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1. Introduction

The Grobner-Shirshov basis theory was suggested by Shirshov [1] in 1962 for Lie algebras,
by Buchberger [2] for commutative algebras and by Bergman [3] for associative algebras. It was
proved to be a powerful tool for the solution of reduction problem in many algebraic structures.
Ringel [4] established the concept of the generic Ringel-Hall algebra by the existence of Hall
polynomials of a Dynkin quiver @ with automorphism ¢. The case when the indeterminate
specializes to zero is called the degenerate Ringel-Hall algebra. It was studied by Reineke in
[5,6].

Fan and Zhao have given a presentation of the degenerate Ringel-Hall algebra of type B,
in [7]. Tt is easy to give a presentation of the degenerate Ringel-Hall algebra of type C5. By
studying the Frobenius morphism [8] and the generic extension monoid algebra [5], we obtain

the Grobner-Shirshov basis of the degenerate Ringel-Hall algebra of type Cs.

2. Some preliminaries

Let (Q,0) be a quiver ) with an automorphism o. I' = (I'g,T';) := I'(Q, o) denotes the
associated valued quiver, where 'y and I'y are the sets of g-orbits in Q¢ and @)1, respectively.
For any p:i — j € I'1(i,j € T'p), its tail and head are the o-orbit of tails and heads of arrows in

p, respectively. Denote

m, = [{arrows in g-orbit p}|, mj; = m,/e; and m;; = m,/e;,
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where e, = |{vertices in og-orbit t}|for t € I'y. The valuation of I is given by {e¢ }+er,, {(m;i, mij) } per, -

Example 2.1 Let Q = D, be the following quiver:

4

Figure 1 Quiver of type D4

where o is the automorphism of Dy such that o(1) =1, 0(2) =2, 0(3) =4, 0(4) =3, o(a) = «,
o(B) =, o(y) = B. Then the associated valued quiver I' = C3 with 1 = 1, g9 = 1, g3 = 2,

mo1 = Mo = 1, m3s = 1, moz = 2 is as follows:

1,2

Figure 2 Quiver of type Cs

We now recall some concepts about Frobenius morphism, degenerate Ringel-Hall algebra,
monoid algebra, and Grébner-Shirshov basis theory.
Let F, be the finite field of ¢ elements and K = F, the algebraic closure of F,,.

Definition 2.2 ([8,9]) Let V' be a vector-space over the field K. An F,-linear isomorphism
F .V — V is called a Frobenius map if it satisfies:

(i) F(av) =a?F(v) for allv € V and a € K;

(ii) For any v € V, F™(v) = v for some n > 0.

Let A be a K-algebra with the identity 1. A map F4 : A — A is called a Frobenius

morphism if F4 is a Frobenius map on the K-space A and
F4(ab) = Fy(a)F4(b), forall a,be A.

Let A := KQ be the path algebra of @) over K. Then ¢ induces a Frobenius morphism F =
FQoq 1 A — Agiven by > xsps — > xl0(ps), where Y x.ps is a K-linear combination
of paths ps and o(ps) = o(p)---0o(p1) if ps = pr---p1 for arrows p1,...,pr € Q1. Then the
fixed-point algebra

A(q) := A¥ = {a € A|F(a) = a}.

Note that it is an algebra over the field F,.

Definition 2.3 ([8]) A representation M = (M;, ¢,) of Q is called an F-stable A-module if there
is a Frobenius map Fys : @ier M; — @ier M; satisfying Finr(M;) = My for all i € Qg
such that Fyr o ¢p = ¢o(p) © Fpr for each arrow p € Q.
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An F-stable A-module is called indecomposable if it is nonzero and cannot be written as a

direct sum of two nonzero I'-stable A-modules.

Lemma 2.4 There is a one-to-one correspondence between isomorphic classes (or isoclasses, for
short) of indecomposable AF-modules and isoclasses of indecomposable F-stable A-modules.

We always assume that (Q, o) is a Dynkin quiver @ with automorphism o. It is well-known
that there exists Hall polynomials of @ and I' = T'(Q, o) (see [10]). Let ®* = ®7(Q, o) be the
set of positive roots for the valued quiver I' = T'(Q, o). By [11,12], there is a bijection between
the isoclasses of indecomposable A(g)-modules and ®*. Let M,(«) be an indecomposable A(q)-
module corresponding to @ € ®*. Any A(g)-module M can be decomposed as a direct sum of
indecomposable A(g)-modules. That is

M,(A) == @ M) My(a)
acdt

for some function A : ®* — N. Thus, the isoclasses of A(q)-modules are indexed by the set
B=B(Q,0)= {A\A: ®t — N} =N®",

which is independent of ¢q. By Lemma 2.4, the set of the isoclasses of F-stable A-modules can
also be identified with the set B. The simple A(g)-module S; corresponding to vertices i € I'y
forms a complete set.

The generic Ringel-Hall algebra H = H4(I") (see [13]) is defined as follows. It is the free
module over the polynomial ring Z[q] (q is an indeterminate) with basis {ux|\ € B} and its
multiplication is

Upty = Z wﬁ,y(qm,
AeB
where ¢}, ,(q) € Z[q] is a Hall polynomial of T'. It is noted that ¢, ,(q) is equal to the number
of A(g)-submodules X of A(q)-module My(X) satisfying X = M, (v) and My(\)/X = My(p).

By specializing q to 0, we obtain the degenerate Ringel-Hall Z-algebra Ho(T') of I' = I'(Q, o).
By [7], the set {ux| A € B} is a Z-basis of Ho(I'). As a Z-algebra, Ho(I") is generated by u; = ug,],
i €ly.

Let M and N be A-modules, and let M x N denote the generic extension of M by N, which

is unique, up to isomorphism, and whose endomorphism algebra has minimal dimension [14].

Proposition 2.5 If M and N are two F-stable A-modules, so is M * N.

By this proposition, we can define a monoid Mg , by [M]* [N] = [M % N| with the unit
element [0], where [M] is isoclass of F-stable A-module M. By [6,8], the monoid Mg, of F-
stable A-modules can be generated by [S;],i € I'g. For each A € B, let My(\)x := My(\) ®r, K
be the F-stable A-module corresponding to A, {[M,(A)k]|A € B} is a Z-basis of ZMg ;.

Let Y be a well ordered set, Y* the free monoid on Y, and IC(Y") the free associative algebra
generated by Y over K. Giving an ordering “ < ” on Y* by the length-lexicographic order. For
any nonzero polynomial f € K(Y) with the leading term f, we denote the length of f by I(f), f
is called monic if the coefficient of f equals to 1.
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In [15], let f,g € K(Y) be two monic polynomials and w € Y*. If w = fy; = y2g for some
y1,92 € Y* such that I(f) > I(y2), then (f,g). = fy1 — y2g is called the intersection composition
of f,g9. If w = f = y1gys for some y1,y2 € Y*, then (f,9)w = f — y19y2 is called the inclusion
composition of f, g.

Let G C K(Y) be the set of monic polynomials. A composition (f,g). is said to be trivial

with respect to G if
(f,9)w =Y _ kivigivi,
where k; € K, g, € G,y,,y, € Y* and y,9:y; < w.
G is called a Grobner-Shirshov basis if any composition of polynomials from G is trivial
with respect to G.

3. Presentation of degenerate Ringel-Hall algebra #H,(C3)

We fix Q = (Q,0) and T' =T'(Q, o) as in Example 2.1. Set

X1 = ujug — uguy,

Xo = wduy — (q + Duguguy + quou?,

X3 = ujui — (q + Duguius + quiug,

Xy =ujuz — (1+q+ q*)uduzuz + q(1 + g + q*)uguzui — q’uzus,
X5 = ugug — (14 q}ugugus + q2u§uQ,

Xe = u§u3u2U3 - (1 +q+ qg)uzu3u§U3 + q2U3ugu;; + qu%u%uz.

By [4], Ringel-Hall algebra H4(C3) is generated by ui,u;, us satisfying the relations X; =
0(i=1,2,...,6).
Set g = 0, we get the degenerate Ringel-Hall algebra Ho(C3) generated by wuq,uq,us with

the following defining relations:

(F1) wujug = uguq, (F2)  wulup = ujugus,
(F3) wjud = uguiug, (F4) wusuguz = ugu3,
(F5) w3ugug = uduz, (F6) wuguzusuz = udui.

Remark 3.1 The relations X; = 0 (: = 1,2,...,5) are the basic relations in H4(C3) and
—qXe = Xqug — u3X5. Therefore, X = 0 is automatically true. Moreover, (F4) and (F6) are
equivlent to (F4) and usuzuius = uduzusus.
Consider the corresponding monoid algebra ZMp, ». By [6], the following relations hold in

ZMp, o

(F1) [S1] % [Ss] = [S] * [51]

(F2) [S1]*% * [S2] = [S1] * [Sa] * [Su],

(F3) [S1] * [Se]"™® = [So] + [S1] * [Sa],
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(F4) [S5] * [S2] * [S] = [So] * [Sa]*?,
(F5) [S2]*? * [S3]  [S2] = [Sa]"*  [S],
(F6) [So] * [Sa] * [Sa]™® * [S3] = [Sa]** + [S5]"2.

Proposition 3.2 The monoid algebra ZMp, , has a presentation with generators [S;] (1 <14 <
3) and relations (F1) — (F6).

Proof For convenience, set ZM = ZMp, ,. Let S be the free Z-algebra with generators
s; (1 <1< 3). Consider the ideal J generated by the following elements,

(F'1)  s183 — 8381, (F'2) s3sy — 818981,
(F'3) 5183 — 898182, (F'4) s38283 — 8283,
(F'5) s3s3sy — s3s3, (F'6) 52835353 — s3s3.
Then, a surjective monoid algebra homomorphisms 7 : § — ZM given by s; — [S;] with

1 <4 < 3 induces a surjective algebra homomorphism 7 : §/J — ZM given by s; + J —
[Si] (1 <4< 3). To complete the proof, it suffices to show that 7 is injective.

Set fi = si+3 (1 <i < 3). Given a KC3-module M with dimension vector dim M := (a, b, ¢),
we define a monomial in §/J as n(M) = ffbfs.

The Auslander-Reiten quiver for KDy is as follows:

[Ps] [+~ Ps] [r72Ps]
[P3] [Tl Py) [r72Py]
[Py4] [T Py [r72Py)
[P1] [T’lPl] [7'72P1]

Figure 3 The AR-quiver of the path algebra KDy

where each P; (1 < i < 4) is the indecomposable projective K Dy-module corresponding to vertex
i and 7 is the Auslander-Reiten translation.

Using the Frobenius morphism F' = Fp, , introduced in Section 2, it is easy to see that
Py, Py are F-stable and all other P; have F-period 2 with PI'! = P,. By folding the Auslander-
Reiten quiver of KDy, we obtain the Auslander-Reiten quiver of A" = (KDy)F =2 KCs:
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[X1]
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[X>2] [Xs5] [Xs]

[X4] [X7]

[X3] (Xe] [Xo]

Figure 4 The AR-quiver of the path algebra KCj3

where X; (1 < i < 9) denote all the indecomposable KCz-modules. Here X3 = P{, Xy =
P X, = (Ps@ P)F, and 7 = 74+ is the Auslander-Reiten translation of AF (see [9] for

details). Moreover, the dimension vectors of X; (1 < i < 9) and associated monomials in §/J

are given by

dimX; =
dimX, =
dimX3 =
dimX4 = (0,2,1) and n(X4

(0,0,1) and n(X;) =
(0,1,1) (X2) =
(1,1,1) (X3) =
(0,2,1) (X4) =
dimXs = (1,2,1) and n(X5) = f1f2 fa,
(0,1,0) (X6) =
(2,2,1) (X7)
(1,1,0) (Xs)
(1,0,0) (Xo) =

0,1,1) and n(X2
1,1,1) and n(X3

dimXg = (0,1,0) and n(Xg
dimX; = (2,2,1) and n(X7
dimXg =
dimXg =

= f2f37

1,1,0) and n(Xg) = f1f27

1,0,0) and n(Xy

Now we give an enumeration of indecomposable A¥-modules in Figure 4:

X1 < Xo<X3<X4<X5=<Xg<X7<Xg < Xo. (*)

Then, by using the relations (F'1) — (F’6), we compute the relations between n(X;) (1 <i <9)

in §/3:

W Xz)n(X1) = fifafs- fs = fifsfafs (by (F'4))

= fafifafs (by (F'1))
= n(X1)n(Xs),

n(X7)n(Xz) = f12f22f3 “fafs = f12f23f§ (by (F'5))

= [P f2fsf3 f3 (by (F'6))
= fifofifafi fa (by (F'2))
= fifafsfifs f3 (by (F'1))
=n(X3)n(X5),

n(Xs)n(Xs) = fifo- f3fs = fifs fsfo (by (F'5))

= n(X5)n(Xe).
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By this way, we get the set R of following equalities in S/J:

n(X2)n(X1) = n(X1)n(X2), n(X3)n(X1) =n(X1)n(Xs),
n(Xg)n(X1) = n(X2)n(X2), n(Xs5)n(X1) = n(X2)n(X3),
n(Xe)n(X1) = n(X2), n(X7)n(X1) = n(X3)n(X3),
n(Xs)n(X1) = n(Xs), n(Xo)n(X1) = n(X1)n(Xo),
n(X3)n(X2) = n(X2)n(Xs), n(Xy)n(Xz) = n(Xa)n(Xy),
n(Xs5)n(Xz) = n(X3)n(Xy), n(Xe)n(Xz) =n(Xy),
n(X7)n(X2) = n(X3)n(Xs), n(Xs)n(X2) =n(Xs),
n(Xo)n(X2) = n(X3), n(Xg)n(Xs) = n(X3)n(Xy),
n(Xs5)n(X3) = n(X3)n(X5), n(Xe)n(X3) =n(Xs),
n(X7)n(X3) = n(X3)n(X7), n(Xg)n(X3) =n(X7),
n(Xo)n(X3) = n(X3)n(Xo), n(Xs5)n(Xs) =n(Xg)n(X5),
n(Xe)n(Xy) = n(Xg)n(Xe), n(X7)n(Xy) =n(Xs)n(Xs),
n(Xs)n(Xy) = n(Xs5)n(Xe), n(Xo)n(Xy) =n(Xs),
n(Xe)n(X5) = n(Xs5)n(Xg), n(X7)n(X5) = n(Xs)n(X7),
n(Xs)n(Xs) = n(Xe)n(X7), n(Xo)n(X5) =n(X7),
n(X7)n(Xe) = n(Xe)n(X7), n(Xs)n(Xe) = n(Xe)n(Xs),
n(Xo)n(Xe) = n(Xs), n(Xs)n(X7) = n(X7)n(Xs),
n(Xo)n(X7) = n(X7)n(Xo), n(Xo)n(Xs) =n(Xs)n(Xo)
Let Vi, ..., Vy be all the non-isomorphic indecomposable A”-modules. We assume that they

are enumerated by V; < --- < Vy as given in (x). Repeatedly applying above equalities, we get
the following result:

For 1 <i <7 <9, there exist 1 < j; < js <--- < jm <9 such that
a(V)n(V;) = n(Vy)n(Vya) (V).
Now we are ready to prove the injectivity of

Given a monomial w = f;, - fi, (1 < i3 < -+ < iy, < 3), we have w = f;, -+ f;, =

n(S;, ) ---n(S;,,). Applying above result repeatedly, we finally get w = n(Vy)™ ---n(V,)™ for

some nq,...,ng > 0. Hence, all the monomials n(V7)™ ---n(V,)" with ny,...,ng > 0 span S/J.
On the other hand, by ([6, Lemma 4.9]) (n1,...,n9 > 0),

A1) - n(Vo)™) = [V s [Vo ™.

By ([5, Proposition 3.3]), the elements [V7]*"* % - -« * [Vo]*™ with ny,...,ng > 0 form a basis of
ZMp, -. Consequently, the morphism 7 is injective. O]
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Proposition 3.3 There are Z-algebra isomorphism

v ZMD4,O’ — 'H()(Cd)7 [SZ] —ru, 1 <1< 3.
Proof By Proposition 3.2, there is a surjective Z-algebra homomorphism ¥ : ZMp, , —
Ho(Cs) given by [S;] — u; with 1 <4 < 3. Since {[My(A)k]|A € B} and {ux|\ € B} are bases

for ZMp, - and Ho(C3), respectively. Moreover, the algebra ZMp, , and Ho(C3) have the
same defining relations. So, ¥ is an isomorphism. [J

4. Grobner-Shirshov basis of Hy(Cs)

Though the set R which is the set of equalities in §/J from the proof of the presentation of
the monoid algebra ZMp, , and Proposition 3.3, we give Grobner-Shirshov basis of Ho(Cs).
First, we define a degree lexicographic order < as follows:

u < v if and only if I(u) < I(v) or l(u) = I(v) and u < v,
then it is a monomial order [16].
We have already shown that Ho(Cs3) is an associative algebra over Z generated by C =
{u1, us,uz} with generating relations
ujuz = uzuy,  Ujus = ujusug,
F = ULUS = UgUiUg,  UUU3 = uzu§7
u%uqu = U%U3, ’UQUg’U%Ug = u%’u%

By Propositions 3.2 and 3.3, if we apply the algebra isomorphism W o 77 to the relations in the
set R, then we get a new set F” of relations in Ho(C3) (u1 > ug = us):

_ 2,
UUu3 = UzUy, Uz = UjUaUy,
2 _ 2 _
U1Uy = U2UIU2, U1U2U3 = U3UIUU3,
2 _ 3 _ 2
UjU2U3 = U1U2U3UT, UIUQU3 = UL URUI U2,
2,2 2,2 2
U1UxU3 = U2U3UIUU3, UTUU3 = UTU2U3UIU2US,
2 _ 2,2, _
U1UxU3 = U2UIUU3, U7 UU3 = UTU2UIUU3,
2 _ 2 2 _ 2,2
U1ULU3U2 = U2ULULUS, ULUUI U U3 = U2U{ U U3,
2 2
U1U2U3U2U3 = U2U3UIU2US, ULU2U3URU3 = U U3UIU2US,
2 _ 2 2 _ 2
U1ULU3U2U3 = U U2U3 U U3, U1ULU3UTU2U3 = UTU2U3UI UL UZ,
2 2 2 2 2,2 2,2
U1UL U3 U U3 = U U3UT U U3, UL UL U3U2 = U2UT UL U3,
2,2 _ 2,2 2,2 _ 2
U7U2U3UIU2 = UTU2UT UL U3, U7 U2U3U2U3 = UTU2U3UI U5 U3,

2,2 2,2 2,2 2 2 2
UTU2U3UIU2U3 = UTU2U3ULUU3, U U UIUU3 = UTUUIUT U US,
2,2 2 _ 2 2,2 3,2 2,2
UTUU3UT U U3 = U U U3UT UL U3, UTUU3 = UTUU3UT,
2 _ 3 _ 5,2
U2U3 = U3U2U3, UgU3 = U U3 U2,

2.2 2 2
Up U3 = U2U3U2U3, U U3U2U3 = U2U3U U3,
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By a routine check of compositions between the elements of 7/ U F”, we get following new
set F'" of relations in Ho(Cs):

UTU2UIU2U3 U2 = U2UIU2U1UU3, UTU2UU2U3 UL U2UZ = U U2U3UU2U] U2U3,
— _ 2
UU2UIU2UTU2UZ = U U2UI U2UZUI U2, U2UIU2U3U2 = U2UIUZU3,
— 2 2 _ 2 2
U1UU3U2UTUUZ = U2UTU2U3UTU2UZ, UIURUIU2UTUSUZ = U2UTUSU3UTUZUS.

Let F = FUF"UF". Then by the construction of the set F of relations in H(C3), we

get our main result:
Theorem 4.1 With notations above, F is a Grobner-Shirshov basis of Ho(Cs).
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