,347\}$,	
$\{0,76,178\}$,	$\{0,77,193\}$,	$\{0,84,187\}$,	$\{0,85,189\}$,	$\{0,86,371\}$,	
$\{0,87,283\}$,	$\{0,41,302\}$,	$\{0,42,305\}$,	$\{0,43,303\}$,	$\{0,44,330\}$,	
$\{0,55,379\}$,	$\{0,78,369\}$,	$\{0,88,382\}$,	$\{0,100,365\}$,	$\{0,115,377\}$,	
$\{0,117,383\}$,	$\{0,173,190\}$,	$\{0,364,373\}$,	$\{0,366,372\}$,	$\{0,370,374\}$,	

Now we deal with the case of $i \geq 5$. Start from a 24-regular 1-perfect $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\}$; $\left.24 \times 2^{2}\right)$ and a 48 -regular 2-perfect $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 2^{2}\right)$ by Example 3.6. Take a 2 regular $\left(2^{i-2}, 4 ; 1\right)$-ICDM from Lemma 3.2 . Then apply Construction 3.7 with $g=24, m=2^{i-2}$, $h=2$ and $v=24 \times 2^{2}$ to obtain a $24 \times 2^{i-2}$-regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i}\right)$. Combine with a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{3}\right)$ and a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{4}\right)$ from above, we apply Construction 3.3 inductively on i to get a 24 -regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\}$; 24×2^{i}) for any integer $i \geq 5$.

Lemma 4.5 There exists a 24 -regular $C P\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 \times 2^{i}\right)$ for any integer $i \geq 1$.
Proof For $i=1$, a 24 -regular $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 \times 2)$ exists by Example 3.6. For $i=2$, the 33 base blocks of a 24-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 \times 2^{2}\right)$ are listed as follows.

$\{0,1,115,164\}$,	$\{0,2,112,167\}$,	$\{0,3,119,162\}$,	$\{0,4,122,185\}$,	$\{0,5,136,187\}$,
$\{0,6,139,189\}$,	$\{0,7,141,186\}$,	$\{0,8,143,196\}$,	$\{0,9,146,193\}$,	$\{0,10,148,205\}$,
$\{0,11,209,232\}$,	$\{0,13,130\}$,	$\{0,14,127\}$,	$\{0,15,215\}$,	$\{0,16,217\}$,
$\{0,17,128\}$,	$\{0,18,220\}$,	$\{0,19,222\}$,	$\{0,20,227\}$,	$\{0,21,234\}$,
$\{0,22,236\}$,	$\{0,25,94\}$,	$\{0,26,91\}$,	$\{0,27,253\}$,	$\{0,28,98\}$,
$\{0,29,258\}$,	$\{0,31,230\}$,	$\{0,32,242\}$,	$\{0,33,97\}$,	$\{0,34,246\}$,
$\{0,37,248\}$,	$\{0,39,247\}$,	$\{0,38,244\}$.		

There exist a 8-regular 1-perfect $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 32)$, a 16-regular 2-perfect $\mathrm{CP}(\{3$, $4\}, 1,\{2 / 3,1 / 3\} ; 64)$ and a 2 -regular $(18,4 ; 1)$-ICDM from Example 3.6 and Lemma 3.2. Then
apply Construction 3.7 with $g=8, m=18, h=2$ and $v=32$ to obtain a 72×2-regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 \times 2^{3}\right)$. Combine with the existence of a 24 -regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3$, $1 / 3\} ; 72 \times 2)$, then a 24 -regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 \times 2^{3}\right)$ follows from Construction 3.3.

For $i \geq 4$, start from a 24 -regular 1-perfect $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 6)$ and a 48 regular 2-perfect $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 6)$, which exist by Example 3.6. Then take a 2-regular $\left(2^{i-1}, 4 ; 1\right)$-ICDM from Lemma 3.2, and apply Construction 3.7 with $g=24, m=2^{i-1}$, $h=2, v=24 \times 6$, to obtain a $24 \times 2^{i-1}$-regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 \times 2^{i}\right)$. By Lemma 4.4 there is a 24 -regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i-1}\right)$. Then apply Construction 3.3 to obtain a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 \times 2^{i}\right)$.

Lemma 4.6 There exists a 24 -regular $C P\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i} 3^{j}\right)$ for any integer $i, j \geq 2$.
Proof When $i \geq 2$ and $j=2$. Start from a 3-regular $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 9 \times 3)$ and a 6-regular $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 18 \times 3)$, which exist by Example 1.3. Take a 2 -regular $\left(2^{i+3}, 4 ; 1\right)$-ICDM from Lemma 3.2. Then apply Construction 3.5 with $g=3, m=2^{i+3}, h=2$, $v=9 \times 3$, to obtain a 24×2^{i}-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i} 3^{2}\right)$. There exists a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i}\right)$ by Lemma 4.4. We apply Construction 3.3 to obtain a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i} 3^{2}\right)$.

When $i \geq 2$ and $j \geq 3$. Start from a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i}\right)$, a $\left(3^{j}, 4 ; 1\right)$ CDM , and a 24-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{j}\right)$, which exist by Lemmas 4.4, 3.1 and 4.1, respectively. Then apply Construction 3.4 with $v=24 \times 2^{i}, g=24$, and $m=3^{j}$, to obtain a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i} 3^{j}\right)$.

Lemma 4.7 There exists a g-regular $C P\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g \times 5^{i}\right)$ for $g=48,72$ and $i \geq 1$.
Proof For $(g, i)=(48,1)$, the 24 base blocks of a 48-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 5)$ are

$\{0,1,77,128\}$,	$\{0,2,81,133\}$,	$\{0,3,86,129\}$,	$\{0,4,78,136\}$,	$\{0,6,88,144\}$,
$\{0,7,91,148\}$,	$\{0,8,97,214\}$,	$\{0,9,103,201\}$,	$\{0,11,224\}$,	$\{0,12,118\}$,
$\{0,13,181\}$,	$\{0,14,186\}$,	$\{0,17,193\}$,	$\{0,18,87\}$,	$\{0,21,194\}$,
$\{0,22,221\}$,	$\{0,23,124\}$,	$\{0,29,198\}$,	$\{0,32,209\}$,	$\{0,33,212\}$,
$\{0,37,204\}$,	$\{0,38,216\}$,	$\{0,44,93\}$,	$\{0,53,119\}$.	

For $(g, i)=(72,1)$, the 36 base blocks of a 72-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 \times 5)$ are

$\{0,31,122,183\}$,	$\{0,32,121,188\}$,	$\{0,33,126,184\}$,	$\{0,34,131,182\}$,	$\{0,36,123,189\}$,
$\{0,37,129,181\}$,	$\{0,38,124,187\}$,	$\{0,39,147,201\}$,	$\{0,41,139,332\}$,	$\{0,43,137,186\}$,
$\{0,44,127,243\}$,	$\{0,46,128,264\}$,	$\{0,62,133\}$,	$\{0,64,132\}$,	$\{0,72,146\}$,
$\{0,73,154\}$,	$\{0,76,164\}$,	$\{0,77,134\}$,	$\{0,78,157\}$,	$\{0,84,333\}$,
$\{0,99,358\}$,	$\{0,102,158\}$,	$\{0,103,222\}$,	$\{0,104,351\}$,	$\{0,106,352\}$,
$\{0,109,301\}$,	$\{0,141,253\}$,	$\{0,118,166\}$,	$\{0,163,169\}$,	$\{0,307,318\}$,
$\{0,313,331\}$,	$\{0,334,346\}$,	$\{0,336,343\}$,	$\{0,337,341\}$,	$\{0,338,339\}$,
$\{0,344,347\}$.				

For $i>1$, start from a g-regular $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g \times 5)$, then apply Construction 3.4 inductively with a $(5,4 ; 1)$-CDM from Lemma 3.1 to obtain a g-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g \times$ 5^{i}).

Lemma 4.8 If $u>1$ is an integer such that $\operatorname{gcd}(6, u)=1$, then there exists a g-regular $C P(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g u)$ for $g=48,72$.

Proof For $u>1$ such that $\operatorname{gcd}(6, u)=1$, write $u=5^{i} u^{\prime}$ where $i \geq 0$ and $5 \nmid u^{\prime}$. If $u^{\prime}=1$, then $i \geq 1$, the conclusion follows from Lemma 4.7. If $u^{\prime}>1$, then $\operatorname{gcd}\left(u^{\prime}, 30\right)=1$. When $i=0$ and $u^{\prime}>1$, there exists a g-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g u^{\prime}\right)$ by Lemmas 2.2 and 2.3. When $i \geq 1$ and $u^{\prime}>1$, take a g-regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g u^{\prime}\right)$, a $\left(5^{i}, 4 ; 1\right)$-CDM from Lemma 3.1, and a g-regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g \times 5^{i}\right)$ from Lemma 4.7, then apply Construction 3.4 to obtain a g-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; g u)$.

Lemma 4.9 There exists an optimal $C P(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 u)$ for any positive integer $u>1$.
Proof Let $u=2^{i} 3^{j} u^{\prime}$, where $\operatorname{gcd}\left(6, u^{\prime}\right)=1$. We have the following two cases.
Case 1 When $u^{\prime}=1$, then $24 u=24 \times 2^{i} 3^{j}$.
If $i=0$, then $j \geq 1$. When $j=1$, there is an optimal $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72)$ by Example 1.2. When $j \geq 2$, there is a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{j}\right)$ by Lemma 4.1. If $i=1$, then $j \geq 0$. When $j=0$, there is an optimal $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48)$ by Example 1.2. When $j \geq 1$, there is a 24 -regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3^{j}\right)$ by Lemma 4.2 . If $i \geq 2$, then $j \geq 0$, there exists a 24-regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i} 3^{j}\right)$ by Lemmas 4.4-4.6.

Case 2 When $u^{\prime}>1$, then $24 u=24 \times 2^{i} 3^{j} u^{\prime}$.
Case 2.1 If $i=0$, then $j \geq 0$. When $j=0$, there is a 24-regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 u)$ by Lemma 1.7. When $j=1$, start from a 72 -regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 u^{\prime}\right)$ from Lemma 4.8 , then apply Construction 3.3 to get an optimal $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72 u^{\prime}\right)$, where the needed optimal $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 72)$ comes from Example 1.2. When $j \geq 2$, there is a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 3^{j} u^{\prime}\right)$ by Lemma 4.3.

Case 2.2 If $i=1$, then $j \geq 0$. When $j=0$, there exist a 48-regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 u^{\prime}\right)$, and an optimal $\operatorname{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48)$, which come from Lemma 4.8 and Example 1.2, respectively. Then apply Construction 3.3 to obtain an optimal CP $\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 u^{\prime}\right)$. When $j \geq 1$, there is a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 48 \times 3^{j}\right)$ by Lemma 4.3.

Case 2.3 If $i \geq 2$, then $j \geq 0$. Start from a 24 -regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i} 3^{j}\right)$, which exists by Lemmas 4.4-4.6. Take a 24 -regular $\operatorname{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 u^{\prime}\right)$ from Lemma 1.7. Then apply Construction 3.4 with a $\left(u^{\prime}, 4 ; 1\right)$-CDM from Lemma 3.1, to obtain a 24 -regular $\mathrm{CP}\left(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 \times 2^{i} 3^{j} u^{\prime}\right)$. That is a 24 -regular $\mathrm{CP}(\{3,4\}, 1,\{2 / 3,1 / 3\} ; 24 u)$.

By Lemma 1.5, the resulting 24-regular CPs from above are also optimal.
Combine the results of Lemmas 1.4 and 4.9, we complete the proof of Theorem 1.8.

Acknowledgements We thank the referees for their time and comments.

References

[1] J. A. SALEHI. Code division multiple access techniques in optical fiber networks-Part I fundamental principles. IEEE Trans. Commum., 1989, 37(8): 824-833.
[2] J. A. SALEHI, C. A. BRACKETT. Code division multiple access techniques in optical fiber networks-Part II systems performance analysis. IEEE Trans. Commum., 1989, 37(8): 834-842.
[3] F. R. K. CHUNG, J. A. SALEHI, V. K. WEI. Optical orthogonal codes: design, analysis, and applications. IEEE Trans. Inform. Theory, 1989, 35(3): 595-604.
[4] S. W. GOLOMB. Digital Communication with Space Application. Peninsula, Los Alots, CA, 1982.
[5] J. L. MASSEY, P. MATHYS. The collision channel without feedback. IEEE Trans. Inform. Theory, 1985, 31(2): 192-204.
[6] J. A. SALEHI. Emerging optical code-division multiple-access communications systems. IEEE Network, 1989, 3(2): 31-39.
[7] M. P. VECCHI, J. A. SALEHI. Neuromorphic networks based on sparse optical orthogonal codes. Neural Information Processing Systems-Natural and Synthetic, Amer. Inst. Phys., 1988, 814-823.
[8] R. J. R. ABEL, M. BURATTI. Some progress on $(v, 4,1)$ difference families and optical orthogonal codes. J. Combin. Theory, 2004, 106(1): 59-75.
[9] S. BITAN, T. ETZION. Constructions for optimal constant weight cyclically permutable codes and diffeence families. IEEE Trans. Inform. Theory, 1995, 41(1): 77-87.
[10] M. BURATTI. Cyclic designs with block size 4 and related optimal optical orthogonal codes. Des. Codes Cryptogr., 2002, 26(1-3): 111-125.
[11] Yanxun CHANG, R. FUJI-HARA, Ying MIAO. Combinatorial constructions of optimal optical orthogonal codes with weight 4. IEEE Trans. Inform. Theory, 2003, 49(5): 1283-1292.
[12] Yanxun CHANG, Lijun JI. Optimal (4up,5,1) optical orthogonal codes. J. Combin. Des., 2004, 12(5): 346-361.
[13] Yanxun CHANG, Ying MIAO. Constructions for optimal optical orthogonal codes. Discrete Math., 2003, 261(1-3): 127-139.
[14] Kejun CHEN, Gennian GE, Lie ZHU. Starters and related codes. J. Statist. Plann. Inference, 2000, 86(2): 379-395.
[15] Wensong CHU, C. J. COLBOURN. Recursive constructions for optimal ($n, 4,2$)-OOCs. J. Combin. Des., 2004, 12(5): 333-345.
[16] Wensong CHU, S. W. GOLOMB. A new recursive construction for optical orthogonal codes. IEEE Trans. Inform. Theory, 2003, 49(11): 3072-3076.
[17] H. CHUNG, P. V. KUMAR. Optical orthogonal codes new bounds and an optimal construction. IEEE Trans. Inform. Theory, 1990, 36(4): 866-873.
[18] Tao FENG, Yanxun CHANG, Lijun JI. Constructions for strictly cyclic 3-designs and applications to optimal OOCs with $\lambda=2$. J. Combin. Theory Ser. A, 2008, 115(8): 1527-1551.
[19] Tao FENG, Yanxun CHANG, Lijun JI. Constructions for rotational Steiner quadruple systems. J. Combin. Des., 2009, 17(5): 353-368.
[20] R. FUJI-HARA, Ying MIAO. Optical orthogonal codes: Their bounds and new optimal constructions. IEEE Trans. Inform. Theory, 2000, 46(7): 2396-2406.
[21] R. FUJI-HARA, Ying MIAO, Jianxing YIN. Optimal $(9 v, 4,1)$ optical orthogonal codes. SIAM J. Discrete Math., 2001, 14(2): 256-266.
[22] Gennian GE, Jianxing YIN. Constructions for optimal ($v, 4,1$) optical orthogonal codes. IEEE Trans. Inform. Theory, 2001, 47(7): 2998-3004.
[23] Gennian GE, Ying MIAO, Xianwei SUN. Perfect difference families, perfect difference matrices, and related combinatorial structures. J. Combin. Des., 2010, 18(6): 415-449.
[24] Shikui MA, Yanxun CHANG. A new class of optimal optical orthogonal codes with weight five. IEEE Trans. Inform. Theory, 2004, 50(8): 1848-1850.
[25] Shikui MA, Yanxun CHANG. Constructions of optimal optical orthogonal codes with weight five. J. Combin. Des., 2005, 13(1): 54-69.
[26] Xiaomiao WANG, Yanxun CHANG. Further results on ($v, 4,1$)-perfect difference families. Discrete Math., 2010, 310(13-14): 1995-2006.
[27] Jianxing YIN. Some combinatorial constructions for optical orthogonal codes. Discrete Math., 1998, 185(13): 201-219.
[28] F. R. GU, Jingshown WU. Construction and performance analysis of variable-weight optical orthogonal codes for asynchronous optical CDMA systems. J. Lightw. Technol., 2005, 23(2): 740-748.
[29] G. C. YANG. Variable-weight optical orthogonal codes for CDMA networks with multiple performance requirements. IEEE Trans. Commun., 1996, 44(1): 47-55.
[30] M. BURATTI, Yueer WEI, Dianhua WU, et al. Relative difference families with variable block sizes and their related OOCs. IEEE Trans. Inform. Theory, 2011, 57(11): 7489-7497.
[31] Jing JIANG, Dianhua WU, Pingzhi FAN. General constructions of optimal variable-weight optical orthogonal codes. IEEE Trans. Inform. Theory, 2011, 57(7): 4488-4496.
[32] Jing JIANG, Dianhua WU, M. H. LEE. Some infinite classes of optimal ($v,\{3,4\}, 1, Q$)-OOCs with $Q \in$ $\left\{\left(\frac{1}{3}, \frac{2}{3}\right),\left(\frac{2}{3}, \frac{1}{3}\right)\right\}$. Graphs and Combinatorics, 2013, 29(6): 1795-1811.
[33] Yan LIU, Dianhua WU. Constructions of optimal variable-weight OOCs via quadratic residues. Front. Math. China, 2013, 8(4): 869-890.
[34] Dianhua WU, Pingzhi FAN, Hengchao LI, et al. Optimal variable-weight optical orthogonal codes via cyclic difference families. Proc. 2009 IEEE Int. Symp. Information Theory (ISIT' 09), Jun. 28-Jul. 3, 448-452.
[35] Dianhua WU, Pingzhi FAN, Xun WANG, et al. A new class of optimal variable-weight OOCs based on cyclic difference families. Proc. 4th Int. Workshop on Signal Design and its Application in Communications (IWSDA’ 2009), Oct. 19-23, 16-19.
[36] Dianhua WU, Hengming ZHAO, Pingzhi FAN, et al. Optimal variable-weight optical orthogonal codes via difference packing. IEEE Trans. Inform. Theory, 2010, 56(8): 4053-4060.
[37] G. C. YANG. Variable weight optical orthogonal codes for CDMA networks with multiple performance requirements. Proc. IEEE GLOBECOM' 93, 1993, 1(1): 488-492.
[38] Hengming ZHAO, Dianhua WU, Pingzhi FAN. Constructions of optimal variable-weight optical orthogonal codes. J. Combin. Des., 2010, 18(4): 274-291.
[39] Hengming ZHAO, Dianhua WU, Zhengfang MO. Further results on optimal ($v,\{3, k\}, 1,\{1 / 2,1 / 2\})$-OOCs for $k=4,5$. Discrete Math., 2011, 311(1): 16-23.
[40] Hengming ZHAO. On balanced optimal ($18 u,\{3,4\}, 1$) optical orthogonal codes. J. Combin. Des., 2012, 20(6): 290-303.
[41] Gennian GE. On ($g, 4 ; 1$)-difference matrices. Discrete Math., 2005, 301(2-3): 164-174.

[^0]: Received June 13, 2015; Accepted June 8, 2016
 Supported by the National Natural Science Foundation of China (Grant No. 11201252) and the Natural Science Foundation of Ningbo City (Grant No. 2016A610079).

 * Corresponding author

 E-mail address: wangxiaomiao@nbu.edu.cn (Xiaomiao WANG)

