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Abstract A ring R is said to be m-semicommutative if a, b € R satisfy ab = 0 then there exists
a positive integer n such that a™ Rb"™ = 0. We study the properties of m-semicommutative rings
and the relationship between such rings and other related rings. In particular, we answer a
question on left GWZI rings negatively.
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1. Introduction

Throughout this note a ring is associative with identity unless otherwise stated. For a ring
R, we use N(R) to denote the set of nilpotent elements in R, Z(R) its center, N.(R) its prime
radical, and J(R) its Jacobson radical. The symbol T,,(R) stands for the ring of n x n upper
triangular matrices over R, S, (R) its subring in which each matrix has the identical principal
diagonal elements, I,, the n x n identity matrix, and E;; (i,j = 1,2,...,n) the n x n matrix units.
For a nonempty subset X of R, we use [(X) and r(X) to denote the left and right annihilators
of X in R, respectively. The ring of integers modulo a positive integer n is denoted by Z,.

A ring is reduced if it has no nonzero nilpotent elements, a ring is abelian if all idempotents
are central, and a ring is 2-primal if its prime radical coincides with the set of nilpotent elements
in it. Due to Bell [1], a ring R is called to satisfy the Insertion-of-Factors-Property (simply,
an IFP ring) if ab = 0 implies aRb = 0 for a,b € R. Shin [2] used the term SI for the IFP,
while Narbonne [3] used semicommutative in place of the IFP, and Habeb [4] used the term zero
insertive (simply, ZI) for the IFP. In this paper, we choose a semicommutative ring in the above
names, so as to cohere with other related references. It is known by [2, Lemma 1.2] that a ring
R is semicommutative if and only if for any a € R, l(a) (resp., r(a)) is an ideal in R. There are
many authors to study semicommutative rings and their generalizations. Liang et al. [5] called
a ring R weakly semicommutaive if ab = 0 implies aRb C N(R) for a,b € R. Agayev et al. [6]
defined a ring R to be central semicommutative if ab = 0 implies aRb C Z(R) for a,b € R, and
they proved that a central semicommutative ring is a 2-primal ring.

According to Zhou [7], a left ideal L of R is called a generalized weak ideal (simply, a GW-

ideal) if for any a € L, there exists a positive integer n such that ™R C L. Based on this notion,
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Du et al. [8] called a ring R to be left generalized weak zero insertive (simply, left GWZI), if I(a)
is a GW-ideal for any a € R. Similarly, a right ideal M of R is called a GW-ideal in case for
any a € M, Ra™ C M for some positive integer n, and a ring R is called right GWZI if r(a) is
a GW-ideal of R for any a € R. If a ring R is a left and right GWZI ring, then it is said to
be a GWZI ring. Some properties of left GWZI rings were investigated in [8]. However, it is a
question whether a left GWZI ring is right GWZI. The main motivation of this note is to answer
the question in the negative. Moreover we define a ring R to be m-semicommutative if a,b € R
satisfy ab = 0 then there exists a positive integer n such that a”Rb™ = 0. It is proved that
there exists a m-semicommutative ring which is neither left nor right GWZI, and that a ring R

is m-semicommutative if and only if S, (R) is m-semicommutative for any positive integer n > 2.

2. [I-semicommutative rings
We start this section with the following observation.

Proposition 2.1 A ring R is left GWZI if and only if ab = 0 implies that there exists a positive
integer n such that a"Rb =0 for a,b € R.

Proof It is clear. O

Symmetrically, a ring R is right GWZI if and only if ab = 0 implies that there exists a
positive integer n such that aRb™ = 0 for a,b € R.

Definition 2.2 A ring R is called m-semicommutative if a,b € R satisfy ab = 0 then there
exists a positive integer n such that a™ Rb"™ = 0.

Clearly, the class of m-semicommutative rings is closed under subrings and finite direct sums.
Proposition 2.3 Every central semicommutative ring is m-semicommutative.

Proof Let R be a central semicommutative ring. If a,b € R satisfy ab = 0, then we have
arb € Z(R) for any r € R. This means that a?rb> = aarbb = abarb = 0. Thus R is a

m-semicommutative ring by Definition 2.2. [

The converse of Proposition 2.3 is not true in general.
Example 2.4 A m-semicommutative ring need not be central semicommutative.

Proof It is known by [9, Corollary 13] that for every countable field F, there exists a nil algebra
S over F such that S[z] is not nil. Let R = F'+ S. Then R is a local ring with J(R) = S. We
claim that R is a GWZI ring. Let a,b € R with ab = 0. If a € J(R), then a is nilpotent. There
exists a positive integer n such that " Rb = 0. If a ¢ J(R), then a is a unit. This implies that
b =0, and so a”Rb = 0. It follows that R is a left GWZI ring. Similarly, R is a right GWZI ring.
Thus R is a m-semicommutative ring. Now we prove that R is not a 2-primal ring. Assume on
the contrary, then one has N,(R) = N(R) = S. This means that N,(R[z]) = N.(R)[z] = S[z] is
nil, a contradiction. Since a central semicommutative ring is 2-primal by [6, Theorem 2.4], R is

not central semicommutative. OJ
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The above proof shows that a GWZI ring need not be central semicommutative.
Clearly, a left (resp., right) GWZI ring is w-semicommutative, but the converse is not true

by help of next example.
Example 2.5 There exists a right GWZI ring which is not left GWZI.

Proof Let F be a field and A = Fla, b, ¢] the free algebra of polynomials with zero constant
terms in noncommutative indeterminates a, b, ¢ over F'. Clearly, A is a ring without identity.
Consider an ideal I of F + A generated by cc,ac and crc for all r € A. Let R = (F + A)/I.
We prove that R is a right GWZI ring but R is not a left GWZI ring. Let I; be the linear
space over F, of the monomials in A with exactly one ¢ and Iy = Fla,b], the free algebra of
polynomials with zero constant terms in noncommuting indeterminates a,b over F. Certainly
we have A = I + I1 + I5. Let Alx],I[z], I1]z], and I3[z] denote the polynomial rings without
identity over A, I, I; and I respectively, where x is the indeterminate over R. For simplicity, in
what follows we will use the claim which appears in the proof of [10, Example 14].

Claim. If f(x),g(z) € Alz] satisty f(z)g(x) € I[z], then f(z) € I [z] + I[z] and g(z) €
I[z] + Iz] (when f(z) ¢ I[z]), or f(x) € Ii[z] + I[z] + I2[z]a (when g(x) ¢ I[z]) and g(x) €
clz[z] + I[z]. In particular, if s,t € A satisfy st € I, then s,t € I; + I or s € I1 + I 4 Iza and
t € cIy + I by taking into account the fact sz, tz € Alz] with sxtx = stz? € I[x].

We will prove that if s,¢ € F + A satisfy st € I, then either s € I or t? € I. First we show
that the conclusion is true for s, ¢ € A. In this situation, we have s,t € 1 + T or s € Iy + I + Iza
and t € cIy + I by the claim. Thus ¢2 € I holds in both cases by the definitions of I, I and I».
Generally, let s,t € (F + A) with st € I. We may write s = k1 + s1,t = ko + to where k1, ks € F
and s1,ty € A. Thus we have st = k1ky+k1to+kos1 +s1to € I. This means that ki1ky = 0 by the
definition of I. If ky = ks = 0, then we have t> € I by the above argument. Assume that k; = 0
and ko # 0. Then we have st = kos; + s1to € I. We claim that s = s; € I. In fact, let f1 be
the subspace in I;, of the monomials in A with exactly one ¢ but no ac as a factor, for example,
kyac, kobac, ksbach ¢ Iy where ki, ko, ks € F\{0}. Since A= I+ I, +I,, wehave A= I &1, & I,
(as linear spaces). Let s1 =i+ i1 + i9, and ¢ = i’ + ¢} + 5 where 4,7’ € I,41,4] € fhig,i'g € I.
Then st = kosy + s1to € I implies that koiy + i195 + 28] + kot + i9th € I. Tt is easy to see that
koiy + iqih + i9id) € I, and kayio + igih € Iy. Thus we have koiy + i1ih + i21) = kois + 215 = 0.
Since ko # 0, we get io = 0. Now kaoiy + 1115 +i0i) = 0 gives that 41 = 0. Similarly, if k1 # 0 and
ko = 0 then we have t € I. From the above discussion, we conclude that for any s,t € F + A
with st € I, then either s € I or t> € I. Thus R is a right GWZI ring. On the other hand, since
ac € T and a™bc ¢ T for any positive integer n, we have a™Rc ¢ I. This means that R is not a
left GWZI ring. [

Example 2.5 gives a negative answer to the question of [8, p.255] whether the property of
GWTZI is left-right symmetric. Moreover, let Ry be a right GWZI ring which is not left GWZI,
and Ry = R}? be the opposite ring of R;. Then it is easy to see that the ring direct sum

R = Ry ® Rs is a m-semicommutative ring which is neither a left nor a right GWZI ring.

Proposition 2.6 A w-semicommutative ring R is weakly semicommutative.
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Proof Let a,b € R with ab = 0. Then we have (ba)? = 0, and so (rba)(bar) = 0 for any r € R.
There exists a positive integer n such that (rba)™r(bar)” = 0 by the m-semicommutativity of
R. Observing that (bar)™ = ba(rba)" 1r, we have 0 = (rba)"r(bar)" = (rba)"rba(rba)"~‘r =
(rba)®"r. 1t follows that (rba)?"*1 =0, i.e., rba € N(R), equivalently, arb € N(R) for any r € R.
O

Proposition 2.7 A w-semicommutative ring R is abelian.

Proof For any e? = ¢ and any r € R, we have e(1—e) = (1—e¢)e = 0. The m-semicommutativity
of R implies that there exists a positive integer n such that e”r(1 —e)™ = (1 — e)"re™ =0, i.e.,
er(l —e) = (1 — e)re = 0. This means that R is abelian. O

The converse of Proposition 2.7 is not true as the next example shows.

Example 2.8 ([6, Example 2.7]) Let Z be the ring of integers, and consider the ring R =

b
{( ¢ J ) azd(mod?),bzc(mod2),a,b,c,d€Z}.

Cc

Then R is an abelian ring by the proof of [6, Example 2.7]. Let n be any positive integer, and

A 2 2 . B- 0 2 o= 2 4
0 0 0 -2 4 =2
0 4

in R. Clearly we have AB = 0, but A?2"+t1CB2n+l = 24n+2 ( 0 0 ) # 0. This means that R

is not m-semicommutative. [J
A ring R is called locally finite if every finite subset of R generates a finite multiplicative

semigroup. For example, an algebraic closure of a finite field is locally finite but not finite.
Proposition 2.9 A locally finite abelian ring R is a GWZI ring.

Proof Let a,b € R with ab = 0. Since R is locally finite, there exist positive integers m, k such
that a™ = a™t*. This means that a™ = a™a* = a™a?* = ... = a™a™* = a™a*~Y™g™  and so
a™aF=Dm = gF™ i an idempotent. Thus we have a*™rb = ra*™b = 0 for any r € R since R is
abelian, and hence R is a left GWZI ring. Similarly, R is a right GWZI ring. O

It is an open question in [8] whether S,,(R) is left GWZI for any left GWZI ring R and any

positive integer n > 4.

Corollary 2.10 Let R be a left GWZI ring. If R is a finite ring, then S, (R) is a left GWZI

ring for any positive integer n.

Proof The hypothesis and Proposition 2.7 imply that R is abelian, and so is S, (R). Since R is
a finite ring, S, (R) is a finite ring. Thus S, (R) is a left GWZI ring by Proposition 2.9. O
A ring R is called w-regular if for any a € R, there exist a positive integer n and b € R such

that a™ = a"ba™, and R is called regular in case n =1 (see [11]).

Theorem 2.11 If R is an abelian w-regular ring, then S, (R) is a GWZI ring for any positive
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integer n.

Proof First we show that R is a GWZI ring. Let a,b € R with ab = 0. Since R is abelian
m-regular, there exist a positive integer n and ¢ € R such that a”™ = a™ca™. Let e = ca”. Then
e is a central idempotent with a™ = a™e. It follows that a"rb = aerb = a™reb = a"rca™b = 0
for any » € R. Thus R is a left GWZI ring. Similarly, R is a right GWZI ring. To complete
the proof, it suffices to show that S, (R) is abelian m-regular. It was proved in [11, Theorem 3]
that an abelian ring R is m-regular if and only if N(R) is an ideal of R and R/N(R) is regular.
Now it is easily checked that R is abelian if and only if S, (R) is abelian, and that N(R) is
an ideal of R if and only if N(S,(R)) is an ideal of S, (R). Moreover the ring isomorphism
Sn(R)/N(Sn(R)) &2 R/N(R) implies that R/N(R) is regular if and only if S, (R)/N(S,(R)) is
regular. Thus R is abelian m-regular if and only if S, (R) is abelian m-regular. The proof is
completed from the above argument. [

Given a ring R and an (R, R)-bimodule M, the trivial extension of R by M is the ring
T(R,M) = R® M with the usual addition and the following multiplication: (r1,mq)(ra,ms) =

(rira,r1mo + mara). It is easily checked that this ring is isomorphic to the formal matrix ring

a m
S{( >|a,ER,m€M}.
0 a

In what follows we will identify T'(R, R) with the ring S3(R) canonically.

Theorem 2.12 A ring R is a m-semicommutative ring if and only if the trivial extension

T(R,R) of R by R is a m-semicommutative ring.

Proof Assume that R is m-semicommutative. Let A, B € T(R,R) with AB = 0. We may

b
write A = (g u),B: 0 Z where a,u,b,v € R. Since AB = 0, we have ab = 0.
a

There exists a positive integer n such that a” Rb™ = 0 by the m-semicommutativity of R. Let
Sp(r,s) = ks +r*=lsp 4 ... 4 rsrF=1 4 sr® where r,s € R and k is a positive integer. Clearly,
don (1, 8) can be written as o, (7, s) = 181 + sor™ for some s1, so € R. By a simple computation,
we obtain that

A2n+1 _ < a2n+1 52n(a7u) ) B2n+1 _ ( b2n+1 (52n(b,’l}) )

0 a2n+1 0 b2n+1

For any C' € T(R, R), there exist ¢, w € R such that C' = ( (c) v ) Thus we have
c
A2n+1Can+1 _ a2nt1lcp2ntl §
0 a2n+lcb2n+1

where 6 = a®"*1cdy, (b, v)+a?" TLwb® L+ 6y, (a, u)cb?> 1. Noticing that 0oy, (a, u) = a™ci+coa™,
and 6a,(b,v) = b"™dy + dob™ for some cy,c2,dy,dy € R, we get a®"T1ch?" Tt = § = 0 by applying
a"Rb™ = 0. Thus we have A*"*1CB**! = ( for any C € T(R,R), and so T(R,R) is 7-

semicommutative.
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Conversely, suppose that T(R, R) is m-semicommutative. Then its subring RI» = {alz]a €
R} is m-semicommutative, and thus R = Rl is m-semicommutative. [J

For a ring R, we write R"™ = {(a1,as,...,a,)|a1,as,...,a, € R}.

Lemma 2.13 Let R be a m-semicommutative ring and n > 2 a positive integer. If A, B € S,,(R)
satisfy AB = 0, then there exists a positive integer q such that a%v, B = 0 for all v, € R™ where

a is the principal diagonal element of A.

Proof We proceed by induction on n. First, let A, B € S3(R) with AB = 0. We may write

(o))

where a,u,b,v € R. Thus AB = 0 implies ab = 0, and there exists a positive integer m such

that a™Rb™ = 0 by the m-semicommutativity of R. Using a simple computation, we obtain that

BQm+1 _ b2m+1 627n
- 0 b2m+1

where 8z, = b7y + r2b™ for some 1,79 € R. Now for any 75 = (c1,¢2) € R?, we may have

p2m+1 Som >

2 1 2 1 2 1 2 1
am+ 728 m+ :(a m+ C1,Q m+ CQ)( 0 b2m+1

— (a2m+1clb2m+1’ a2m+10152m + a2m+162b2m+1) _ (O, a2m+10152m)

by applying a™ Rb™ = 0.

Observing that a?™*tcida,, = a®™ e (b™ry + reb™) = 0, we have a?mHly, B2+l = (.
Assume that the conclusion of the lemma is true for n = k — 1. Let A, B € Sx(R) with AB = 0.
We may write A = @« ), B = ( b B ) where a,b € R, a, 3 € R*~' and A;,B; €

0 A 0 B
Sk—1(R). Since AB = 0, we have ab =0 and A, B; = 0. There exist positive integers py, pa such
that aP* RbP* = 0 and aP?v,_1B}? = 0 for any v4_; € R*~! by the 7-semicommutativity of R
and induction hypothesis. Let p = max{p;,p2}. It follows that a? Rb? = 0 and aP,_1BY = 0.

By a simple computation, we have

Bl ( p2p+1 A )
= 2p+1
0 Blp+

where A = b?P3+b?P~ 138 +-- -+ blﬁpr_l 4.+ BB, For any v = (c1,¢a,...,c) € RF, we
may write yx = (c1,7%_1) with 7x_1 € RF~1. A direct computation yields that a1y, B2+ =
Prit A
(a2p+101, a2p+1’yk_1> ( 0 o = (a2p+1c1b2p+1, a?Ptle A + a2p+1’yk_1pr+1). Using
1
the facts a? Rb? = 0 and aPryj_, B = 0, we have a2l b+ = 0, a?t1y,_ B?*! = 0, and
a2ty A = a® ey (B2~ 18BY + - - . 4+ BBIP). Noticing that c;b?~15,..., ¢, are all in RF~1, we
get a®»t1¢i A = 0 by induction hypothesis. This means that a??*1y, B?PT! = 0 for all v, € RF,
and the proof is completed. [J
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Theorem 2.14 Let R be a ring and n > 2 be a positive integer. Then R is w-semicommutative

if and only if S, (R) is m-semicommutative.

Proof Assume that R is a m-semicommutative ring. To prove S, (R) is m-semicommutative, we
proceed by induction on n. The conclusion is true in the case n = 2 by Theorem 2.12. Assume
that Sip_1(R) is a w-semicommutative ring. Now let A, B € S (R) with AB = 0. We may write

b
A= @ , B= h where a,b € R, a, 3 € RF~!, and Ay, By € Sp_1(R). Since
0 Al 0 Bl

AB =0, we have ab = 0 and A1 B; = 0. There exist positive integers p;, p2 such that a?* RbP* = 0
and A?Sy_1(R)BY? = 0 by the m-semicommutativity of R and induction hypothesis. Applying
Lemma 2.13, there exists a positive integer ¢ such that a%y,_;B? = 0 for any v,_1 € R*~!. Let
m = max{p1,pe2,q}. We have ™ RV"™ = 0, AT'S;_1(R)B}* = 0, and a™v;_1B™ = 0 for any

Ye—1 € RF=1. By using a direct computation, we may obtain the following two equalities

A2m+l _ ( a?mtt A(A) ) B2m+l _ ( pmtt A(B) )

2m 2m+1
0o At 0 Byt

where A(A) = a®"a+a*" taA; +- - +aA?™, A(B) = V¥ B3+b*""18B, +- - -+ B?™. For any
c 7
0 C;
By a simple computation, we have the following equalities
a2m+lc a2m+1,\/ + A(A)Cl b2m+1 A(B)

O A%m+1 Cl 0 B%"H_l

C € Sk(R), it can be written as C' = ( > where ¢ € R, C; € S,_1(R), and v € RF~L.

A2m+ICB2m+1 _ (

B ( a?mHlch?m+l  g2mHleA(B) + a2m+1,yB%m+1 + A(A)ClemH )
0 A%m—‘rlclB%m—‘rl
Applying the facts a™Rb™ = 0, AT'S),_1(R)B™ = 0, and a™~;,_1 B™ = 0, we get A>mT1CB?m+1 =
0 A

( 0 01 ) where Ay = a®?"T1cA(B) + A(A)C1BI™ . Since cb™ ' 8,...,¢f are in RF~!, we
have >t 1cA(B) = a®™He(0 1 BT 4. .+ B™) = 0. Similarly, since aCy, ..., aAT 10y
are in RF=1 A7'S,_1(R)BY® = 0, and a™y,_1B™ = 0, we get A(A)C B = (a*"a +
a®m oAy + -+ @™ HaAPTHO BT = 0. Tt follows that A?™T1CB2™+l = 0 for any
C € Sk(R). This completes the induction steps.

Conversely, if Sp,(R) is m-semicommutative, then R is m-semicommutative since R = RI,, =
{rI,|r € R} which is a subring of S,,(R). O

Corollary 2.15 A ring R is m-semicommutative if and only if R[z]/(z™) is w-semicommutative

for any positive integer n > 2 where (z™) is the ideal of R[z] generated by =™ in R[x].

Proof Let V = Y77 FE;iy1, and V;,(R) = RI,, + RV + --- + RV""! where RV* = {rAlr €
R,A € Vk} for 1 < k < n—1. Then we have R[z]/(z") = V,,(R) in a natural way. If R is
m-semicommutative, then S, (R) is m-semicommutative by Theorem 2.14, and so is V,,(R) as a

subring of S, (R). The validity of the converse of the corollary is rather obvious. O
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A ring R in [12] is called linearly weak Armendariz (simply, LWA) if f(z) = ap+ a1z, g(x) =
bo + biz € Rlx] satisfy g(z)f(z) = 0 then a;b; € N(R) for all i and j, equivalently, if a,b € R
satisfy a? = b% = 0 then a +b € N(R) by [12, Proposition 2.2]. Thus a weakly semicommutative
ring is LWA.

In the light of Theorem 2.14, it is natural to ask the question whether the subring

a a2 ais
0 a a3

S(R) = 0 0 a

|a,aij €ER

of the countable infinite upper triangular matrix ring is a 7-semicommutative ring in case R
is a m-semicommutative ring. The answer to this question is negative. In fact, S(R) is not
m-semicommutative for any ring R. Otherwise S(R) is weakly semicommutative and so is LWA.
Take A = > 02 Esi_12; and B = > 0 E2; 2,41 in S(R), then clearly we have A2 = B? = (.
But A+ B is not a nilpotent element, this shows that S(R) is not LWA by [12, Proposition 2.2],
a desried contradiction.

If R is a local ring with J(R) nil, then R is m-semicommutative. In this case, S(R) is a
local ring since S(R)/J(S(R)) = R/J(R). Thus S(R) is an abelian ring, but S(R) is not m-
semicommutative from the above argument. This enables us to get more examples of anelian

rings which are not m-semicommutative.

Example 2.16 There is a w-semicommutative ring R over which the polynomial ring R[z] is

not a m-semicommutative ring.

Proof By [12, Theorem 3.8], there exists a nil algebra S over some countable field F' such
that S[z] is not LWA. Let R = F'+ S. Then R is a local ring with J(R) = S, and so R is
m-semicommutative. We claim that R[z] is not m-semicommutative. Otherwise R[x] is weakly
semicommutative, and so is LWA. This means that S[z] is LWA as a subring of R[z] without
identity, a desired contradiction. [J

As any ring is a factor of a polynomial domain containing sufficiently many noncommu-
tative indeterminates, the homomorphic image of a w-semicommutative ring need not be -

semicommutative.

Proposition 2.17 Let R be a ring and I an ideal of R. If I is reduced as a ring without

identity and R/I is m-semicommutative, then R is m-semicommutative.

Proof Write R = R/I and 7 = r + I for any r € R. If a,b € R satisfy ab = 0, then ab = 0 in
R. There exists a positive integer n such that a"7b" = 0, i.e., a”rb" € I for any r € R by the
m-semicommutativity of R. Since I is reduced and (ba"rb"a)? = 0 in I, we get ba"rb"a = 0. It
follows that (a"rb™)? = a™rb"~1(ba™rb"a)a™ 1rb™ = 0 in I. This gives a"rb™ = 0 for any r € R

by the reduceness of I. [J

Proposition 2.18 Let R be a left (resp., right) GWZI ring and I an ideal of R. Then R/I(I)
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(resp., R/r(I)) is a left (resp., right) GWZI ring.

Proof Write R = R/I(I) and 7 = r +1(I) where r € R. For any a,b € R, if ab = 0 in R, then we
have ab € (), and so abv = 0 for all v € I. Since R is a left GWZI ring, there exists a positive
integer n such that a"cbv = 0 for any ¢ € R. This means that a"cb € [(I), i.e., a"¢b = 0 in R for
any ¢ € R. The validity of the right version of the proposition is now clear. [J

For any ring, reduced = semicommutative = GWZI = m-semicommutative = weakly
semicommutative, and no converse implication holds. For example, Z, is a semicommutative ring
which is not reduced, R = S4(Z3) is a GWZI ring but not semicommutative, and R = T5(Z2)
is a weakly semicommutative ring and not m-semicommutative [8]. Of course, there exists a
m-semicommutative ring R which is neither left nor right GWZI by Example 2.5.

We conclude this note with the following proposition.

Proposition 2.19 The following are equivalent for a ring R with J(R) = 0.
(1) R is reduced;
(2) R is semicommutative;
(3) R is central semicommutative;
(4) R is left (right) GWZI;
(5) R is m-semicommutative;

(6) R is weakly semicommutative.

Proof It suffices to prove that (6) implies (1). Let a € R with a®> = 0. Then we have raa = 0 for
any r € R, and so rara € N(R). Thus Ra is a nil left ideal in R. This means that Ra C J(R) = 0.

Thus we have a = 0, and so R is reduced. [J
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