Journal of Mathematical Research with Applications Jul., 2016, Vol. 36, No. 4, pp. 432–440 DOI:10.3770/j.issn:2095-2651.2016.04.005 Http://jmre.dlut.edu.cn

Properties of Certain Nonlinear Integral Operator Associated with Janowski Starlike and Convex Functions

Liangpeng XIONG^{1,2}

- 1. School of Mathematics and Statistics, Wuhan University, Hubei 430072, P. R. China;
- 2. Department of Mathematics, Engineering and Technical College, Chengdu University of Technology, Sichuan 614007, P. R. China

Abstract In this paper, we consider a general nonlinear integral operator $\mathscr{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z)$. Some results including coefficient problems, univalency condition and radius of convexity for this integral operator are given. Furthermore, we discuss the mapping properties between $\mathscr{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z)$ and subclasses of analytic functions with bounded boundary rotation. The same subjects for some corresponding classes are shown upon specializing the parameters in our main results.

Keywords analytic functions; Janowski functions; nonlinear integral operators; functions with bounded boundary rotation; subordination

MR(2010) Subject Classification 30C45; 30C50

1. Introduction

Let \mathcal{A} denote the class of functions f(z), which are analytic in the open unit disc $\Delta = \{z \in \mathbb{C} : |z| < 1\}$ and are given by $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. By \mathcal{S} we designate the subclass of \mathcal{A} consisting of univalent functions in Δ .

The function $f(z) \in \mathcal{A}$ is called subordinate to a function $g(z) \in \mathcal{A}$, written by $f \prec g$, if there exists a function w(z), analytic in Δ with w(0) = 0 and |w(z)| < 1, such that f(z) = g(w(z)). A function $p(z) \in \mathcal{P}[A, B]$ if $p(z) \in \mathcal{A}$ is subordinate to $\frac{1+Az}{1+Bz}$, where p(z) is analytic in Δ with p(0) = 1 and $-1 \leqslant B < A \leqslant 1$. Janowski [1] introduced the class $\mathcal{P}[A, B]$. Furthermore, let $S^*[A, B]$ and K[A, B] be subclasses of \mathcal{S} consisting of starlike and convex Janowski functions, respectively defined by the following equalities:

$$S^*[A, B] = \{ f(z) \in \mathcal{S} : \frac{zf'(z)}{f(z)} \in \mathcal{P}[A, B], \ z \in \Delta \},$$
 (1.1)

$$K[A, B] = \left\{ f(z) \in \mathcal{S} : 1 + \frac{zf''(z)}{f'(z)} \in \mathcal{P}[A, B], \ z \in \Delta \right\}.$$
 (1.2)

In fact, the classes K[A,B] and $S^*[A,B]$ have been extensively studied by many authors with different parameters A and B (see [2–9]). In particular, $K[1,-1] \equiv K$ and $S^*[1,-1] \equiv S^*$ are the class of convex functions and starlike functions, respectively. Moreover, $K[1-2\alpha,-1] \equiv K(\alpha)$

Received August 22, 2015; Accepted January 13, 2016

Supported by the Scientific Research Fund of Sichuan Provincial Education Department (Grant No. 14ZB0364). E-mail address: xlpwxf@163.com

and $S^*[1-2\alpha,-1] \equiv S^*(\alpha)$ (0 < $\alpha \le 1$) are the usual class of functions that are convex of order α and starlike of order α in Δ , respectively. Noor et al. [10,11] defined the class $\mathcal{P}_k(\rho)$ as

$$\int_0^{2\pi} \left| \frac{\Re(p(z)) - \rho}{1 - \rho} \right| d\theta \leqslant k\pi, \tag{1.3}$$

where $z = re^{i\theta}$, $k \ge 2$ and $0 \le \rho < 1$. Pinchuk [12] studied the class $\mathcal{P}_k \equiv \mathcal{P}_k(0)$. Taking $b \in \mathbb{C} - \{0\}$, Noor et al. [10] also considered two important classes $V_k(\rho, b)$ and $R_k(\rho, b)$ related to $\mathcal{P}_k(\rho)$, where

$$V_k(\rho, b) = \left\{ f(z) \in \mathcal{S} : 1 + \frac{1}{b} \frac{z f''(z)}{f'(z)} \in \mathcal{P}_k(\rho) \right\},\,$$

$$R_k(\rho, b) = \left\{ f(z) \in \mathcal{S} : 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} + 1 \right) \in \mathcal{P}_k(\rho) \right\}.$$

Notice that $V_k(0,1)$ and $R_k(0,1)$ are the well-known classes of analytic functions with bounded radius and bounded boundary rotations, respectively.

Now, let $\mathscr{H}_{\gamma,\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z):\mathcal{A}^n\to\mathcal{A}$ be the nonlinear integral operator defined by

$$\mathscr{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) = \int_0^z \left[\prod_{i=1}^n (f_i'(t))^{\alpha_i} \left(\frac{g_i(t)}{t}\right)^{\beta_i} \right] dt, \tag{1.4}$$

where $\alpha_i \ge 0$, $\beta_i \ge 0$ for all i = 1, 2, ..., n. Here, we need to note some special cases.

Remark 1.1 (1) If $f_i(z) = g_i(z)$ for all i = 1, 2, ..., n, we obtain the integral operator introduced and studied by Frasin [13].

- (2) If $\beta_i = 0$ for all i = 1, 2, ..., n, we obtain the integral operator introduced and studied by Breaz et al. [14].
- (3) If $\alpha_i = 0$ for all i = 1, 2, ..., n, we obtain the integral operator introduced and studied by Breaz and Breaz [15].
- (4) For $n = 1, \alpha_1 = \alpha, \beta_1 = \beta$ and $f_1 = f, g_1 = g$, we obtain the integral operator defined as

$$\mathcal{H}_{\alpha,\beta}(f,g) = \int_0^z (f'(t))^{\alpha} \left(\frac{g(t)}{t}\right)^{\beta} dt.$$

(5) For $\alpha_1 = \alpha_2 = \cdots = \alpha$ and $\beta_1 = \beta_2 = \cdots = \beta$, we obtain the integral operator defined as

$$\mathscr{H}_{\alpha,\beta}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) = \int_0^z \left[\prod_{i=1}^n (f_i'(t))^{\alpha} \left(\frac{g_i(t)}{t}\right)^{\beta}\right] dt.$$

- (6) For n = 1 and $\alpha_1 = 0, \beta_1 = \beta, g_1 = g$, we obtain the integral operator introduced and studied by Miller et al. [16].
- (7) For n = 1 and $\alpha_1 = \alpha, \beta_1 = 0, f_1 = f$, we obtain the integral operator introduced and studied by Pascu and Pescar [17].

Also, kinds of different integral operators are studied by several authors (For more details, see [13,17-23]).

In the present paper, we study several properties of the operator $\mathcal{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z)$.

Throughout this paper we assume that in the sequel every many-valued function is taken with the principal branch.

2. Preliminary results

In the proofs of our main results we will make use of the following Lemmas:

Lemma 2.1 ([5]) Let $p(z) \in \mathcal{P}[A, B]$ and $z = re^{i\theta}$ ($0 \le r \le 1$). Then

$$\frac{1-Ar}{1-Br} \leqslant \Re(p(z)) \leqslant |p(z)| \leqslant \frac{1+Ar}{1+Br}.$$

In the above inequality, suppose that the function $\psi(r) = \frac{1+Ar}{1+Br}$ $(0 \le r \le 1)$, then

$$\psi'(r) = \frac{A - B}{(1 + Br)^2} > 0,$$

which implies that the $\psi(r)$ is increasing function with respect to r. Thus, we have

$$\psi(r) = \frac{1+Ar}{1+Br} \le \psi(1) = \frac{1+A}{1+B}, \quad B \ne -1.$$

Lemma 2.2 ([24]) Let γ be complex number with $\Re(\gamma) > 0$. If $h(z) \in \mathcal{A}$ satisfies

$$\frac{1-|z|^{2\Re(\gamma)}}{\Re(\gamma)} \left| \frac{zh''(z)}{h'(z)} \right| \leqslant 1,$$

for all $z \in \Delta$, then the integral operator $F_{\gamma}(z) = \{\gamma \int_0^z t^{\gamma-1} h'(t) dt\}^{\frac{1}{\gamma}}$ is in the class \mathcal{S} .

Lemma 2.3 ([25]) Let the function $f(z) \in K$ with $z = re^{i\theta}$ $(0 \le \theta \le 2\pi)$. Then

$$\frac{r}{1+r} \le |f(z)| \le \frac{r}{1-r}, \quad \frac{1}{(1+r)^2} \le |f'(z)| \le \frac{1}{(1-r)^2}.$$

The results are sharp.

3. Main results

Theorem 3.1 Let $\mathscr{Z}(z) = \mathscr{H}_{\alpha,\beta}(f_1, ..., f_n; g_1, ..., g_n)(z)$ with $f_i(z), g_i(z) \in K$ $(i = 1, 2, ..., n), 0 < \alpha < 1, 0 < \beta < 1, z = re^{i\theta} (0 < r < 1)$ and $\alpha + \beta = 1$. If $L(r, \mathscr{Z}(z)) = \int_0^{2\pi} |z\mathscr{Z}'(z)| d\theta$, then

$$L(r, \mathscr{Z}(z)) \leqslant \frac{2\pi r}{(1-r)^{2n\alpha+n\beta}}.$$

Proof It is clear from (5) of Remark 1.1 that

$$\mathscr{H}_{\alpha,\beta}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) = \mathscr{Z}(z) = \int_0^z \left[\prod_{i=1}^n (f_i'(t))^\alpha \left(\frac{g_i(t)}{t}\right)^\beta \right] dt.$$
 (3.1)

Differentiating both sides of (3.1), it follows that $\mathscr{Z}'(z) = \prod_{i=1}^n (f_i'(z))^{\alpha} (\frac{g_i(z)}{z})^{\beta}$. Taking $z = re^{i\theta}$, we have

$$L(r, \mathcal{Z}(z)) = \int_0^{2\pi} |z\mathcal{Z}'(z)| d\theta = \int_0^{2\pi} \left| z \prod_{i=1}^n (f_i'(z))^\alpha \left(\frac{g_i(z)}{z} \right)^\beta \right| d\theta$$
$$= \int_0^{2\pi} \left| z^{1-n\beta} \prod_{i=1}^n (f_i'(z))^\alpha (g_i(z))^\beta \right| d\theta$$

$$= r^{1-n\beta} \int_0^{2\pi} \left| \prod_{i=1}^n (f_i'(z)) \right|^{\alpha} \left| \prod_{i=1}^n (g_i(z)) \right|^{\beta} d\theta.$$
 (3.2)

Using the well-known Holder's inequality in (3.2) with $0 < \alpha, \beta < 1$ and $\alpha + \beta = 1$, then we can write

$$L(r, \mathscr{Z}(z)) \leqslant 2\pi r^{1-n\beta} \left(\frac{1}{2\pi} \int_0^{2\pi} \Big| \prod_{i=1}^n f_i'(z) \Big| d\theta \right)^{\alpha} \left(\frac{1}{2\pi} \int_0^{2\pi} \Big| \prod_{i=1}^n g_i(z) \Big| d\theta \right)^{\beta}. \tag{3.3}$$

Since $f_i(z) \in K$, $g_i(z) \in K$, from Lemma 2.3 and (3.3), we complete the proof of Theorem. \square

Theorem 3.2 Let $\mathscr{Z}(z) = \mathscr{H}_{\alpha,\beta}(f_1, ..., f_n; g_1, ..., g_n)(z) = z + \sum_{k=2}^{\infty} \mathfrak{B}_k z^k$ with $f_i(z) \in K$, $g_i(z) \in K$ (i = 1, 2, ..., n), $0 < \alpha < 1, 0 < \beta < 1$, $z = re^{i\theta}$ (0 < r < 1) and $\alpha + \beta = 1$. Then

$$\mathfrak{B}_k \leqslant \frac{1}{k} \frac{1}{r^{k-1}} \frac{1}{(1-r)^{2n\alpha+n\beta}}.$$

Proof By Cauchy's formula, we have

$$\mathfrak{B}_k = \frac{1}{2\pi i} \int_{|z|=r} \frac{\mathscr{Z}(z)}{z^{n+1}} \mathrm{d}z, \quad 0 < r < 1.$$

With $z = re^{i\theta}$, namely,

$$|\mathfrak{B}_k| \leqslant \frac{1}{2\pi r^k} \int_0^{2\pi} |\mathscr{Z}'(re^{i\theta})| d\theta.$$
 (3.4)

From the Theorem 3.1 and (3.4) it follows that

$$k\mathfrak{B}_k \leqslant \frac{1}{2\pi r^k} \int_0^{2\pi} |z \mathscr{Z}'(re^{i\theta})| d\theta = \frac{1}{2\pi r^k} L(r, \mathscr{Z}(z)) \leqslant \frac{1}{r^{k-1}} \frac{1}{(1-r)^{2n\alpha+n\beta}}.$$

This completes the proof. \Box

Theorem 3.3 If γ is a complex number with $\Re(\gamma) > 0$ and

$$\sum_{i=1}^{n} (\alpha_i + \beta_i) \leqslant \begin{cases} \frac{1+B}{2+A+B} \Re(\gamma), & \text{if } 0 < \Re(\gamma) < 1; \\ \frac{1+B}{2+A+B}, & \text{if } \Re(\gamma) \geqslant 1, \end{cases}$$

$$(3.5)$$

then the integral operator $\mathscr{Z}(z) = \mathscr{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z)$ satisfies

$$\frac{1-|z|^{2\Re(\gamma)}}{\Re(\gamma)}\big|\frac{z\mathscr{Z}''(z)}{\mathscr{Z}'(z)}\big|\leqslant 1,$$

where $B \neq -1, \alpha_i \geqslant 0, \beta_i \geqslant 0, f_i(z) \in K[A, B]$ and $g_i(z) \in S^*[A, B]$ for all $i = 1, 2, \dots, n$.

Proof We begin by setting

$$\mathscr{Z}(z) = \int_0^z \left[\prod_{i=1}^n (f_i'(t))^{\alpha_i} \left(\frac{g_i(t)}{t} \right)^{\beta_i} \right] dt, \tag{3.6}$$

where $f_i(z) \in K[A, B]$ and $g_i(z) \in S^*[A, B]$ for all $i \in \mathbb{Z}^+$. From (3.6), we know that

$$\mathscr{Z}'(z) = \prod_{i=1}^{n} (f_i'(z))^{\alpha_i} \left(\frac{g_i(z)}{z}\right)^{\beta_i} \tag{3.7}$$

and $\mathscr{Z}(0) = \mathscr{Z}'(0) - 1 = 0$. It is not difficult to see that (3.7) provides

$$\frac{z\mathcal{Z}''(z)}{\mathcal{Z}'(z)} = \sum_{i=1}^{n} \alpha_i \frac{zf_i''(z)}{f_i'(z)} + \sum_{i=1}^{n} \beta_i \left(\frac{zg_i'(z)}{g_i(z)} - 1\right). \tag{3.8}$$

Next, setting $z = re^{i\theta}$ and using (3.8) with Lemma 2.1, we obtain

$$\frac{1 - |z|^{2\Re(\gamma)}}{\Re(\gamma)} \left| \frac{z \mathcal{Z}''(z)}{\mathcal{Z}'(z)} \right| = \frac{1 - |z|^{2\Re(\gamma)}}{\Re(\gamma)} \left| \sum_{i=1}^{n} \alpha_{i} \frac{z f_{i}''(z)}{f_{i}'(z)} + \sum_{i=1}^{n} \beta_{i} \left(\frac{z g_{i}'(z)}{g_{i}(z)} - 1 \right) \right| \\
\leq \frac{1 - |z|^{2\Re(\gamma)}}{\Re(\gamma)} \left\{ \sum_{i=1}^{n} \alpha_{i} \left| \frac{z f_{i}''(z)}{f_{i}'(z)} + 1 - 1 \right| + \sum_{i=1}^{n} \beta_{i} \left| \frac{z g_{i}'(z)}{g_{i}(z)} - 1 \right| \right\} \\
\leq \frac{1 - |z|^{2\Re(\gamma)}}{\Re(\gamma)} \left\{ \sum_{i=1}^{n} \alpha_{i} \left[\left| \frac{z f_{i}''(z)}{f_{i}'(z)} + 1 \right| + 1 \right] + \sum_{i=1}^{n} \beta_{i} \left[\left| \frac{z g_{i}'(z)}{g_{i}(z)} \right| + 1 \right] \right\} \\
\leq \frac{1 - |z|^{2\Re(\gamma)}}{\Re(\gamma)} \left\{ \sum_{i=1}^{n} \alpha_{i} \left(\frac{1 + Ar}{1 + Br} + 1 \right) + \sum_{i=1}^{n} \beta_{i} \left(\frac{1 + Ar}{1 + Br} + 1 \right) \right\} \\
\leq \frac{1 - |z|^{2\Re(\gamma)}}{\Re(\gamma)} \left\{ \sum_{i=1}^{n} \alpha_{i} \left(\frac{1 + A}{1 + B} + 1 \right) + \sum_{i=1}^{n} \beta_{i} \left(\frac{1 + A}{1 + B} + 1 \right) \right\} \\
= \frac{1 - |z|^{2\Re(\gamma)}}{\Re(\gamma)} \frac{2 + A + B}{1 + B} \sum_{i=1}^{n} (\alpha_{i} + \beta_{i}). \tag{3.9}$$

In fact, we need to discuss with $\Re(\gamma)$ for different cases:

Case 1 If $0 < \Re(\gamma) < 1$. Then we easily observe that the function

$$1 - |z|^{2\Re(\gamma)} \le 1 - |z|^2 \le 1 \tag{3.10}$$

for |z| < 1.

Case 2 If $\Re(\gamma) \geqslant 1$, then we have

$$\frac{1-|z|^{2\Re(\gamma)}}{\Re(\gamma)} \leqslant 1-|z|^2 \leqslant 1 \tag{3.11}$$

for |z| < 1. Thus, following the (3.9), (3.10) and (3.11) and using the hypothesis (3.5), we get

$$\frac{1-|z|^{2\Re(\gamma)}}{\Re(\gamma)} \left| \frac{z \mathscr{Z}''(z)}{\mathscr{Z}'(z)} \right| \leqslant \begin{cases} \frac{1}{\Re(\gamma)} \frac{2+A+B}{1+B} \sum_{i=1}^{n} (\alpha_i + \beta_i), & \text{if } 0 < \Re(\gamma) < 1, \\ \frac{2+A+B}{1+B} \sum_{i=1}^{n} (\alpha_i + \beta_i), & \text{if } \Re(\gamma) \geqslant 1, \end{cases} \leqslant 1.$$

This completes the proof of Theorem 3.3. \square

Remark 3.4 We define the another more general nonlinear integral operator $\mathcal{H}_{\gamma,\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z):\mathcal{A}^n\to\mathcal{A}$ as

$$\mathscr{H}_{\gamma,\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) = \left\{\gamma \int_0^z t^{\gamma-1} \left[\prod_{i=1}^n (f_i'(t))^{\alpha_i} \left(\frac{g_i(t)}{t}\right)^{\beta_i}\right] dt\right\}^{\frac{1}{\gamma}}.$$

By applying Lemma 2.2 and the above Theorem 3.3 for the function $\mathcal{Z}(z)$, then it is easy to

prove that the nonlinear integral operator $\mathcal{H}_{\gamma,\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) \in S$.

Theorem 3.5 Let $f_i(z) \in K[A, B]$ and $g_i(z) \in S^*[A, B]$ for all i = 1, 2, ..., n. If $B - (B - A) \sum_{i=1}^{n} (\alpha_i + \beta_i) > 0$, then the integral operator $\mathcal{H}_{\alpha_i, \beta_i}(f_1, ..., f_n; g_1, ..., g_n)(z) \in K$ for $|z| < r_0$, where r_0 is given by $r_0 = \min\{\frac{1}{B - (B - A) \sum_{i=1}^{n} (\alpha_i + \beta_i)}, 1\}$.

Proof We can give that

$$\mathscr{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) = \mathscr{Z}(z) = \int_0^z \left[\prod_{i=1}^n (f_i'(t))^{\alpha_i} \left(\frac{g_i(t)}{t}\right)^{\beta_i}\right] dt,$$

Furthermore, (3.8) shows

$$\frac{z\mathscr{Z}''(z)}{\mathscr{Z}'(z)} = \sum_{i=1}^{n} \alpha_i \frac{zf_i''(z)}{f_i'(z)} + \sum_{i=1}^{n} \beta_i \left(\frac{zg_i'(z)}{g_i(z)} - 1\right). \tag{3.12}$$

Let $z = re^{i\theta}$ $(0 \le \theta \le 2\pi)$. Since $f_i(z) \in K[A, B]$ and $g_i(z) \in S^*[A, B]$ for all i = 1, 2, ..., n, then (3.12) and Lemma 2.1 give

$$\Re\left\{\frac{z\mathscr{Z}''(z)}{\mathscr{Z}'(z)} + 1\right\} = \sum_{i=1}^{n} \alpha_{i} \Re\left(\frac{zf_{i}''(z)}{f_{i}'(z)} + 1\right) + \sum_{i=1}^{n} \beta_{i} \Re\left(\frac{zg_{i}'(z)}{g_{i}(z)}\right) + 1 - \sum_{i=1}^{n} (\alpha_{i} + \beta_{i})$$

$$\geqslant \sum_{i=1}^{n} \alpha_{i} \frac{1 - Ar}{1 - Br} + \sum_{i=1}^{n} \beta_{i} \frac{1 - Ar}{1 - Br} + 1 - \sum_{i=1}^{n} (\alpha_{i} + \beta_{i})$$

$$= \left(\frac{1 - Ar}{1 - Br} - 1\right) \sum_{i=1}^{n} (\alpha_{i} + \beta_{i}) + 1$$

$$= \frac{[(B - A) \sum_{i=1}^{n} (\alpha_{i} + \beta_{i}) - B]r + 1}{1 - Br}.$$
(3.13)

Clearly the right hand side of (3.13) is positive for $|z| < r_0$. Hence $\mathcal{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) \in K$ for $|z| < r_0$, where r_0 is given as the condition with Theorem 3.5. \square

Theorem 3.6 If $f_i(z) \in K[A, B]$ and $g_i(z) \in S^*[A, B]$ for all i = 1, 2, ..., n, then $\mathcal{H}_{\alpha_i, \beta_i}(f_1, ..., f_n; g_1, ..., g_n)(z) \in V_k(0, b)$, where b > 0 and $k = 2 + \frac{4 + 2A + 2B}{b(1+B)} \sum_{i=1}^n (\alpha_i + \beta_i) \ (B \neq -1)$.

Proof It is clear from (1.4) that

$$\mathscr{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) = \mathscr{Z}(z) = \int_0^z \left[\prod_{i=1}^n (f_i'(t))^{\alpha_i} \left(\frac{g_i(t)}{t}\right)^{\beta_i} \right] dt.$$
 (3.14)

Furthermore, using (3.14) gives that

$$1 + \frac{1}{b} \frac{z \mathcal{Z}''(z)}{\mathcal{Z}'(z)} = 1 + \frac{1}{b} \sum_{i=1}^{n} \alpha_i \frac{z f_i''(z)}{f_i'(z)} + \frac{1}{b} \sum_{i=1}^{n} \beta_i \left(\frac{z g_i'(z)}{g_i(z)} - 1\right)$$
(3.15)

and

$$\Re\left\{1 + \frac{1}{b} \frac{z \mathcal{Z}''(z)}{\mathcal{Z}'(z)}\right\} = 1 + \frac{1}{b} \sum_{i=1}^{n} \alpha_i \Re\left\{\frac{z f_i''(z)}{f_i'(z)}\right\} + \frac{1}{b} \sum_{i=1}^{n} \beta_i \Re\left(\frac{z g_i'(z)}{g_i(z)} - 1\right). \tag{3.16}$$

In view of $f_i(z) \in K[A, B]$ and $g_i(z) \in S^*[A, B]$, then from (3.16) and Lemma 2.1 we obtain

$$\int_0^{2\pi} \left| \Re \left\{ 1 + \frac{1}{b} \frac{z \mathscr{Z}''(z)}{\mathscr{Z}'(z)} \right\} \right| \mathrm{d}\theta$$

$$\leq 2\pi + \frac{1}{b} \sum_{i=1}^{n} \alpha_{i} \int_{0}^{2\pi} \left| \Re \left\{ \frac{z f_{i}''(z)}{f_{i}'(z)} \right\} \right| d\theta + \frac{1}{b} \sum_{i=1}^{n} \beta_{i} \int_{0}^{2\pi} \left| \Re \left(\frac{z g_{i}'(z)}{g_{i}(z)} - 1 \right) \right| d\theta$$

$$\leq 2\pi + \frac{1}{b} \sum_{i=1}^{n} \alpha_{i} \int_{0}^{2\pi} \left| \Re \left\{ \frac{z f_{i}''(z)}{f_{i}'(z)} + 1 - 1 \right\} \right| d\theta + \frac{1}{b} \sum_{i=1}^{n} \beta_{i} \int_{0}^{2\pi} \left(\left| \Re \left(\frac{z g_{i}'(z)}{g_{i}(z)} \right) + 1 \right) d\theta$$

$$\leq 2\pi + \frac{1}{b} \sum_{i=1}^{n} \alpha_{i} \int_{0}^{2\pi} \left(\left| \Re \left\{ \frac{z f_{i}''(z)}{f_{i}'(z)} + 1 \right\} \right| + 1 \right) d\theta + \frac{1}{b} \sum_{i=1}^{n} \beta_{i} \int_{0}^{2\pi} \left(\left| \Re \left(\frac{z g_{i}'(z)}{g_{i}(z)} \right) + 1 \right) d\theta$$

$$\leq 2\pi + \frac{1}{b} \sum_{i=1}^{n} \alpha_{i} \left(\frac{1 + Ar}{1 + Br} + 1 \right) \int_{0}^{2\pi} d\theta + \frac{1}{b} \sum_{i=1}^{n} \beta_{i} \left(\frac{1 + Ar}{1 + Br} + 1 \right) \int_{0}^{2\pi} d\theta$$

$$\leq 2\pi + \frac{1}{b} \sum_{i=1}^{n} \alpha_{i} \left(\frac{1 + A}{1 + B} + 1 \right) \int_{0}^{2\pi} d\theta + \frac{1}{b} \sum_{i=1}^{n} \beta_{i} \left(\frac{1 + A}{1 + B} + 1 \right) \int_{0}^{2\pi} d\theta$$

$$= 2\pi + \frac{2\pi}{b} \frac{2 + A + B}{1 + B} \sum_{i=1}^{n} (\alpha_{i} + \beta_{i}), \tag{3.17}$$

where $z = re^{i\theta}$ ($0 \le \theta \le 2\pi$). Hence, if $k = 2 + \frac{4+2A+2B}{b(1+B)} \sum_{i=1}^{n} (\alpha_i + \beta_i)$, then from (3.17), we have

$$\int_{0}^{2\pi} \left| \Re \left\{ 1 + \frac{1}{b} \frac{z \mathcal{Z}''(z)}{\mathcal{Z}'(z)} \right\} \right| \mathrm{d}\theta \leqslant k\pi,$$

which proves that $\mathscr{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z)\in V_k(0,b)$. \square

Theorem 3.7 Suppose $f_i(z) \in V_k(\rho_1, b)$ and $g_i(z) \in R_k(\rho_2, b)$ for all i = 1, 2, ..., n, where $0 \le \rho_1 < 1, 0 \le \rho_2 < 1$ and $b \in \mathbb{C} - \{0\}$. If $\alpha_i \ge 0$, $\beta_i \ge 0$ for all i = 1, 2, ..., n and

$$0 \le (\rho_1 - 1) \sum_{i=1}^{n} \alpha_i + (\rho_2 - 1) \sum_{i=1}^{n} \beta_i + 1 < 1, \tag{3.18}$$

then $\mathcal{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z) \in V_k(\lambda,b)$ with

$$\lambda = (\rho_1 - 1) \sum_{i=1}^{n} \alpha_i + (\rho_2 - 1) \sum_{i=1}^{n} \beta_i + 1.$$
 (3.19)

Proof Using the definition of $\mathcal{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z)$, we have

$$\mathscr{Z}(z) = \mathscr{H}_{\alpha_i,\beta_i}(f_1,\dots,f_n;g_1,\dots,g_n)(z) = \int_0^z \left[\prod_{i=1}^n (f_i'(t))^{\alpha_i} \left(\frac{g_i(t)}{t}\right)^{\beta_i} \right] dt.$$
 (3.20)

Differentiating both sides of (3.20) logarithmically, we obtain

$$\frac{z\mathscr{Z}''(z)}{\mathscr{Z}'(z)} = \sum_{i=1}^{n} \alpha_i \frac{zf_i''(z)}{f_i'(z)} + \sum_{i=1}^{n} \beta_i \left(\frac{zg_i'(z)}{g_i(z)} - 1\right). \tag{3.21}$$

By multiplying (3.21) with $\frac{1}{h}$, we easily find that

$$\frac{1}{b} \frac{z \mathcal{Z}''(z)}{\mathcal{Z}'(z)} = \sum_{i=1}^{n} \alpha_i \frac{1}{b} \frac{z f_i''(z)}{f_i'(z)} + \sum_{i=1}^{n} \frac{1}{b} \beta_i \left(\frac{z g_i'(z)}{g_i(z)} - 1 \right)
= \sum_{i=1}^{n} \alpha_i \left[1 + \frac{1}{b} \frac{z f_i''(z)}{f_i'(z)} \right] + \sum_{i=1}^{n} \beta_i \left[1 + \frac{1}{b} \left(\frac{z g_i'(z)}{g_i(z)} - 1 \right) \right] - \sum_{i=1}^{n} (\alpha_i + \beta_i), \quad (3.22)$$

then (3.22) is equivalent to

$$1 + \frac{1}{b} \frac{z \mathscr{Z}''(z)}{\mathscr{Z}'(z)} = \sum_{i=1}^{n} \alpha_i \left[1 + \frac{1}{b} \frac{z f_i''(z)}{f_i'(z)} \right] + \sum_{i=1}^{n} \beta_i \left[1 + \frac{1}{b} \left(\frac{z g_i'(z)}{g_i(z)} - 1 \right) \right] - \sum_{i=1}^{n} (\alpha_i + \beta_i) + 1. \quad (3.23)$$

Subtracting and adding ρ_1 and ρ_2 on the right hand side of (3.23), we have

$$1 + \frac{1}{b} \frac{z \mathcal{Z}''(z)}{\mathcal{Z}'(z)} - \lambda = \sum_{i=1}^{n} \alpha_i \left[1 + \frac{1}{b} \frac{z f_i''(z)}{f_i'(z)} - \rho_1 \right] + \sum_{i=1}^{n} \beta_i \left[\left(1 + \frac{1}{b} \left(\frac{z g_i'(z)}{g_i(z)} - 1 \right) - \rho_2 \right], \quad (3.24)$$

where $\lambda = (\rho_1 - 1) \sum_{i=1}^n \alpha_i + (\rho_2 - 1) \sum_{i=1}^n \beta_i + 1$. Taking real part of (3.24) and then integrating from 0 to 2π , we obtain

$$\int_{0}^{2\pi} \left| \Re \left[1 + \frac{1}{b} \frac{z \mathscr{Z}''(z)}{\mathscr{Z}'(z)} \right] - \lambda \right| d\theta \leqslant \sum_{i=1}^{n} \alpha_{i} \int_{0}^{2\pi} \left| \Re \left[1 + \frac{1}{b} \frac{z f_{i}''(z)}{f_{i}'(z)} - \rho_{1} \right] \right| d\theta + \sum_{i=1}^{n} \beta_{i} \int_{0}^{2\pi} \left| \Re \left[\left(1 + \frac{1}{b} \left(\frac{z g_{i}'(z)}{g_{i}(z)} - 1 \right) - \rho_{2} \right) \right] \right| d\theta.$$
(3.25)

Since $f_i(z) \in V_k(\rho_1, b)$, $g_i(z) \in R_k(\rho_2, b)$ for all i = 1, 2, ..., n, we have

$$\int_{0}^{2\pi} \left| \Re \left[1 + \frac{1}{b} \frac{z f_i''(z)}{f_i'(z)} - \rho_1 \right] \right| d\theta \leqslant (1 - \rho_1) k\pi$$
 (3.26)

and

$$\int_{0}^{2\pi} \left| \Re \left[\left(1 + \frac{1}{b} \left(\frac{z g_i'(z)}{q_i(z)} - 1 \right) - \rho_2 \right] \right| d\theta \leqslant (1 - \rho_2) k \pi.$$
(3.27)

Furthermore, applying (3.26) and (3.27) in (3.25), we obtain

$$\int_0^{2\pi} \left| \Re \left[1 + \frac{1}{b} \frac{z \mathscr{Z}''(z)}{\mathscr{Z}'(z)} \right] - \lambda \right| d\theta \leqslant \left[(1 - \rho_1) \sum_{i=1}^n \alpha_i + (1 - \rho_2) \sum_{i=1}^n \beta_i \right] k\pi = (1 - \lambda) k\pi.$$

Hence $\mathcal{H}_{\alpha_i,\beta_i}(f_1,\ldots,f_n;g_1,\ldots,g_n)(z)\in V_k(\lambda,b)$ with λ being given by (3.19). The proof of Theorem 3.7 is completed. \square

Remark 3.8 In fact, we can see that all the above theorems imply the corresponding results for kinds of special operators defined as Remark 1.1.

Remark 3.9 By giving specific values to the parameters A and B ($-1 \le B < A \le 1$) in Theorem 3.3 to Theorem 3.6, we can consider several interesting results with different subclasses of functions.

Remark 3.10 Taking $\alpha_i = 0$ (i = 1, ..., n), $\rho_1 = \rho$ and $\beta_i = 0$ (i = 1, ..., n), $\rho_2 = \rho$ in Theorem 3.7, we obtain the results [10, Theorem 2.1] and [10, Theorem 2.5] proved by Noor et al., respectively.

Acknowledgements We thank the referees for their time and comments.

References

 W. JANOWSKI. Some extreme problems for certain families of analytic functions. Ann. Polon. Math., 1973, 28(2): 297–326.

[2] M. K. AOUF, A. SHAMANDY, A. O. MOSTAFA, et al. Subordination theorem of analytic functions defined by convolution. Complex Anal. Oper. Theory, 2013, 7(4): 1117–1126.

- [3] S. KANAS, H. E. DARWISH. Fekete-Szegö problem for starlike and convex functions of complex order. Appl. Math. Lett., 2010, 23(7): 777-782.
- [4] Jinlin LIU. Properties of certain subclass of multivalent functions defined by an integral operator. Complex Var. Elliptic Equ., 2009, **54**(5): 471–483.
- [5] K. I. NOOR. Radius problems for a subclass of close-to-convex univalent functions. Internat. J. Math. Math. Sci., 1992, 15(4): 719–726.
- [6] H. ORHAN. Neighborhoods of a certain class of p-valent functions with negative coefficients defined by using a differential operator. Math. Inequal. Appl., 2009, 12(2): 335–349.
- [7] Shuhai LI, Li-na MA. Majorization properties for certain new classes of multivalent meromorphic functions defined by Sălăgean operator. J. Math. Res. Appl., 2014, **34**(3): 316–322.
- [8] Huo TANG, Guantie DENG, Shuhai LI. Majorization properties for certain classes of analytic functions involving a generalized differential operator. J. Math. Res. Appl., 2013, 33(5): 578–586.
- [9] Liangpeng XIONG, Xiaoli LIU. Some extensions of coecient problems for bi-univalent Ma-Minda starlike and convex functions. Filomat, 2015, 29(7): 1645–1650.
- [10] K. I. NOOR, M. ARIF, W. U. HAQ. Some properties of certain integral operators. Acta Univ. Apulensis Math. Inform., 2010, 21: 89–95.
- [11] K. I. NOOR, W. UL-HAQ, M. ARIF, et al. On bounded boundary and bounded radius rotations. J. Inequal. Appl., 2009, Art. ID 813687, 12 pp.
- [12] B. PINCHUK. Functions with bounded boundary rotation. Irs. J. Math., 1971, 10(1): 7–16.
- [13] B. A. FRASIN. New general integral operator. Comput. Math. Appl., 2011, 62(11): 4272–4276.
- [14] D. BREAZ, S. OWA, N. BREAZ. A new integral univalent operator. Acta Univ. Apulensis Math. Inform., 2008, 16: 11–16.
- [15] D. BREAZ, N. BREAZ. Two integral operators. Studia Univ. Babeş-Bolyai Math., 2002, 47(3): 13-19.
- [16] S. S. MILLER, P. T. MOCANU, M. O. READE. Starlike integral operators. Pacific J. Math., 1978, 79(1): 157–168.
- [17] N. PASCU, V. PESCAR. On the integral operators of Kim-Merkes and Pfaltzgraff. Mathematica (Cluj), 1990, 32(55): 185–192.
- [18] M. DORF, J. SZYNAL. Linear invariance and integral operators of univalent functions. Demonstratio Math., 2005, 38(1): 47–57.
- [19] B. A. FRASIN. Order of convexity and univalency of general integral operator. J. Franklin Inst., 2011, 348(6): 1013–1019.
- [20] B. A. FRASIN. Univalence of two general integral operator. Filomat, 2009, 23(3): 223-229.
- B. A. FRASIN. Univalency of a nonlinear integral operator of analytic functions. J. Math. Inequal., 2015, 9(3): 763-771.
- [22] H. M. SRIVASTAVA, E. DENIZ, H. ORHAN. Some general univalence criteria for a family of integral operators. Appl. Math. Comput., 2010, 215(10): 3696–3701.
- [23] S. SINGH, S. GUPTA, S. SINGH. On a problem of univalence of functions satisfying a differential inequality. Math. Inequal. Appl., 2007, 10(1): 95–98.
- [24] N. N. PASCU. On a univalence criterion (II). Itinerant seminar on functional equations, approximation and convexity (Cluj-Napoca, 1985), 153-154, Preprint, 85-6, Univ. "Babes-Bolyai", Cluj-Napoca, 1985.
- [25] D. J. HALLENBECK, T. H. MACGREGOR. Linear Problems and Convexity Techniques in Geometric Function Theory. Pitman, Boston, MA, 1984.