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Abstract This paper establishes some new equalities and inequalities for the null and col-

umn spaces of combinations of two projectors P and Q. Some new necessary and sufficient

conditions for P ± Q to be invertible are given by the structure of null and column space

of some combinations of P and Q. In addition, the inclusion relation of N (PQ + QP ) and

N (PQ − QP ) is discussed and necessary and sufficient conditions for them to be equal are

also studied.
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1. Introduction

Throughout this paper Cm×n denotes the set of all m × n matrices over the complex field

C, In stands for the identity matrix of order n. We use Cn to represent the linear space of all

column vectors of dimension n over C. For A ∈ Cn×n, denote by r(A), N (A), R(A), A∗, A− and

|A| the rank, the null space, the column space, the conjugate transpose, a generalized inverse (the

matrix A− satisfies AA−A = A) and the determinant of A, respectively. For a matrix A ∈ Cn×n,

we say that A is group invertible if there exists a matrix X ∈ Cn×n such that

AXA = A, XAX = X, AX = XA (1.1)

hold. If such an X exists, then it is unique, and it is called the group inverse of A. It is well-

known that A is group invertible if and only if r(A) = r(A2) (see [1]). We use V ≤ Cn to say

that V is a subspace of Cn, and use V ⊥ to represent the orthogonal complement of V in Cn. If

V ≤ Cn, T ∈ Cn×n, denote TV = {Tα|α ∈ V }, then TV ≤ Cn. If T is an invertible matrix of

order n, then TV ∼= V (meaning that TV is isomorphic to V ). If V ≤ Cn, denote by dimV the

dimension of V . A matrix A ∈ Cn×n is a projector if A2 = A; it is an orthogonal projector if, in
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addition, A∗ = A. In what follows, CP
n will mean the set of all projectors in Cn×n, i.e.,

CP
n =

{
A ∈ Cn×n |A2 = A

}
,

whereas the symbol COP
n will denote a subset of the set of CP

n consisting of orthogonal projectors,

i.e., COP
n = {A ∈ Cn×n |A2 = A = A∗}.

As one of the fundamental building blocks in matrix theory, idempotent matrices are very

useful in many contexts and have been extensively studied in the literature [2–21]. Recently, to

investigate the invertibility of P + Q and P − Q of P,Q ∈ CP
n , is of great interest in matrix

theory, as it is closely connected with the problem of when the space Cn is the direct sum

of its two subspaces and the existence of idempotent transformations satisfying some systems

of equations. For instance, Groß and Trenkler in [2] considered the nonsingularity of P − Q

by employing the relations for the ranks of matrices developed by Marsaglia and Styan [3];

Koliha, Rakočević and Straškraba [4] obtained some new characterizations of the nonsingularity

of P ±Q in terms of the nonsingularity of P +Q or P −Q by considering the kernel of a matrix

to establish its nonsingularity; Tian and Styan [5] presented many interesting equalities for the

ranks of combinations of projectors and applied them to the invertibility of P − Q and P + Q;

Baksalary and Trenkler reinvestigated the results of [5] from the point of view of the question:

which relationships given in [5] remain valid when ranks are replaced with column spaces? Their

work shed additional light on the links between subspaces attributed to various functions of

P,Q ∈ COP
n ; Koliha, Rakočević in [6], Zuo and Xie in [7,8] found new relations between the

nonsingularity of P ± Q and combinations of P and Q; Liu, Wu and Yu in [9] investigated the

group inverse of the combinations of two projectors; Koliha, Rakočević in [10,11], Buckholtz in

[12,13], Deng in [14,15], Rakočević and Wei in [16] discussed the invertibility in other settings,

such as rings, Hilbert space and C∗-algebras.

In this note, we follow the line of Baksalary and Trenkler’s idea and find several new and

interesting identities concerning the null and column spaces of P±Q, (P−Q)2, PQ±QP , Q−PQ,

I − PQ, aP + bQ+ cPQ (a, b, c ∈ C, ab ̸= 0) with P,Q ∈ CP
n or COP

n . Through these identities,

we derive a variety of new characterizations for the invertibility of P ± Q. Simultaneously, we

also discuss inclusion relation between the null spaces of PQ+QP and PQ−QP and get some

interesting rank equalities and inequalities.

To prove the main results, we shall begin with some lemmas.

Lemma 1.1 Let A,B ∈ Cn×n and T be an invertible matrix in Cn×n. Then

(a) (TN (A))⊥ = (T ∗)−1R(A∗), N (A)⊥ = R(A∗);

(b) R(A) ∩R(B) = {0} ⇔ N (A∗) +N (B∗) = Cn;

(c) N (A) ∩N (B) = {0} ⇔ R(A∗) +R(B∗) = Cn.

Proof (a) Let (T ∗)−1A∗β ∈ (T ∗)−1R(A∗) with β ∈ Cn and Tα ∈ TN (A) with α ∈ N (A). Since

[(T ∗)−1A∗β]∗ Tα = β∗Aα = 0, we have (T ∗)−1R(A∗) ≤ (TN (A))⊥. Note that dim(T ∗)−1R(A∗)

= dimR(A∗) = r(A∗) = r(A) = dimN (A)⊥ = dim(TN (A))⊥, then (TN (A))⊥ = (T ∗)−1R(A∗).

The second identity follows by setting T = In in the first identity of (a).
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(b) and (c) If M and N are two subspaces of Cn, then from the following two identities

(M ∩N)⊥ = M⊥ +N⊥, (M +N)⊥ = M⊥ ∩N⊥, (1.2)

the statements (b) and (c) can be derived. �

Lemma 1.2 ([5]) Let P,Q ∈ CP
n . Then

(a) r(P −Q) = r
(
P
Q

)
+ r(P,Q)− r(P )− r(Q);

(b) r(P +Q) = r
(

P
Q

Q
0

)
− r(Q) = r

(
Q
P

P
0

)
− r(P );

(c) r(P +Q) + r(PQ−QP ) = r(P −Q) + r(PQ+QP ).

Lemma 1.3 ([1]) Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then

(a) (A,B)− =
(

A−{Im−B[(Im−AA−)B]−(Im−AA−)}
[(Im−AA−)B]−(Im−AA−)

)
;

(b)
(

A
C

)−
= ({In − (In −A−A)[C(In −A−A)]−C}A−, (In −A−A)[C(In −A−A)]−).

Lemma 1.4 ([3]) Let A ∈ Cm×n, B ∈ Cm×k and C ∈ Cl×n. Then

(a) r(A,B) = r(A) + r(B −AA−B) = r(B) + r(A−BB−A);

(b) r
(

A
C

)
= r(A) + r(C − CA−A) = r(C) + r(A−AC−C);

(c) r
(

A
C

B
0

)
= r(B) + r(C) + r[(Im −BB−)A(In − C−C)].

Lemma 1.5 ([17]) Let P,Q ∈ COP
n . Then there exists a unitary matrix U ∈ Cn×n such that

P = U



I 0

0 0

I

I

0

0


U∗, Q = U



C2 CS

CS S2

I

0

I

0


U∗, (1.3)

where C, S are positive diagonal real matrices such that C2 + S2 = I, the symbol I denotes

identity matrices of various sizes, and the corresponding blocks in the two projection matrices

are of the same size.

2. The null and column spaces of combinations of two projectors

In this section, we will present some identities concerning the null and column spaces of

(P −Q)2, PQ±QP , Q−PQ, I −PQ, aP + bQ+ cPQ, aP + bQ− cPQ− dQP − ePQP ; a1P +

b1Q+a2PQ+ b2QP +a3PQP + b3QPQ+ · · ·+a2n−1(PQ)n−1P + b2n−1(QP )n−1Q+a2n(PQ)n.

We also use these identities to derive some new characterizations for the invertibility of P ±Q.

Theorem 2.1 Let P,Q ∈ CP
n . Then

(a) N (P −Q) = (R(P ) ∩R(Q))⊕ (N (P ) ∩N (Q));

(b) R(P −Q) = (R(P ) +R(Q)) ∩ (N (P ) +N (Q)).

Proof (a) It is clear that (R(P ) ∩ R(Q)) + (N (P ) ∩ N (Q)) ≤ N (P − Q) and (R(P ) ∩
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R(Q))
∩
(N (P ) ∩ N (Q)) = {0}. For any α ∈ N (P − Q), we have Pα = Qα = PQα and

α = Qα+ (α−Qα) ∈ (R(P )∩R(Q)) + (N (P )∩N (Q)). Hence, N (P −Q) = (R(P )∩R(Q))⊕
(N (P ) ∩N (Q)).

(b) Note that P ∗, Q∗ ∈ CP
n , then by (a) we have

N (P ∗ −Q∗) = (R(P ∗) ∩R(Q∗))⊕ (N (P ∗) ∩N (Q∗)). (2.1)

The statement (b) follows by taking orthogonal complement to both sides of Eq. (2.1) and by

applying the results of the Lemma 1.1. �
Note that a matrix A ∈ Cn×n is invertible if and only if N (A) = {0}, then some necessary

and sufficient conditions for which P − Q is invertible is characterized by the null and column

spaces of P and Q as follows.

Corollary 2.2 ([4]) Let P,Q ∈ CP
n . Then

(a) P −Q is invertible ⇔ R(P ) ∩R(Q) = N (P ) ∩N (Q) = {0};
(b) P −Q is invertible ⇔ R(P ) +R(Q) = N (P ) +N (Q) = Cn.

By Theorem 2.1, the rank of P −Q has the following representation.

Corollary 2.3 ([5]) Let P,Q ∈ CP
n . Then

r(P −Q) = r

(
P

Q

)
+ r(P,Q)− r(P )− r(Q).

Proof Note that dimN (P−Q) = n−r(P−Q), we have dim(R(P )∩R(Q)) = r(P )+r(Q)−r(P,Q)

and dim(N (P ) ∩ N (Q)) = dim(N
(

P
Q

)
) = n − r

(
P
Q

)
. The desired rank identity follows by

substituting the three equalities into (a) of Theorem 2.1. �
The null and column spaces of P +Q and P −Q are closely related with those of PQ+QP ,

PQ−QP and I − P −Q, which is given below.

Theorem 2.4 Let P,Q ∈ CP
n . Then

(a) N (PQ−QP ) = N (P −Q)⊕N (I − P −Q);

(b) N (PQ+QP ) = N (P +Q)⊕N (I − P −Q);

(c) R(PQ−QP ) = R(P −Q) ∩R(I − P −Q) and R(P −Q) +R(I − P −Q) = Cn;

(d) R(PQ+QP ) = R(P +Q) ∩R(I − P −Q) and R(P +Q) +R(I − P −Q) = Cn.

Proof (a) Note that (P − Q)(I − P − Q) = −(I − P − Q)(P − Q) = QP − PQ, then we

have N (P − Q) + N (I − P − Q) ≤ N (PQ − QP ). For any α ∈ N (P − Q) ∩ N (I − P − Q),

we have Pα = Qα, α = Pα + Qα. Thus, PQα = QPα = 0 = Pα = Qα. Therefore, α =

0. Hence N (P − Q) ⊕ N (I − P − Q) ≤ N (PQ − QP ). Next, we claim that the equality

dimN (P − Q) + dimN (I − P − Q) = dimN (PQ − QP ) holds. To prove it, it suffices to verify

r(PQ−QP ) + n = r(P −Q) + r(I − P −Q). On the one hand,

r

(
In In − P −Q

P −Q 0

)
= r

(
In −QP − PQ In − P −Q

P −Q 0

)

= r

(
In − P −Q In − P −Q

P −Q 0

)
= r (P −Q) + r (In − P −Q) . (2.2)
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On the other hand,

r

(
In In − P −Q

P −Q 0

)
= r

(
In In − P −Q

0 QP − PQ

)
= r (PQ−QP ) + n. (2.3)

By Eqs. (2.2) and (2.3), we have r(PQ − QP ) + n = r(P − Q) + r(I − P − Q). Consequently,

the desired equality N (PQ−QP ) = N (P −Q)⊕N (I − P −Q) holds.

(b) Note that (P +Q)(I −P −Q) = −PQ−QP = (I −P −Q)(P +Q), then N (P +Q) +

N (I − P − Q) ≤ N (PQ + QP ). It is easy to see that N (P + Q) ∩ N (I − P − Q) = {0}, thus
N (P + Q) ⊕ N (I − P − Q) ≤ N (PQ + QP ). By applying the method similar to the proof of

(a), we can also obtain r(PQ + QP ) + n = r(P + Q) + r(I − P − Q). Consequently, we have

N (PQ+QP ) = N (P +Q)⊕N (I − P −Q).

(c) and (d) Note that P ∗, Q∗ ∈ CP
n , then (c) (resp., (d)) can be proved by using the results

of Lemma 1.1 and (a) (resp., (b)). �
By Theorem 2.4, we get some more characterizations about the invertibility of P −Q, P +Q

and I − P −Q by some identities of null spaces as follows.

Corollary 2.5 Let P,Q ∈ CP
n . Then

(a) P −Q is invertible ⇔ N (PQ−QP ) = N (I − P −Q);

(b) P +Q is invertible ⇔ N (PQ+QP ) = N (I − P −Q);

(c) I − P −Q is invertible ⇔ N (PQ−QP ) = N (P −Q) ⇔ N (PQ+QP ) = N (P +Q).

The null and column spaces of (P −Q)2 can also be described by the null and column spaces

of P +Q, I − PQ, I −QP as follows.

Theorem 2.6 Let P,Q ∈ CP
n . Then

(a) N ((P −Q)2) = N (P +Q) +N (I − PQ) +N (I −QP );

(b) R((P −Q)2) = R(P +Q) ∩R(I − PQ) ∩R(I −QP ).

Proof (a) For α ∈ N (P+Q), we have Pα = −Qα. Therefore (P−Q)2α = (P+Q−PQ−QP )α =

0, implying α ∈ N ((P −Q)2). So

N (P +Q) ≤ N ((P −Q)2). (2.4)

For any α ∈ N (I−PQ), we have α = PQα = Pα. Then (P −Q)2α = (P +Q−PQ−QP )α = 0,

therefore α ∈ N ((P −Q)2), which implies

N (I − PQ) ≤ N ((P −Q)2). (2.5)

Similarly, we can also prove

N (I −QP ) ≤ N ((P −Q)2). (2.6)

By Eqs. (2.4)–(2.6), we have

N (P +Q) +N (I − PQ) +N (I −QP ) ≤ N ((P −Q)2). (2.7)

On the other hand, for any α ∈ N ((P −Q)2), then (P +Q−PQ−QP )α = 0. Therefore, Pα =

PQPα, Qα = QPQα, QPα = (QP )2α, PQα = (PQ)2α. Consequently, (I − PQ)PQα = 0,

(I − QP )QPα = 0. Hence, PQα ∈ N (I − PQ), QPα ∈ N (I − QP ). Moreover, the identity
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(P + Q)(2α − PQα − QPα) = 2Pα + 2Qα − PQα − QPQα − PQPα − QPα = Pα + Qα −
PQα − QPα = (P − Q)2α = 0 yields that 2α − PQα − QPα ∈ N (P + Q). Therefore α =
1
2 (2α−PQα−QPα)+ 1

2PQα+ 1
2QPα ∈ N (P +Q)+N (I −PQ)+N (I −QP ), which together

with Eq. (2.7) implies that N ((P −Q)2) = N (P +Q) +N (I − PQ) +N (I −QP ).

(b) Since P,Q ∈ CP
n , we have P

∗, Q∗ ∈ CP
n . By applying (a) and Lemma 1.1, the statement

(b) can be obtained. �
Another characterization of the invertibility of P −Q can be given by Theorem 2.6.

Corollary 2.7 ([4]) Let P,Q ∈ CP
n . Then P −Q is invertible ⇔ both P +Q and I − PQ are

invertible ⇔ both P +Q and I −QP are invertible.

Proof Note that dimN (I − PQ) = dimN (I − QP ). Then P − Q is invertible ⇔ (P − Q)2 is

invertible ⇔ N ((P −Q)2) = {0} ⇔ N (P +Q) = N (I−PQ) = N (I−QP ) = {0} ⇔ N (P +Q) =

N (I−PQ) = {0} ⇔ P +Q and I−PQ are all invertible ⇔ P +Q and I−QP are all invertible.

�
By the proof of Corollary 2.7, we observe that dimN (I−PQ) = dimN (I−QP ). Therefore,

N (I − PQ) and N (I −QP ) are isomorphic as linear space. But the two spaces may not always

be the same. There is an example to illustrate it.

Example 2.8 Let

P =

 0 1 0

0 1 0

0 0 1

 , Q =

 0 0 0

0 1 0

0 0 1

 .

Then P,Q ∈ CP
n and

I − PQ =

 1 −1 0

0 0 0

0 0 0

 , I −QP =

 1 0 0

0 0 0

0 0 0

 .

It is clear N (I − PQ) ̸= N (I − QP ). But if P and Q are orthogonal projectors, then we have

the following results.

Theorem 2.9 Let P,Q ∈ COP
n . Then

(a) N (I − PQ) = N (I −QP );

(b) N ((P −Q)2) = N (P +Q)⊕N (I − PQ);

(c) R((P −Q)2) = R(P +Q) ∩R(I − PQ).

Proof (a) By Lemma 1.5, for P,Q ∈ COP
n , there exists a unitary matrix U ∈ Cn such that

P = U



I 0

0 0

I

I

0

0


U∗, Q = U



C2 CS

CS S2

I

0

I

0


U∗,
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where C, S are defined as those in Lemma 1.5. Direct calculations show that

I−PQ = U



I−C2 −CS

0 I

0

I

I

I


U∗, I−QP = U



I−C2 0

−CS I

0

I

I

I


U∗.

Note that |I − C2| ̸= 0, we have N (I − PQ) = N (I −QP ).

(b) By the statement (a) and Theorem 2.6, we have N ((P−Q)2) = N (P+Q)+N (I−PQ).

In addition, for any β ∈ N (P +Q) ∩ N (I − PQ), we have (P +Q)β = 0 and β = PQβ = Pβ,

thus 2β = P (P + Q)β = 0, so we conclude that N (P + Q) ∩ N (I − PQ) = {0}. Hence

N ((P −Q)2) = N (P +Q)⊕N (I − PQ).

(c) Note that P,Q ∈ COP
n , then P ∗ = P and Q∗ = Q. By the results of (b) and Lemma

1.1, the identity of (c) can be obtained. �
The null space of Q− PQ and the column space of Q−QP can be described as follows.

Theorem 2.10 Let P,Q ∈ CP
n . Then

(a) N (Q− PQ) = N (Q)⊕ (R(P ) ∩R(Q));

(b) R(Q−QP ) = R(Q) ∩ (N (P ) +N (Q)).

Proof (a) It is clear that N (Q) + (R(P ) ∩ R(Q)) ≤ N (Q − PQ), and the sum of spaces

N (Q)+ (R(P )∩R(Q)) is direct sum. For any α ∈ N (Q−PQ), we have Qα = PQα. Therefore

α = (α −Qα) +Qα ∈ N (Q) + (R(P ) ∩ R(Q)). Hence N (Q− PQ) ≤ N (Q) + (R(P ) ∩ R(Q)).

Then (a) follows.

(b) Since P ∗, Q∗ ∈ CP
n , then (b) can be obtained from (a) and Lemma 1.1. �

Similarly, we can obtain the following results concerning the null and column spaces of

I − PQ, for which the proof is similar to that of Theorem 2.9 and is omitted.

Theorem 2.11 Let P,Q ∈ CP
n . Then

(a) N (I − PQ) = R(P ) ∩N (P − PQ);

(b) R(I − PQ) = N (Q) +R(Q− PQ).

Theorem 2.12 Let P,Q ∈ CP
n . Then

(a) N (P +Q− PQ) = N (Q− PQ) ∩N (P );

(b) R(P +Q− PQ) = R(P − PQ) +R(Q).

Proof For any α ∈ N (Q − PQ) ∩ N (P ), we have Qα = PQα and Pα = 0, which imply

(P + Q − PQ)α = 0. Therefore N (Q − PQ) ∩ N (P ) ≤ N (P + Q − PQ). In addition, for any

α ∈ N (P +Q− PQ), then (P +Q− PQ)α = 0. Thus, Pα = 0 and (Q− PQ)α = 0, leading to

N (P +Q− PQ) ≤ N (Q− PQ) ∩N (P ). Hence N (P +Q− PQ) = N (Q− PQ) ∩N (P ).

(b) By the fact that P ∗, Q∗ ∈ CP
n and the statement (a), we have N (P ∗ +Q∗ −Q∗P ∗) =

N (P ∗ −Q∗P ∗) ∩N (Q∗). Taking orthogonal complement on both sides of the equality, we have
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R(P +Q− PQ) = R(P − PQ) +R(Q). �
In general, the null and column spaces of aP + bQ− cPQ (a, b, c ∈ C ab ̸= 0) are described

in the following.

Theorem 2.13 Let P,Q ∈ CP
n and a, b, c ∈ C (ab ̸= 0). Then

(a) If c = a+ b, then N (aP + bQ− cPQ) = N (P −Q);

(b) If c ̸= a+b, then N (aP+bQ−cPQ) = TN (P+Q) ∼= N (P+Q), where T = I+ a+c−b
a+b−cQ;

(c) If c ̸= a+ b, then N (aP + bQ− cPQ) = N (Q− PQ) ∩N (P + b−c
a Q);

(d) If c = a+ b, then R(aP + bQ− cPQ) = R(P −Q);

(e) If c ̸= a+b, then R(aP+bQ−cPQ) = KR(P+Q) ∼= R(P+Q), where K = I+ b+c−a
a+b−cP ;

(f) If c ̸= a+ b, then R(aP + bQ− cPQ) = R(P − PQ) +R(Q+ a−c
b P ).

Proof (a) If c = a+ b, then (I− c
aP )(aP + bQ− cPQ) = b(Q−P ). Note that b ̸= 0 and I− c

aP

is invertible, we have N (aP + bQ− cPQ) = N (P −Q).

(b) If c ̸= a+ b, then

(I +
b+ c− a

a+ b− c
P )(aP + bQ− cPQ)(I +

a+ c− b

a+ b− c
Q) =

2ab

a+ b− c
(P +Q). (2.8)

Note that 2ab
a+b−c ̸= 0 and both I+ b+c−a

a+b−cP and I+ a+c−b
a+b−cQ are invertible, we have N (aP + bQ−

cPQ) = TN (P +Q) ∼= N (P +Q).

(c) If c ̸= a + b, then for any α ∈ N (Q − PQ) ∩ N (P + b−c
a Q), we have (Q − PQ)α =

(P+ b−c
a Q)α = 0, which imply PQα = Qα and Pα = c−b

a Qα. Thus (aP+bQ−cPQ)α = 0. Hence

N (Q−PQ)∩N (P + b−c
a Q) ≤ N (aP + bQ− cPQ). In addition, for any α ∈ N (aP + bQ− cPQ),

then (aP + bQ − cPQ)α = 0. Thus, Pα = c−b
a PQα and Qα = PQα, which imply α ∈

N (Q − PQ) ∩ N (P + b−c
a Q). Therefore N (aP + bQ − cPQ) ≤ N (Q − PQ) ∩ N (P + b−c

a Q).

Consequently, we have N (aP + bQ− cPQ) = N (Q− PQ) ∩N (P + b−c
a Q).

(d) The statement (a) and Lemma 1.1 can be applied to obtain the desired statement.

(e) By using the equality of (2.1), the statement (e) can be obtained.

(f) Since c ̸= a+b, we have c̄ ̸= ā+b̄ (where ā is the conjugate of a). Note that P ∗, Q∗ ∈ CP
n ,

then by the statement (c) we have N (b̄Q∗ + āP ∗ − c̄Q∗P ∗) = N (P ∗ −Q∗P ∗)∩N (Q∗ + ā−c̄
b̄

P ∗).

Taking orthogonal complement to both sides of the equation and applying Lemma 1.1, we have

R(aP + bQ− cPQ) = R(P − PQ) +R(Q+ a−c
b P ). �

From Theorem 2.12, the rank and the invertibility of aP+bQ−cPQ are described as follows.

Corollary 2.14 Let P,Q ∈ CP
n and a, b, c ∈ C (ab ̸= 0). Then

(a) r(aP + bQ− cPQ) =

{
r(P −Q), if c = a+ b,

r(P +Q), if c ̸= a+ b;

(b) If c ̸= a+ b, then aP + bQ− cPQ is invertible ⇔ N (Q−PQ)∩N (P + b−c
a Q) = {0} ⇔

R(P − PQ) +R(Q+ a−c
b P ) = Cn;

(c) If c = a+ b, then aP + bQ− cPQ is invertible ⇔ P −Q is invertible.

Remark 2.15 It is worth pointing out that the statement (c) of Corollary 2.14 cannot be
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generalized to the case aP + bQ− cPQ− dQP . There is an example to illustrate it. Let

P =

(
1 0

0 0

)
, Q =

(
2 1

−2 1

)
.

It is clear that P,Q ∈ CP
2 . If a = 12, b = −5, c = 10, d = −3, we can conclude that a+ b = c+ d

and aP + bQ − cPQ − dQP is not invertible. If a = b = 1 and c = d = −1, then the condition

a+b = c+d still holds, but aP +bQ−cPQ−dQP is invertible. This implies that the ivertibility

of aP + bQ − cPQ − dQP does not ramain constant under the assumption a + b = c + d with

a, b, c, d ∈ C and ab ̸= 0.

The null space and the invertibility of P +Q can also be derived from Theorem 2.13.

Corollary 2.16 Let P,Q ∈ CP
n . Then

(a) N (P +Q) ∼= (N (Q)⊕ (R(P ) ∩R(Q))) ∩N (P );

(b) P +Q is invertible ⇔ (N (Q)⊕ (R(P ) ∩R(Q))) ∩N (P ) = {0}.

Proof (a) Substituting a = b = c = 1 in the statement (b) of Theorem 2.13, we haveN (P+Q) ∼=
N (P + Q − PQ). By Theorems 2.10 and 2.12, we have N (P + Q − PQ) = (N (Q) ⊕ (R(P ) ∩
R(Q))) ∩N (P ). Hence N (P +Q) ∼= (N (Q)⊕ (R(P ) ∩R(Q))) ∩N (P ).

(b) The statement (b) follows directly from that of (a). �

If P,Q ∈ COP
n , then the null space of ap+ bQ− cPQ− dQP − ePQP can be described by

the null spaces of P +Q and P −Q in the following.

Theorem 2.17 Let P,Q ∈ COP
n , a, b, c, d, e ∈ C, ab ̸= 0 and |abI − (be+ cd)C2| ̸= 0, where C

is the matrix in the CS decomposition of P and Q. Then

(a) If a+ b = c+ d+ e, then N (aP + bQ− cPQ− dQP − ePQP ) = N (P −Q);

(b) If a+ b ̸= c+ d+ e, then N (aP + bQ− cPQ− dQP − ePQP ) = N (P +Q).

Proof Consider the CS decomposition of P and Q, there exists a unitary matrix U such that

P,Q can be presented as those in Lemma 1.5. Then we have

P−Q =U



I − C2 −CS

−CS −S2

0

I

−I

0


U∗, P+Q =U



I + C2 CS

CS S2

2I

I

I

0


U∗,

and

aP + bQ− cPQ− dQP − ePQP
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=U



aI + (b− c− d− e)C2 (b− c)CS

(b− d)CS bS2

(a+ b− c− d− e)I

aI

bI

0


U∗.

Since
∣∣∣ I−C2

−CS
−CS
−S2

∣∣∣ = | − S2| ̸= 0,
∣∣∣ I+C2

CS
CS
S2

∣∣∣ = |S2| ̸= 0, and∣∣∣∣aI + (b− c− d− e)C2

(b− d)CS

(b− c)CS

bS2

∣∣∣∣ = |abI − (be+ cd)C2||S2| ̸= 0,

the statements (a) and (b) can be derived. �
For any positive integer n, we consider the null space of the combinations of P,Q ∈ CP

n as

T = a1P + b1Q+a2PQ+ b2QP +a3PQP + b3QPQ+ · · ·+a2n−1(PQ)n−1P + b2n−1(QP )n−1Q+

a2n(PQ)n, where ai, bj ∈ C (1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n− 1) and a1b1 ̸= 0.

Theorem 2.18 Let P,Q ∈ CP
n such that (PQ)n = (QP )n.

(a) If
∑2n

i=1 ai +
∑2n−1

j=1 bj ̸= 0, then N (T ) = N (P )
∩
N (Q).

(b) If
∑2n

i=1 ai +
∑2n−1

j=1 bj = 0, then N (T ) = N (P −Q).

Proof (a) It is clear that N (P )
∪
N (Q) ⊆ N (T ). On the other hand, for any α ∈ N (T ), we

have

(a1P + b1Q+ a2PQ+ b2QP + a3PQP + b3QPQ+ · · ·+ a2n(PQ)n + b2n(QP )n)α = 0. (2.9)

Multiplying (PQ)n left to Eq. (2.9) and using the condition (PQ)n = (QP )n, we have( 2n∑
i=1

ai +
2n−1∑
j=1

bj

)
(PQ)nα = 0.

The above identity and the condition
∑2n

i=1 ai +
∑2n−1

j=1 bj ̸= 0 imply

(PQ)nα = 0. (2.10)

Similarly, multiplying (QP )n left to Eq. (2.10), we have (QP )nα = 0. Multiplying (PQ)n−1P

left to Eq. (2.9) and observing Eq. (2.10), we have a1(PQ)n−1Pα = 0. Since a1 ̸= 0, we have

(PQ)n−1Pα = 0. (2.11)

Multiplying (QP )n−1Q left to Eq. (2.9) and using (QP )nα = 0, we can deduce (QP )n−1Qα = 0.

Multiplying

(PQ)n−1, (QP )n−1, (PQ)n−2P, (QP )n−2Q, . . . , PQ,QP, P,Q

left to Eq. (2.9), respectively and taking similar deductions as above, we can obtain

(PQ)n−1α = (PQ)n−2Pα = · · · = PQPα = PQα = Pα = 0

and

(QP )n−1α = (QP )n−2Qα = · · · = QPQα = QPα = Qα = 0.
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These imply α ∈ N (P )
∪

N (Q). Hence N (T ) ⊆ N (P )
∪

N (Q) and the statement (a) follows.

(b) For any α ∈ N (T ), Eq. (2.9) still holds. Multiplying (PQ)n−1P left to Eq. (2.9) and

note that (PQ)n = (QP )n, we have

a1(PQ)n−1Pα+
( 2n∑

i=2

ai +
2n−1∑
j=1

bj

)
(PQ)nα = 0.

Since a1 + (
∑2n

i=2 ai +
∑2n−1

j=1 bj) = 0 and a1 ̸= 0, we have

(PQ)n−1Pα = (PQ)nα = 0. (2.12)

Multiplying (PQ)n−1 left to Eq. (2.9) and using Eq. (2.12), we get

b1(PQ)n−1α+
( 2n∑

i=1

ai +
2n−1∑
j=2

bj

)
(PQ)nα = 0.

The condition b1 + (
∑2n

i=1 ai +
∑2n

j=2 bj) = 0 and b1 ̸= 0 imply

(PQ)n−1α = (PQ)nα. (2.13)

Multiplying (PQ)n−2P, (PQ)n−2, (PQ)n−3P, . . . , PQP, PQ,P left to Eq. (2.9), respectively, we

have (PQ)n−2Pα = (PQ)n−2α = · · · = PQPα = PQα = Pα. Consequently,

(PQ)nα = (PQ)n−1Pα = · · · = PQPα = PQα = Pα. (2.14)

Multiplying (QP )n−1Q, (QP )n−1, . . . , QPQ,QP,Q left to Eq. (2.9), respectively, we have

(QP )nα = (QP )n−1Qα = · · · = QPQα = QPα = Qα. (2.15)

Since (PQ)n = (QP )n, and by Eqs. (2.14) and (2.15), we have Pα = Qα. Therefore α ∈ N (P −
Q). Hence N (T ) ⊆ N (P −Q). On the other hand, for any α ∈ N (P −Q), we have Pα = Qα. It

is easy to see that Eqs. (2.14) and (2.15) hold. Consequently, Tα = (
∑2n

i=1 ai+
∑2n−1

j=1 bj)Pα = 0.

That is, α ∈ N (T ). Therefore, N (P −Q) ⊆ N (T ). The statement (b) then follows. �

Corollary 2.19 Let P,Q ∈ CP
n such that (PQ)n = (QP )n.

(a) If
∑2n

i=1 ai +
∑2n−1

j=1 bj ̸= 0, then r(T ) = r(P + Q) and therefore T is invertible if and

only if P +Q is invertible.

(b) If
∑2n

i=1 ai +
∑2n−1

j=1 bj = 0, then r(T ) = r(P −Q) and therefore T is invertible if and

only if P −Q is invertible.

(c) T is group invertible.

Proof (a) If
∑2n

i=1 ai+
∑2n−1

j=1 bj ̸= 0, then by Theorem 2.18 (a), we have r(T ) = n−dimN (T ) =

n − dim(N (P )
∪
N (Q)), which is a constant independent of the choices of the coefficients

ai, bj , (1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n−1) such that
∑2n

i=1 ai+
∑2n−1

j=1 bj ̸= 0 and a1b1 ̸= 0. In particular,

take a1 = b1 = 1 and ai = bj = 0 for 2 ≤ i ≤ 2n, 2 ≤ j ≤ 2n − 1, then r(T ) = r(P + Q). As a

consequence, T is invertible if and only if P +Q is invertible.

(b) If
∑2n

i=1 ai +
∑2n−1

j=1 bj = 0, then by Theorem 2.18 (b) we have r(T ) = n− dimN (T ) =

n−dim(N (P −Q)), which is a constant independent of the choices of the coefficients ai, bj , (1 ≤
i ≤ 2n, 1 ≤ j ≤ 2n − 1) such that

∑2n
i=1 ai +

∑2n−1
j=1 bj = 0 and a1b1 ̸= 0. In particular, take
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a1 = −b1 = 1 and ai = bj = 0 for 2 ≤ i ≤ 2n, 2 ≤ j ≤ 2n − 1, then r(T ) = r(P − Q). As a

consequence, T is invertible if and only if P −Q is invertible.

(c) Note that T 2 can be represented as a linear combinations of

P,Q, PQ,QP, . . . , (PQ)n−1P, (QP )n−1P, (PQ)n

and the sum of the coefficients of T 2 is (
∑2n

i=1 ai +
∑2n−1

j=1 bj)
2. If

∑2n
i=1 ai +

∑2n−1
j=1 bj ̸= 0, then

by the statement (a), we have r(T 2) = r(P +Q) = r(T ), which implies that T is group invertible.

If
∑2n

i=1 ai +
∑2n−1

j=1 bj = 0, then by the statement (b), r(T 2) = r(P −Q) = r(T ) and T is group

invertible. �

Corollary 2.20 ([10]) Let P,Q ∈ CP
n such that (PQ)2 = (QP )2. Then

aP + bQ+ cPQ+ dQP + ePQP + fQPQ+ gPQPQ

is group invertible for any a, b, c, d, e, f, g ∈ C and ab ̸= 0.

3. Inclusion relations of the null spaces of PQ+QP and PQ−QP

In this section, we will discuss the inclusion relations for the null spaces of PQ + QP and

PQ−QP with P,Q ∈ CP
n and P,Q ∈ COP

n , respectively. Some necessary and sufficient conditions

for the two spaces to be equal are established. Consequently, more characterizations for the rank

and invertibility of P +Q and P −Q are also obtained.

It is noted that the invertibility of P −Q is sufficient, but not necessary, for the invertibility

of P +Q, as demonstrated in [4]. Moreover, we can recall the statements (a) and (b) of Theorem

2.4. The above observations motivate us to consider the inclusion relations for N (PQ+QP ) and

N (PQ − QP ). In general, one direction of the inclusion is not always right, with an example

given below:

Example 3.1 Let

P =

 0 0 0

0 1 0

0 0 1

 , Q =

 0 0 0

1 1 0

0 0 1

 .

Then P,Q ∈ CP
n . Simple calculations show that

PQ+QP =

 0 0 0

1 2 0

0 0 2

 , PQ−QP =

 0 0 0

1 0 0

0 0 0

 .

It is clear that the two equalities N (PQ + QP ) = {(−2x, x, 0)′ |x ∈ C} and N (PQ − QP ) =

{(0, x, y)′ |x, y ∈ C} hold. Then, N (PQ + QP ) ≤ N (PQ − QP ) is not right. But we have the

following rank inequality:

Theorem 3.2 Let P,Q ∈ CP
n . Then P and Q satisfy

r(PQ−QP ) ≤ r(PQ+QP ).
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Proof By Lemma 1.2, we have r(P +Q) + r(PQ−QP ) = r(P −Q) + r(PQ+QP ). To prove

the statement, it suffices to prove r(P −Q) ≤ r(P +Q). By Lemmas 1.2 and 1.4, we have

r(P +Q) = r

(
P

Q

Q

0

)
− r(Q) = r

(
P

Q

)
+ r

([
I2n −

(
P

Q

)(
P

Q

)−
](

Q

0

))
− r(Q), (3.1)

and

r(P −Q) = r

(
P

Q

)
+ r(P,Q)− r(P )− r(Q) = r

(
P

Q

)
+ r(Q− PQ)− r(Q). (3.2)

By Lemma 1.3, we have(
P

Q

)−

=
(
P − (In − P )[Q(In − P )]−QP, (In − P )[Q(In − P )]−

)
.

Therefore[
I2n −

(
P

Q

)(
P

Q

)−
](

Q

0

)

=

(
In − P

−QP +Q(In − P )[Q(In − P )]−QP

0

In −Q(In − P )[Q(In − P )]−

)(
Q

0

)
=

(
Q− PQ

−Q+Q(In − P )[Q(In − P )]−Q

)
,

which implies

r

((
I2n −

(
P

Q

)(
P

Q

)−
)(

Q

0

))
≥ r(Q− PQ). (3.3)

By Eqs. (3.1)–(3.3), we have r(P +Q) ≥ r(P −Q). �
By the proof of Theorem 3.2 and the statement (a) of Corollary 2.14, we can now give the

upper and lower bounds of the rank of aP + bQ− cPQ with a, b, c ∈ C and ab ̸= 0.

Corollary 3.3 Let P,Q ∈ CP
n . Then we have

max
a,b,c∈C,ab̸=0

r(aP + bQ− cPQ) = r(P +Q)

and

min
a,b,c∈C,ab̸=0

r(aP + bQ− cPQ) = r(P −Q).

A necessary and sufficient condition for the null (resp., column) space of PQ + QP and

PQ−QP to be equal is established in the following.

Theorem 3.4 Let P,Q ∈ CP
n . Then

(a) N (PQ+QP ) = N (PQ−QP ) ⇔ R(P ) ∩R(Q) = {0};
(b) R(PQ+QP ) = R(PQ−QP ) ⇔ N (P ) +N (Q) = Cn.

Proof (a) “ ⇐ ”. If R(P ) ∩ R(Q) = {0}, then for any α ∈ N (PQ − QP ), we have PQα =

QPα ∈ R(P )∩R(Q) = {0}. Thus, PQα = QPα = 0, which implies (PQ+QP )α = 0. Therefore

N (PQ − QP ) ≤ N (PQ + QP ). Similarly, we can also prove N (PQ + QP ) ≤ N (PQ − QP ).

Hence N (PQ+QP ) = N (PQ−QP ).
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“ ⇒ ”. If α ∈ R(P )∩R(Q), then α = Pα = Qα, which implies (PQ−QP )α = 0. Therefore

(PQ+QP )α = 0 ⇒ 2α = 0 ⇒ α = 0. Hence R(P ) ∩R(Q) = {0}.

(b) Note that P ∗, Q∗ ∈ CP
n , then the statement (b) is derived by Lemma 1.1 and (a). �

According to Theorem 3.4 and Corollary 2.2, a new characterization for P−Q to be invertible

by the properties of the null spaces of PQ+QP and PQ−QP is given below.

Corollary 3.5 Let P,Q ∈ CP
n . Then P −Q is invertible ⇔ N (PQ+QP ) = N (PQ−QP ) and

N (P − PQ) ∩N (Q−QP ) = {0}.

Proof “ ⇒ ” If P − Q is invertible, then by Corollary 2.2 we have R(P ) ∩ R(Q) = {0}. By

Theorem 3.3 we have N (PQ+QP ) = N (PQ−QP ). For any α ∈ N (P − PQ) ∩ N (Q−QP ),

then Pα = PQα,Qα = QPα. Thus, (P −Q)2α = 0, which implies α = 0. Hence, N (P −PQ)∩
N (Q−QP ) = {0}.

“ ⇐ ”. By N (PQ+QP ) = N (PQ−QP ) and Theorem 3.3, we have R(P ) ∩R(Q) = {0}.
Since N (P −PQ)∩N (Q−QP ) = {0}, we have N (P )∩N (Q) = {0}. Consequently, by Corollary

2.2, P −Q is invertible. �

A sufficient condition for which the identity N (PQ +QP ) = N (PQ−QP ) holds is found

below.

Theorem 3.6 Let P,Q ∈ CP
n . Then N (PQ+QP ) = N (PQ−QP ) if I − PQ is invertible.

Proof On the one hand, for any α ∈ N (PQ − QP ), then PQα = QPα. Thus, PQα =

QPα = PQPα. Consequently, (I − PQ)(PQ + QP )α = PQα + QPα − PQPQα − PQPα =

PQα + QPα − PQQPα − PQPα = 0. The invertibility of I − PQ implies (PQ + QP )α = 0.

Hence, N (PQ−QP ) ≤ N (PQ+QP ). On the other hand, for any α ∈ N (PQ+QP ), we have

PQα = −QPα = −PQPα. Thus, (I −PQ)(PQ−QP )α = PQα−QPα−PQPQα+PQPα =

PQα − QPα + PQPα + PQPα = 0. The invertibility of I − PQ implies (PQ − QP )α = 0.

Therefore, N (PQ+QP ) ≤ N (PQ−QP ). Hence, N (PQ+QP ) = N (PQ−QP ). �

Subsequently, by specializing the condition P,Q ∈ CP
n into P,Q ∈ COP

n , we continue to

study the relation of N (PQ+QP ) and N (PQ−QP ).

Theorem 3.7 Let P,Q ∈ COP
n . Then N (PQ+QP ) ≤ N (PQ−QP ).

Proof Consider the CS decomposition of P and Q. By Lemma 1.5, there exists a unitary matrix

U such that P,Q can be presented as Eq. (1.3). Direct calculations show that

PQ+QP =U



2C2 CS

CS 0

2I

0

0

0


U∗, PQ−QP =U



0 CS

−CS 0

0

0

0

0


U∗,
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where

(
2C2 CS

CS 0

)
∈ C2p×2p, I ∈ Ct×t.

Note that both

(
2C2 CS

CS 0

)
∈ C2p×2p and

(
0 CS

−CS 0

)
∈ C2p×2p are invertible,

then

N (PQ+QP ) = {U (01×2p, 01×t, X)′ U∗ | X ∈ C1×(n−2p−t)}

and

N (PQ−QP ) = {U (01×2p, Y1×t, X)′ U∗ | X ∈ C1×(n−2p−t)}.

Therefore N (PQ+QP ) ≤ N (PQ−QP ). �
If P,Q ∈ COP

n , a necessary and sufficient condition for which the identity N (PQ+QP ) =

N (PQ−QP ) holds is given below.

Theorem 3.8 Let P,Q ∈ COP
n . Then I − PQ is invertible ⇔ N (PQ+QP ) = N (PQ−QP ).

Proof The proof of necessity can be derived from Theorem 3.6. Consider the CS decomposition

of P and Q and by the identity N (PQ+QP ) = N (PQ−QP ), P,Q can be represented as

P =U


I 0

0 0

I

0

0

U∗, Q =U


C2 CS

CS S2

0

I

0

U∗.

It follows that

I − PQ =U


I − C2 −CS

0 I

I

I

I

U∗

is invertible. This proves the sufficiency. �
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