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Abstract In this paper, we consider a general nonlinear integral operator %, g, (f1, ..., fn;
g1, ---,9n)(2). Some results including coefficient problems, univalency condition and radius of
convexity for this integral operator are given. Furthermore, we discuss the mapping proper-
ties between g, (f1,---, fn;01,.-.,9n)(2) and subclasses of analytic functions with bound-
ed boundary rotation. The same subjects for some corresponding classes are shown upon
specializing the parameters in our main results.
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1. Introduction

Let A denote the class of functions f(z), which are analytic in the open unit disc A = {z €
C : |z| < 1} and are given by f(z) = z+ Y.~ ,a,2". By S we designate the subclass of A
consisting of univalent functions in A.

The function f(z) € A is called subordinate to a function g(z) € A, written by f < g, if there
exists a function w(z), analytic in A with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)).
A function p(z) € P[4, B] if p(z) € A is subordinate to iigz, where p(z) is analytic in A with
p(0) =1 and —1 < B < A < 1. Janowski [1] introduced the class P[A, B]. Furthermore, let

S*[A, B] and K[A, B] be subclasses of S consisting of starlike and convex Janowski functions,

respectively defined by the following equalities:

S*[A,B] = {f(z) € S ZJJ:(S) € P[A, B, € A}, (1.1)

21"(2)
f'(z)
In fact, the classes K[A, B] and S*[A, B] have been extensively studied by many authors with
different parameters A and B (see [2-9]). In particular, K[1,—1] = K and S*[1, —1] = S* are the

class of convex functions and starlike functions, respectively. Moreover, K[l — 2a, —1] = K(a)

KA Bl ={f(z)eS:1+

€ P[A,B], z € A}, (1.2)
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and S*[1 — 2, —1] = S*(«) (0 < « < 1) are the usual class of functions that are convex of order
a and starlike of order « in A, respectively. Noor et al. [10,11] defined the class Py (p) as
27
/ \%]de <k, (1.3)
0 P
where z = 7¢?, k > 2 and 0 < p < 1. Pinchuk [12] studied the class P, = P.(0). Taking
b € C— {0}, Noor et al. [10] also considered two important classes Vi(p,b) and Ry(p,b) related

to Pi(p), where

) 1)
Vi(p,b) ={f(z) €S:1+ b 0

Ri(p.b) = {f(z) €S:1+ 1(’2]’:;;)

b
Notice that V4(0,1) and Ry (0, 1) are the well-known classes of analytic functions with bounded

€ Pe(p)},

+1) € Pr(p)}-

radius and bounded boundary rotations, respectively.
Now, let J2 o, 8,(f1,- - fni 915+, 9n)(2) + A" — A be the nonlinear integral operator
defined by

i - Qs g’L t ﬁl
%i’ﬁi(flﬂ"'7fn;g17"'7gn)(z):/0 [H(fl/(t)) L( i)) }dt? (1'4)
i=1
where a; > 0, 8; > 0 for alli =1,2,...,n. Here, we need to note some special cases.

Remark 1.1 (1) If f;(2) = g;(2) for alli = 1,2, ..., n, we obtain the integral operator introduced
and studied by Frasin [13].

(2) If B;=0foralli=1,2,...,n, we obtain the integral operator introduced and studied
by Breaz et al. [14].

(3) If a; =0 for all i =1,2,...,n, we obtain the integral operator introduced and studied
by Breaz and Breaz[15].

(4) Forn=1,a1 = o, 81 = S and f; = f,g1 = g, we obtain the integral operator defined

as

Aol = [ (O (8

(5) Foraj =as=---=aand f; = B2 =--- = 3, we obtain the integral operator defined

as

Hop(fro- s fns g, gn)(2) = /OZ [H(f{(t))“(gi(t))ﬁ]dt-

; t
=1

(6) Forn=1and oy =0, = 3,91 = g, we obtain the integral operator introduced and
studied by Miller et al. [16].

(7) Forn=1and ay = «, 81 =0, f1 = f, we obtain the integral operator introduced and
studied by Pascu and Pescar [17].

Also, kinds of different integral operators are studied by several authors (For more details,
see [13,17-23]).

In the present paper, we study several properties of the operator 4, g, (f1, ..., fn; 91, -, 9n)(2).
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Throughout this paper we assume that in the sequel every many-valued function is taken

with the principal branch.

2. Preliminary results

In the proofs of our main results we will make use of the following Lemmas:

Lemma 2.1 ([5]) Let p(z) € P[A, B] and z = r¢? (0 <r < 1). Then
1— Ar 1+ Ar
< <
o <R() < )] < { g
In the above inequality, suppose that the function ¥ (r) = lig: (0 <7 < 1), then
A-B
1) —
1/} (T) - (1+B’I“)2 > Oa
which implies that the ¢ (r) is increasing function with respect to r. Thus, we have
1+ Ar 1+ A
- <ol . B+ -1.
V) =5 S =3 B7
Lemma 2.2 ([24]) Let vy be complex number with R(vy) > 0. If h(z) € A satisfies
1— |Z|2§R(fy) Zh”( )

<L
R(v) | h'(2) |
for all z € A, then the integral operator F,(z) = {v [; ﬂ_lh’(t)dt}% is in the class S.

Lemma 2.3 ([25]) Let the function f(z) € K with z = re®® (0 < 0 < 27). Then

r r 1
1+T<|f(z)|<ﬁa W <Ifl(2)] <

The results are sharp.

(1=r)>

3. Main results

Theorem 3.1 Let Z(z) = Ao 5(f1,- -+, fni 01, -, 9n)(2) with fi(2), g:(z) € K (i =1,2,...,n),
O<a<l,0<p<l,z=re? (0<r<1l)anda+pB=1. IfL(r,Qp(z)):f(fﬂ\zf'f’(zﬂde, then

2mr

L(r, Z(z)) < Mm

Proof It is clear from (5) of Remark 1.1 that

o p(frse s fuigrs - gn)(2) = Z(2) = /OZ “E[(

=1

7y (210) ] ar (3.1)

Differentiating both sides of (3.1), it follows that 27/(z) = [\, (f/(2))* ( 0,

we have
L(r, Z(2)) :/027r|z.;@‘”’(z)|d9: /OZW

2
/0

2)8. Taking z = re'

n

e (2

i=1

)?|as

2T ) (93(2))7ad
i=1
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S| 7 f[(fi’(z))\“) f[<gz-<z>>\5de- (3.2)

Using the well-known Holder’s inequality in (3.2) with 0 < o, 8 < 1 and a + 8 = 1, then we can

write

1 27
L(r, #(2)) < 2mr' =7 (7 /
™ Jo

ﬁf{(z)]de)a(; [

Since f;(z) € K, ¢;(2) € K, from Lemma 2.3 and (3.3), we complete the proof of Theorem. [J

f[ gi(z)‘dQ)ﬁ. (3.3)

Theorem 3.2 Let Z(z) = o 5(f1,---s faiG1s-- -, Gn)(2) = 2+ 2 pey Bi2® with fi(z) € K,
gi(z)eK (i=1,2,...,n),0<a<1,0<B<1,z=7re" (0<r<1)and a+ 3 =1. Then

1 1 1

B < - .
PN g rk—T (1 = r)2natnB

Proof By Cauchy’s formula, we have

B, = 1 Z(z)

211 |z|=r ZnJrl

dz, 0<r<1.

With z = re*, namely,
1

Br| <
| k‘ 2mr

o / i0
k/o |2 (re*”)|ds. (3.4)

From the Theorem 3.1 and (3.4) it follows that

S R 1 1 1
k%k g WA |Za@p (7“6 )‘d@ = ml‘/(?ﬂ7 D@p(z)) < rk_l (1 — T)Z?L(l-‘rnﬁ.

This completes the proof. O

Theorem 3.3 If v is a complex number with ®(y) > 0 and

1+ B
n 2273%(7), if 0 < R(y) < 1;
Z(ai +Bi) < At (3.5)
i—=1 i if gR( ) >1
2+ A+ B’ B2

then the integral operator % (z) = Ko, g, (f1s-- -, fn; 915 - -, gn)(2) satisfies

1 — [2]2RO) 2 277(2)
R(v)  27(2)

where B # —1,; 2 0,0; 2 0, fi(2) € K[A, B] and g;(z) € S*[A,B] for alli =1,2,...,n.

<1

)

Proof We begin by setting

2= [ [T (E2) (35

t

where f;(z) € K[A, B] and g;(z) € S*[A, B] for all i € Z*. From (3.6), we know that

(L)) (22D (3.7)
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and Z°(0) = 27(0) — 1 = 0. It is not difficult to see that (3.7) provides

22N ) N i)
Z(2) =3 e +;ﬂl(gi(z) 1). (3.8)

=1

Next, setting z = re’® and using (3.8) with Lemma 2.1, we obtain

L= [2R0) 227(2) 1 |Z|2§R V) Zf” — . 29i(2)
Ry 2 | ‘Z *;W w )
1-— |z\2§R(7) - z2f( - zgi(z)
< {;az| 1—1\+;ﬁi|gi(z) —1}}
1— |Z‘2%(’Y) n o Zfl”(z) n 4 zgé(z)
<Al I Al 1)

N

1— |22 & 1+ Ar = 1+ Ar
W{Z 5B 1)+Zﬁi(l+Br+1)}

1— |22 & 1+A

<w{;“(m+1 Z@HB D}
C1-[PPM 2+ A+ B &K,

O P DR (3.9

In fact, we need to discuss with R(v) for different cases:

Case 1 If 0 < R(y) < 1. Then we easily observe that the function

1— 222 <1212 <1 (3.10)
for |z| < 1.
Case 2 If R(y) > 1, then we have
1 — [2*R0) 2
R S T PP 3.11)
R(7) . (

for |z| < 1. Thus, following the (3.9), (3.10) and (3.11) and using the hypothesis (3.5), we get

L 2 AT BN 4B, iH0<R() <1

1 — 22RO 227 (2) Rv) 1+8 o1
R(v) Z'(z) ' T ) 24 A+ B & -
Do L@t iR6)
This completes the proof of Theorem 3.3. [
Remark 3.4 We define the another more general nonlinear integral operator 72, o, g, (f1,- -, fn;

1y 9n)(2) : A" = A as

Ay (15 Tni 910, 9n)(2) = {7/02 ! [ﬁ(fé(t))ai(g%@))ﬂdt}%-

i=1

By applying Lemma 2.2 and the above Theorem 3.3 for the function Z(z), then it is easy to
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prove that the nonlinear integral operator 2, o, g, (f1,---5 fn; 91,---,9n)(2) € S.

Theorem 3.5 Let fi(z) € K[A, B] and g;(z) € S*[A,B] for alli = 1,2,...,n. If B— (B —
A) ST (a+pB;) > 0, then the integral operator #o, g, (f1,- .-, fn; G1s-- -+ 9n)(2) € K for |z] < 1o,

where 1 is given by ry = min{ B (5=A) leﬁ @A) , 1}

Proof We can give that
@%%mWWmeﬂmwsz=Aﬁﬁmmwﬂpﬁba
Furthermore, (3.8) shows :
zf” Z zf" Zﬁl
—  fil gi(
Let z = re? (0 < 6 < 2n). Since f;(z) € K[A, B] and g;(z) € S*[A,B] for all i = 1,2,...,n,
then (3.12) and Lemma 2.1 give

RS 1) =Y o

(3.12)

b+ Zﬁi%<zjgf)) +1- (i +B)

i=1 i(2) i=1

i=1 i=1 i=1

1—B’I" Za1+5z

(B—A)>" (i +B;) — Blr+1
= . .].
1—-DBr (3.13)
Clearly the right hand side of (3.13) is positive for |z| < ro. Hence 4, g, (f1,---, fni g1, -, 9n)(2)

€ K for |z| < rp, where rq is given as the condition with Theorem 3.5. O

Theorem 3.6 If f;(z) € K[A, B] and g;(2) € S*[A, B] foralli = 1,2,...,n, then 7, g,(f1,- -, fn;
g1y, 9n)(2) € Vi(0,b), where b > 0 and k = 2+ 4:&?‘_%2)3 S (o + 51) (B # -1).

Proof It is clear from (1.4) that
Hsi o902 = 2) = [ [T (%) Jae. a9

Furthermore, using (3.14) gives that

122" (2 1 zf”
R SRS ME SR W (.19
and
1227(2) 1 1 = w29i(z)
R{1+ 7 +5 z; ; ;ﬂﬂ%( ) 1). (3.16)

In view of f;(z) € K[A, B] and g;(z) € S*[A, B]7 then from (3.16) and Lemma 2.1 we obtain

2 12277(
| mie g e
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I Lo, R sl
/o’g(E bzﬁl/ R ~ Ve

NE u?ﬂ: i M

<o+ ai/o |9%{ )+1—1}]d0+ Zﬁ/ |8%ng ol + 1)d0
P
<27T+2i_104i/07r(|%{2 70 +1}|+1d0+bzﬁl/ (|3 Zgl |+1)
<27r+11)§: (1ig:+1) O%dejubZﬁz iig’"ﬂ) Ohde
<27r+ll)i <(iig+1)/02ﬂde+b261 iig 1)/02ﬂd9
—or + %Qtf% S (i + Bi), (3.17)

i=1

where z = re?® (0 < 0 < 27). Hence, if k = 2 + 4"'21{&923 S (o + Bi), then from (3.17), we

have

122"(
1
[ 322 o <
which proves that &, g, (f1,-- s fn;91,---,9n)(2) € Vk(O7 b). O

Theorem 3.7 Suppose fi(z) € Vi(p1,b) and g;(z) € Ri(pe,b) for all i = 1,2,...,n, where
0<m<L,0<pa<landbeC—{0}. Ifa; 20, 8; 20 foralli =1,2,...,n and

<(pr—1) Zal (p2 — 1) Z@+1<1 (3.18)

then 7, g,(f1,- -+, fn; 91, -, 9n)(2) € Vi(A,b) with

=(p1—1) Zaz—i— p2 —1) Zﬁi—kl. (3.19)

i=1

Proof Using the definition of %, g,(f1,---, fn;01,---,9n)(2), we have

2 n
(t
L(2) = Hoy g (fry- oo fri g1y gn) (2 —/ [ g’ )) }dt. (3.20)
=1
Differentiating both sides of (3.20) logarithmically, we obtain
22" (z) o2fl(2) & 2gi(z
= i i 3.21

By multiplying (3.21) with §, we easily find that
1227(2) <& 1 zf
b 2(z) 20 Z PP Y
i=1

—fj 1+12f ())]+iﬁi[1+2(2?4'((j))—1)]—Z<ai+/3i), (3.22)
i=1 v i=1

i
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then (3.22) is equivalent to

1227 §n L O et
ST _; [1+5f +Z@1+ () 1)]—;(a1+61)+1. (3.23)

Subtracting and adding p; and p2 on the right hand side of (3.23), we have

1z.f'f” 1zf”( ) - 1 2gi(2)
A ) = Z [1+5 B p1]+;ﬁi[(1+g(m(z) —1)—pa], (3.24)

where A = (p; —1) 2?21 a;i+(p2—1) Zi:l B;+ 1. Taking real part of (3.24) and then integrating

from 0 to 27, we obtain

2m // 27
| mie o) —>\|d9<2al/ 1+1Zf(<) pi] a0+
0

)
Zﬁ/o R 1+2(Zg‘i’((z)) 1) — po]|df.  (3.25)

Since f;(z) € Vi(p1,b), gi(2) € Ri(pe,b) for all i =1,2,...,n, we have

/0 "R izf,/;()) pi]]d6 < (1= )k (3.26)
and
/2W|a%[(1+1(zg§(z) —1) = po][dO < (1 = po)kem (3.27)
0 b gi(z) ? h ? ' '

Furthermore, applying (3.26) and (3.27) in (3.25), we obtain

2 1272"(z) "
/O R+ g,(z)]—)\|d9< (1—p1) Zaz (1—p2) ;ﬁi]kw—(l—A)lm.

Hence 52, 8, (f1,- .. fa;91,---,9n)(2) € Vi(A,b) with X\ being given by (3.19). The proof of
Theorem 3.7 is completed. [

Remark 3.8 In fact, we can see that all the above theorems imply the corresponding results

for kinds of special operators defined as Remark 1.1.

Remark 3.9 By giving specific values to the parameters A and B (-1 < B < A < 1) in
Theorem 3.3 to Theorem 3.6, we can consider several interesting results with different subclasses

of functions.

Remark 3.10 Taking o; =0 (i = 1,...,n), py = pand §; =0 (i = 1,...,n), po = p in
Theorem 3.7, we obtain the results [10, Theorem 2.1] and [10, Theorem 2.5] proved by Noor et

al., respectively.
Acknowledgements We thank the referees for their time and comments.
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