Spanning Trees with Few Leaves in Almost Claw-Free Graphs

Xiaodong CHEN ${ }^{1, *}$, Mingchu LI ${ }^{2}$, Meijin XU ${ }^{1}$
1. College of Science, Liaoning University of Technology, Liaoning 121001, P. R. China;
2. School of Softsware, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract

A spanning tree with no more than 3 leaves is called a spanning 3-ended tree. In this paper, we prove that if G is a k-connected $(k \geq 2)$ almost claw-free graph of order n and $\sigma_{k+3}(G) \geq n+k+2$, then G contains a spanning 3 -ended tree, where $\sigma_{k}(G)=$ $\min \left\{\sum_{v \in S} \operatorname{deg}(v): S\right.$ is an independent set of G with $\left.|S|=k\right\}$.

Keywords spanning 3-ended tree; almost claw-free graph; insertible vertex; non-insertible vertex

MR(2010) Subject Classification 68R10

1. Introduction

We consider only finite and simple graphs in this paper. For notation and terminology not defined here we refer to [1]. A subset B of $V(G)$ is a dominating set if every vertex of G is in B or adjacent to the vertices in B. The domination number of a graph G denoted by $\gamma(G)$ is the minimum cardinality of all the dominating sets of G. Let $\alpha(G)$ denote the independent number of a graph G. A graph G is claw-free if G contains no $K_{1,3}$ induced subgraph. A graph G is almost claw-free if there exists an independent set A in $V(G)$ such that $\alpha(N(v)) \leq 2$ for any vertex $v \notin A$, and $\alpha(N(v)) \leq 2<\gamma(N(v))$ for every $v \in A$. Let $N_{H}(S)$ denote the set of all vertices in R adjacent to some vertex of S and $d_{H}(S)=\left|N_{H}(S)\right|$. For a subgraph R of a graph $G, G-H$ denotes the induced subgraph by $V(G)-V(H)$. For a vertex v of G, the neighborhood of v is the induced subgraph on the set of all vertices that are adjacent to v, and for convenience, we use $N(v)$ to denote both the induced subgraph and the set of vertices adjacent to v in G. Let $N[v]=N(v) \cup\{v\}$. We define $\sigma_{k}(G)=\min \left\{\sum_{v \in S} \operatorname{deg}(v): S\right.$ is an independent set of G with $|S|=k\} . P[a, b]$ (or $a P b$) denotes a path along positive orientation with end vertices a, b. For a path $P[a, b], x, y \in V(P)$, let $x P y$ denote the subpath from x to y along the positive orientation, and $y P^{-} x$ denote the subpath from y to x along the negative orientation. A graph G is hamiltonian-connected, if there exists a hamiltonian path with end vertices a, b for every pair of distinct vertices $a, b \in V(G)$.

[^0]There are a lot of sufficient conditions on the degree sum of vertices in an independent vertex set of a graph to contain spanning k-ended trees.

Theorem 1.1 ([2]) Let $k \geq 2$ and G be a connected graph of order $n \geq 2$. If $\sigma_{2}(G) \geq n-k+1$, then G contains a spanning k-ended tree.

Kyaw [3,4] gave some degree sum conditions for $K_{1,4}$-free graphs to contain a spanning k-ended tree.

Theorem 1.2 ([3]) Every connected $K_{1,4}$-free graph with $\sigma_{4}(G) \geq|G|-1$ contains a spanning 3 -ended tree.

Theorem 1.3 ([4]) Let G be a connected $K_{1,4}$-free graph. Then
(i) If $\sigma_{3}(G) \geq|G|$, then G contains a hamiltonian path.
(ii) If $\sigma_{k+1}(G) \geq|G|-\frac{k}{2}$ for an integer $k \geq 3$, then G contains a spanning k-ended tree.

On the other hand, Kano et al. [5] obtained sharp sufficient conditions for claw-free graphs to contain a spanning k-ended tree.

Theorem 1.4 ([5]) Let $k \geq 2$ and G be a connected claw-free graph of order n. If $\sigma_{k+1}(G) \geq$ $n-k$, then G contains a spanning k-ended tree with the maximum degree at most 3 .

Recently, Chen et al. [6] gave some degree sum conditions for k-connected $K_{1,4}$-free graphs to contain a spanning 3 -ended tree.

Theorem 1.5 ([6]) Let G be a k-connected $K_{1,4}$-free graph of order n with $k \geq 2$. If $\sigma_{k+3}(G) \geq$ $n+2 k-2$, then G contains a spanning 3 -ended tree.

Chen et al. [7] proposed if G is a k-connected almost claw-free graph of order n with $k \geq 2$, and $\sigma_{k+3}(G) \geq n+2 k-2$, then G contains a spanning 3 -ended tree. In this paper, we decrease the bound to improve the above result.

Theorem 1.6 If G is a k-connected almost claw-free graph of order n with $k \geq 2$, and $\sigma_{k+3}(G) \geq n+k+2$, then G contains a spanning 3-ended tree.

Obviously, there are a lot of almost claw-free graphs which contain $K_{1,4}$ subgraphs, so in some extent Theorem 1.6 is a generalization of Theorem 1.5.

2. Preliminaries

The properties of insertible vertices [8] and the following results are needed in the proof of Theorem 1.6.

Lemma 2.1 ([9]) If v is a claw center of an almost claw-free graph, then $\gamma(N(v))=2$.
Assume that G is a connected non-hamiltonian graph and C is a longest cycle in G with counter-clockwise direction as positive orientation. Suppose that R is a component of $G-C$ and $N_{C}(R)=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$ such that $u_{1}, u_{2}, \ldots, u_{m}$ are labeled in order along the positive direction of C. Let $S_{j}=C\left(u_{j}, u_{j+1}\right], 1 \leq j \leq m-1$, and $S_{m}=C\left(u_{m}, u_{1}\right]$. A vertex u in S_{j} is an
insertible vertex if u has two consecutive neighbors v and v^{+}in $C-S_{j}$.
Lemma 2.2 ([8]) For each $S_{j}, S_{j}-\left\{u_{j+1}\right\}$ contains a non-insertible vertex.
Let v_{j} denote the first non-insertible vertex in $S_{j}-\left\{u_{j+1}\right\}$ for each $j \in[1, m]$.
Lemma 2.3 ([8]) Let $x_{i} \in C\left[u_{i}, v_{i}\right], x_{j} \in C\left[u_{j}, v_{j}\right]$ with $1 \leq i<j \leq m$. Then
(a) There is no path $P\left[x_{i}, x_{j}\right]$ in G such that $P\left[x_{i}, x_{j}\right] \cap V(C)=\left\{x_{i}, x_{j}\right\}$.
(b) For any vertex u in $C\left[x_{i}^{+}, x_{j}^{-}\right]$, if $u x_{i} \in E(G)$, then $u^{-} x_{j} \notin E(G)$. By symmetry, for any vertex u in $C\left[x_{j}^{+}, x_{i}^{-}\right]$, if $u x_{j} \in E(G)$, then $u^{-} x_{i} \notin E(G)$.
(c) For any vertex u in $C\left[x_{i}, x_{j}\right]$, if $u x_{i}, u x_{j} \in E(G)$, then $u^{-} u^{+} \notin E(G)$. By symmetry, for any vertex u in $C\left[x_{j}, x_{i}\right]$, if $u x_{i}, u x_{j} \in E(G)$, then $u^{-} u^{+} \notin E(G)$.

Suppose for some $i \in[1, m], N\left(v_{i}\right) \cap V(G-C-R) \neq \emptyset$ and v_{i}^{\prime} is the second non-insertible vertex in $S_{i}-\left\{u_{i+1}\right\}$. Then Chen, Chen and Hu [6] gave the following result.

Lemma 2.4 ([5]) Let $1 \leq i<j \leq m, x_{i} \in C\left[v_{i}^{+}, v_{i}^{\prime}\right]$ and $x_{j} \in C\left[u_{j}^{+}, v_{j}\right]$. Then
(a) There does not exist a path $P\left[x_{i}, x_{j}\right]$ in G such that $P\left[x_{i}, x_{j}\right] \cap V(C)=\left\{x_{i}, x_{j}\right\}$.
(b) For every vertex $u \in C\left[x_{i}^{+}, x_{j}^{-}\right]$, if $u x_{i} \in E(G)$, then $u^{-} x_{j} \notin E(G)$; Similarly, for every $u \in C\left[x_{j}^{+}, x_{i}^{-}\right]$, if $u x_{j} \in E(G)$, then $u^{-} x_{i} \notin E(G)$.
(c) For every vertex $u \in C\left[x_{i}, x_{j}\right]$, if $u x_{i}, u x_{j} \in E(G)$, then $u^{-} u^{+} \notin E(G)$; By symmetry, for any vertex u in $C\left[x_{j}, x_{i}\right]$, if $u x_{i}, u x_{j} \in E(G)$, then $u^{-} u^{+} \notin E(G)$.

3. Proof of Theorem 1.6

Suppose, to the contrary, G satisfies the conditions of Theorem 1.6 and contains no spanning 3-ended tree in G. Let $P=P[x, y]$ be a longest path in G such that P satisfies the following two conditions:
(T1) $w(G-P)$ is minimum;
(T2) $\left|P\left[x, u_{1}\right]\right|$ is minimum such that u_{1} is the first vertex in P with $N\left(u_{1}\right) \cap V(G-P) \neq \emptyset$, subject to (T1).

Suppose R is a component in $G-P$, and $\left\{u_{1}, \ldots, u_{m}\right\}=N_{P}(R)$ with u_{1}, \ldots, u_{m} in order along the positive direction of P. Let R_{I} denote an independent set in R.

Let G^{\prime} denote a graph with $V\left(G^{\prime}\right)=V(G) \cup\left\{u_{0}\right\}, E\left(G^{\prime}\right)=E(G) \cup\left\{u_{0} u: u \in V(G)\right\}$. Then $C=u_{0} P[x, y] u_{0}$ is a maximum cycle in G^{\prime}. We define the counter-clockwise orientation as the positive direction of C. Let S_{i} denote the segment $C\left(u_{i}, u_{i+1}\right]$ for $0 \leq i \leq m-1$, and $S_{m}=C\left(u_{m}, u_{0}\right]$. By Lemma 2.2, let v_{i} denote the first non-insertible vertex in S_{i} for $i \in[0, m]$, and $U=\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$. By Lemma 2.3(a), U is an independent set.
C can be divided into disjoint intervals $S=C[a, b]$ with $a, b^{+} \notin N(U)$ and $C\left[a^{+}, b\right] \subseteq N(U)$. We call the intervals U-segments. If $a=b$, then $C\left[a^{+}, b\right]=\emptyset$, i.e., if $|S|=1$, then $d_{U}(S)=0$. By the definition of U-segment, for any U-segment S, there exists $l \in[0, m]$ such that $S \subseteq C\left[v_{l}, v_{l+1}^{-}\right]$ (subscripts expressed modulo $m+1$).

Though Claims 1-5 in the following proof have been proved in [7], we give them a proof here for the sake of completeness.

Claim $1 x=v_{0}$ and $y \notin N\left(v_{i}\right)$ for any $i \in[0, m-1]$.
Proof Suppose x is an insertible vertex such that $x u, x u^{+} \in E(G)$, where $u, u^{+} \in C-S_{0}$. If $u \neq y$, then we can get a path $P^{\prime}=P\left[x^{+}, u\right] x P\left[u^{+}, y\right]$, which contradicts (T2). If $u=y$, then let $P^{\prime}=P\left[x^{+}, y\right] x$, which contradicts (T2). Thus $x=v_{0}$. Suppose $v_{i} y \in E(G)$, for some $i \in[0, m-1]$. Obviously, $u_{0}=y^{+}$. Since $y v_{i}, y^{+} v_{i} \in E(G)$ and $y \in C-S_{i}, v_{i}$ is an insertible vertex, a contradiction.

Claim 2 For any vertex $u \in V(P)$, if $N[u]$ is claw-free, then $d_{U}(u) \leq 1$.
Proof Suppose u is in some U-segment S with $S \subseteq C\left[v_{i}, v_{i+1}^{-}\right], i \in[0, m]$, and $v_{i_{1}}, v_{i_{2}} \in N_{U}(v)$ with $0 \leq i_{1}<i_{2} \leq m$. Then by Lemma 2.3(c), $u^{-} u^{+} \notin E(G)$. Obviously, at least one vertex in $\left\{v_{i_{1}}, v_{i_{2}}\right\}$ is not in $C\left[v_{i}, v_{i+1}^{-}\right]$. Without loss of generality, suppose $v_{i_{1}} \notin C\left[v_{i}, v_{i+1}^{-}\right]$. If $u \notin$ $C\left[u_{i+1}, v_{i+1}^{-}\right]$, then $v_{i_{1}} \neq v_{i+1}$, and $v_{i_{1}} v^{-}, v_{i_{1}} v^{+} \notin E(G)$ by $v_{i_{1}}$ is a non-insertible vertex. Thus $G\left[u, u^{-}, u^{+}, v_{i_{1}}\right]=K_{1,3}$, a contradiction. Suppose $v_{i_{1}}=v_{i+1}$. If $u \in C\left[v_{i}, u_{i+1}\right)$, then by the previous proof, we can get a contradiction. If $u \in C\left[u_{i+1}, v_{i+1}^{-}\right]$, then we consider $v_{i_{2}}$ and by the previous proof, we can get a contradiction.

Claim $3 d_{U}(u) \leq 2$ for any vertex $u \in V(P)$, and if $d_{U}(u)=2$, then u is a center of a claw.
Proof Without loss of generality, suppose u is in U-segment S and $S \subseteq C\left[v_{0}, v_{1}^{-}\right]$. If $|S|=1$, then $d_{U}(u)=0$. Suppose $|S| \geq 2$ and $S=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{h}\right\}$, where $x_{0}, x_{1}, x_{2}, \ldots, x_{h}$ are in order along the positive direction of C. Then $x_{0} \notin N(U), x_{i} \in N(U)$ for $i \in[1, h]$. For some $i \in[1, h]$, suppose $v_{i_{1}}, v_{i_{2}}, v_{i_{3}} \in N_{U}\left(x_{i}\right)$ with $0 \leq i_{1}<i_{2}<i_{3} \leq m$. Then x_{i} is a claw center. By Lemma 2.1, suppose y_{1}, y_{2} are the two distinct domination vertices of $N\left(x_{i}\right)$. Then $N\left[y_{1}\right], N\left[y_{2}\right]$ are claw-free and at least two vertices in $\left\{v_{i_{1}}, v_{i_{2}}, v_{i_{3}}\right\}$ are incident with y_{1} or y_{2}. Without loss of generality, suppose $v_{i_{1}} y_{1}, v_{i_{2}} y_{1} \in E(G)$. Then $y_{1} \in V(P)$, and $y_{1}^{-} y_{1}^{+} \notin E(G)$ by Lemma 2.3(c). Suppose $S_{j}=C\left(u_{j}, u_{j+1}\right]$ containing $y_{1}, 0 \leq j \leq m$. Obviously, at least one vertex in $\left\{v_{i_{1}}, v_{i_{2}}\right\}$ is not in S_{j}. Without loss of generality, suppose $v_{i_{1}} \notin S_{j}$. Since $v_{i_{1}}$ is a non-insertible vertex and $v_{i_{1}} y_{1} \in E(G), y_{1}^{-} v_{i_{1}}, y_{1}^{+} v_{i_{1}} \notin E(G)$. Thus $G\left[y_{1}, y_{1}^{-}, y_{1}^{+}, v_{i_{1}}\right]=K_{1,3}$, a contradiction. If $d_{U}(u)=2$, then by Claim $2, u$ is a claw center.

Claim 4 For any U-segment S not containing y, S contains at most one vertex u with $d_{U}(u)=2$, and $d_{U}(S) \leq|S|$.

Proof Without loss of generality, suppose $S=\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{h}\right\} \subseteq C\left[v_{i}, v_{i+1}^{-}\right], 0 \leq i \leq m$, where $x_{0}, x_{1}, x_{2}, \ldots, x_{h}$ are in order along the positive direction of C. By Claim 3, suppose that x_{j} is the first vertex in S with $d_{U}\left(x_{j}\right)=2,1 \leq j \leq h$, and $\left\{v_{i_{1}}, v_{i_{2}}\right\}=N_{U}\left(x_{j}\right)$, where $0 \leq i_{1}<i_{2} \leq$ m. By Claim $3, x_{j}$ is a center of a claw. Then $N\left[x_{j}^{+}\right]$is claw-free, and by Claim $2, d_{U}\left(x_{j}^{+}\right) \leq 1$. Thus if $j \leq h \leq j+1$, then we are done. Suppose $h>j+1$ and $N_{U}\left(x_{j+1}\right)=\left\{v_{i_{3}}\right\}$. Since $G\left[x_{j+1}, x_{j+2}, x_{j}, v_{i_{3}}\right] \neq K_{1,3}, E(G)$ contains at least one edge in $\left\{x_{j} v_{i_{3}}, x_{j+2} v_{i_{3}}, x_{j} x_{j+2}\right\}$. If $x_{j} v_{i_{3}}$ or $x_{j+2} v_{i_{3}} \in E(G)$, then $v_{i_{3}}=v_{i}$, which contradicts Lemma 2.3(b) since $x_{j} v_{i_{1}}, x_{j} v_{i_{2}}, x_{j+1} v_{i_{3}} \in$ $E(G)$. Thus $v_{i_{3}} \neq v_{i}$, and $x_{j} x_{j+2} \in E(G)$. Then $N\left[x_{j+2}\right]$ is claw-free and by Claim $2, d_{U}\left(x_{j+2}\right) \leq$

1. Thus if $h=j+2$, then we are done. Suppose $h>j+2$ and $\left\{v_{i_{4}}\right\}=N_{V}\left(x_{j+2}\right)$. Since $v_{i_{3}} \neq v_{i}$, by Lemma 2.3(b) $v_{i_{4}} \neq v_{i}$. Then $v_{i_{4}} x_{j+3} \notin E(G)$. Since $G\left[x_{j+2}, x_{j}, x_{j+3}, v_{i_{4}}\right] \neq K_{1,3}, v_{i_{4}} x_{j}$ or $x_{j} x_{j+3} \in E(G)$. If $v_{i_{4}} x_{j} \in E(G)$, then $v_{i_{4}} \in\left\{v_{i_{1}}, v_{i_{2}}\right\}$, and by Lemma 2.3(b), $v_{i_{3}}=v_{i_{4}}$. It follows that $v_{i_{3}} x_{j+1}, v_{i_{3}} x_{j+2} \in E(G)$, a contradiction. Thus $x_{j} x_{j+3} \in E(G)$, and then $N\left[x_{j+3}\right]$ is claw-free. By Claim 2, $d_{U}\left(x_{j+3}\right) \leq 1$. Thus if $h=j+3$, then we are done. If $h>j+3$, then proceeding in the above manners to the set $L=\left\{x_{j+4}, \ldots, x_{h}\right\}$, we can get $N[u]$ is claw-free for any vertex u in L, and then by Claim $2, d_{U}(u) \leq 1$. It follows that S has exactly one vertex x_{j} with $d_{U}\left(x_{j}\right)=2$, and then $d_{U}(S) \leq|S|$.

Claim 5 Suppose the U-segment S_{0} contains y. Then $d_{U}(u) \leq 1$ for any vertex $u \in S_{0}-\left\{u_{0}\right\}$.
Proof If $S_{0}=\left\{y, u_{0}\right\}$, then $d_{U}(y)=0$, and we are done. Suppose $\left|S_{0}\right| \geq 3$. Then by Claim 1, $N_{U}(y)=\left\{v_{m}\right\}$. Thus by Lemma 2.3(b), $N_{U}(u) \subseteq\left\{v_{m}\right\}$ for any vertex $u \in S_{0}-\left\{u_{0}\right\}$.

Claim 6 For the vertices in $U=\left\{v_{0}, \ldots, v_{m}\right\}, \sum_{i=0}^{m} d_{P}\left(v_{i}\right) \leq|P|-1$.
Proof Obviously, $V(P)=\bigcup_{i=0}^{m-1} V\left(P\left[v_{i}, v_{i+1}^{-}\right]\right) \cup V\left(P\left[v_{m}, y\right]\right)$. Recall that $\sum_{i=0}^{m} d_{P}\left(v_{i}\right)=$ $d_{U}(P)$. Then $\sum_{i=0}^{m} d_{P}\left(v_{i}\right)=\sum_{i=0}^{m-1} d_{U}\left(P\left[v_{i}, v_{i+1}^{-}\right]\right)+d_{U}\left(P\left[v_{m}, y\right]\right)$. By Claim 5, $d_{U}\left(P\left[v_{m}, y\right]\right) \leq$ $\left|P\left[v_{m}, y\right]\right|-1$. By Claim 4, $d_{U}\left(P\left[v_{i}, v_{i+1}^{-}\right]\right) \leq\left|P\left[v_{i}, v_{i+1}^{-}\right]\right|$for $1 \leq i \leq m-1$. Thus $\sum_{i=0}^{m} d_{P}\left(v_{i}\right) \leq$ $\sum_{i=0}^{m-1}\left|P\left[v_{i}, v_{i+1}^{-}\right]\right|+\left|P\left[v_{m}, y\right]\right|-1=|P|-1$.

Claim 7 Suppose $z_{1}, z_{2} \in V(G-P)$ are two nonadjacent vertices. Then $\left|N_{P}\left(z_{1}\right) \cap N_{P}\left(z_{2}\right)\right| \leq 2$.
Proof Obviously, $N_{P}\left(z_{1}\right) \cap N_{P}\left(z_{2}\right) \subseteq\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}$. Suppose $\left|N_{P}\left(z_{1}\right) \cap N_{P}\left(z_{2}\right)\right| \geq 3$ and without loss of generality, suppose $u_{1}, u_{2}, u_{3} \in N_{P}\left(z_{1}\right) \cap N_{P}\left(z_{2}\right)$. Obviously, $G\left[u_{1}, z_{1}, z_{2}, u_{1}^{-}\right]=$ $K_{1,3}$. Similarly, u_{2}, u_{3} are claw-centers. Thus $\left\{u_{1}, u_{2}, u_{3}\right\}$ is an independent set. Since $z_{1} u_{1} \in$ $E(G), N\left[z_{1}\right]$ contains no claw. Then $G\left[z_{1}, u_{1}, u_{2}, u_{3}\right] \neq K_{1,3}$. Thus $E(G)$ contains at least one edge in $\left\{u_{1} u_{2}, u_{1} u_{3}, u_{2} u_{3}\right\}$, which contradicts the independent set $\left\{u_{1}, u_{2}, u_{3}\right\}$.

Claim 8 For every component R of $G-P,\left|N_{P}(R)\right|=k$, and R is hamiltonian-connected.
Proof By Lemma 2.3(a), for $0 \leq i \neq j \leq m, N_{G-P}\left(v_{i}\right) \cap N_{G-P}\left(v_{j}\right)=\emptyset$, and then $\sum_{i=0}^{m} d_{G-P}\left(v_{i}\right)$ $\leq n-|P|-|R|$. Since G is k-connected, $m \geq k$. Suppose $m>k$. If $m \geq k+2$, then $\left\{v_{0}, v_{1}, \ldots, v_{m}\right\}$ is an independent set with order at least $k+3$. By Claim 6 , we can get

$$
\sum_{i=0}^{m} d\left(v_{i}\right)=\sum_{i=0}^{m} d_{P}\left(v_{i}\right)+\sum_{i=0}^{m} d_{G-P}\left(v_{i}\right) \leq(|P|-1)+(n-|P|-|R|)=n-1-|R|,
$$

which contradicts $\sigma_{k+3}(G) \geq n+k+2$. Suppose $m=k+1$ and $u \in V(R)$. Then $\left\{u, v_{0}, v_{1}, \ldots, v_{m}\right\}$ is an independent set with order $k+3$. Since $d(u)=d_{P}(u)+d_{R}(u) \leq m+|R|-1=k+|R|$,

$$
\begin{aligned}
\sum_{i=0}^{k+1} d\left(v_{i}\right)+d(u) & =\sum_{i=0}^{k+1} d_{P}\left(v_{i}\right)+\sum_{i=0}^{k+1} d_{G-P}\left(v_{i}\right)+d(u) \\
& \leq(|P|-1)+(n-|P|-|R|)+k+|R|=n+k-1
\end{aligned}
$$

which contradicts $\sigma_{k+3}(G) \geq n+k+2$. It follows that $m=k$.

Suppose that R is not hamiltonian-connected. Then by Ore's theorem in [10], there exists two nonadjacent vertices z_{1} and z_{2} such that $d_{R}\left(z_{1}\right)+d_{R}\left(z_{2}\right) \leq|R|$. By Claims 7 and $8, d_{P}\left(z_{1}\right)+$ $d_{P}\left(z_{2}\right) \leq k+2$. Since $\left\{z_{1}, z_{2}, v_{0}, v_{1}, \ldots, v_{k}\right\}$ is an independent set with order $k+3$,

$$
\begin{aligned}
\sum_{i=0}^{k} d\left(v_{i}\right)+d\left(z_{1}\right)+d\left(z_{2}\right) & =\sum_{i=0}^{k} d_{P}\left(v_{i}\right)+\sum_{i=0}^{k} d_{G-P}\left(v_{i}\right)+\left(d_{P}\left(z_{1}\right)+d_{P}\left(z_{2}\right)\right)+\left(d_{R}\left(z_{1}\right)+d_{R}\left(z_{2}\right)\right) \\
& \leq(|P|-1)+(n-|P|-|R|)+(k+2)+|R|=n+k+1
\end{aligned}
$$

which contradicts $\sigma_{k+3}(G) \geq n+k+2$.
Claim 9 Let $u_{i}, u_{j} \in N_{P}(R), 1 \leq i \neq j \leq k$. Then $G\left[V(R) \cup\left\{u_{i}, u_{j}\right\}\right]$ contains a hamiltonian path with ended vertices u_{i} and u_{j}.

Proof By Claim $8, R$ is hamiltonian-connected. If $|R|=1$, then we are done. Suppose $|R| \geq 2$. If $N_{R}\left(u_{i}\right)=N_{R}\left(u_{j}\right)=\{u\}$, then $N_{P}(R)-\left\{u_{i}, u_{j}\right\} \cup\{u\}$ is a vertex cut of G with order $k-1$, a contradiction with the k-connectedness of G. Thus $\left|N_{R}\left(u_{i}\right) \cup N_{R}\left(u_{j}\right)\right| \geq 2$ and then the claim holds.

If $G-P$ contains only component of R, then by Claim $8, G$ contains a spanning 3 -ended tree. Thus we assume that $v(G-P) \geq 2$ and R^{\prime} is a component in $G-P-R$.

Claim $10 N\left(v_{i}\right) \cap V\left(R^{\prime}\right) \neq \emptyset$ for some $1 \leq i \leq k$.
Proof By Claim 1, $N\left(v_{0}\right) \cap V\left(R^{\prime}\right)=\emptyset$. Suppose $N\left(v_{i}\right) \cap V\left(R^{\prime}\right)=\emptyset$ for any $i \in[1, k]$. Let $z_{1} \in V(R), z_{2} \in V\left(R^{\prime}\right)$. Then $\left\{z_{1}, z_{2}, v_{0}, v_{1}, \ldots, v_{k}\right\}$ is an independent set of order $k+3$. By Claims 7 and $8, d_{P}\left(z_{1}\right)+d_{P}\left(z_{2}\right) \leq k+2$. Obviously, $\sum_{i=0}^{k} d_{G-P}\left(v_{i}\right) \leq n-|P|-|R|-\left|R^{\prime}\right|$. Then

$$
\begin{aligned}
\sum_{i=0}^{k} d\left(v_{i}\right)+d\left(z_{1}\right)+d\left(z_{2}\right) & =\sum_{i=0}^{k} d_{P}\left(v_{i}\right)+\sum_{i=0}^{k} d_{G-P}\left(v_{i}\right)+d_{P}\left(z_{1}\right)+d_{P}\left(z_{2}\right)+d_{R}\left(z_{1}\right)+d_{R^{\prime}}\left(z_{2}\right) \\
& \leq(|P|-1)+\left(n-|P|-|R|-\left|R^{\prime}\right|\right)+(k+2)+|R|-1+\left|R^{\prime}\right|-1 \\
& =n+k-1
\end{aligned}
$$

which contradicts $\sigma_{k+3}(G) \geq n+k+2$.
By Claim 10, we assume $N\left(v_{i}\right) \cap V\left(R^{\prime}\right) \neq \emptyset$ for some $i \in[1, k]$. By Lemma 2.3(a), $N\left(v_{j}\right) \cap$ $V\left(R^{\prime}\right)=\emptyset$ for $j \in[0, k]-\{i\}$.

By the proof in [5], we can get the following two results.
Claim 11 There exists a second non-insertible vertex v_{i}^{\prime} in $S_{i}-\left\{u_{i+1}\right\}$ and $v_{i}^{\prime} \notin N\left(R^{\prime}\right)$.
Proof Suppose $S_{i}-\left\{u_{i+1}\right\}$ contains only one non-insertible vertex v_{i}. Then we can get a path $P_{1}\left[u_{i+1}, u_{i}\right]$ such that $V\left(P_{1}\right)=V(C)-\left\{v_{i}\right\}$ by inserting all the vertices in $S_{i}-\left\{v_{i}\right\}$ to $C\left[u_{i+1}, u_{i}\right]$. Suppose $|V(R)|=\{u\}$. Then we get a cycle $C^{\prime}=P_{1}\left[u_{i+1}, u_{i}\right] u u_{i+1}$. Let $P^{\prime}=V\left(C^{\prime}\right)-\left\{u_{0}\right\}$. Then $w\left(G-P^{\prime}\right)<w(G-P)$, which contradicts (T1). Suppose $|V(R)| \geq 2$. If $N_{R}\left(u_{i}\right) \cup N_{R}\left(u_{i+1}\right)=\{z\}$, then $N_{P}(R) \cup\{z\}-\left\{u_{i}, u_{i+1}\right\}$ is a vertex cut of G with order $k-1$, which contradicts Claim 8 . Thus $\left|N_{R}\left(u_{i}\right) \cup N_{R}\left(u_{i+1}\right)\right| \geq 2$. By Claim 9, there is a hamiltonian path $u_{i} P_{2} u_{i+1}$ of $R \cup\left\{u_{i}, u_{i+1}\right\}$. Thus we can get a cycle $C_{1}=u_{i+1} P_{1} u_{i} P_{2} u_{i+1}$ longer than C, a contradiction.

Now, we complete Theorem 1.6. Let $z_{1} \in V(R), z_{2} \in V\left(R^{\prime}\right)$. By Claim 11 and Lemma 2.4, $U^{\prime}=\left\{v_{0}, \ldots, v_{i-1}, v_{i}^{\prime}, v_{i+1}, \ldots, v_{k}\right\}$ is an indendent set. By Lemma 2.4 and the preceding proof, U^{\prime} has the same properties as U. Obviously, $U^{\prime} \cup\left\{z_{1}, z_{2}\right\}$ is an independent set of order $k+3$ in G. Obviously, $\sum_{u \in U^{\prime}} d_{G-P}(u) \leq n-|P|-|R|-\left|R^{\prime}\right|$. By Claims 7 and $8, d_{P}\left(z_{1}\right)+d_{P}\left(z_{2}\right) \leq k+2$. Obviously, $d_{R}\left(z_{1}\right) \leq|R|-1, d_{R^{\prime}}\left(z_{2}\right) \leq\left|R^{\prime}\right|-1$. Then we can get

$$
\begin{aligned}
\sum_{u \in U^{\prime}} d(u)+d\left(z_{1}\right)+d\left(z_{2}\right) & =\sum_{u \in U^{\prime}} d_{P}(u)+\sum_{u \in U^{\prime}} d_{G-P}(u)+d_{P}\left(z_{1}\right)+d_{P}\left(z_{2}\right)+d_{R}\left(z_{1}\right)+d_{R^{\prime}}\left(z_{2}\right) \\
& \leq(|P|-1)+\left(n-|P|-|R|-\left|R^{\prime}\right|\right)+(k+2)+(|R|-1)+\left(\left|R^{\prime}\right|-1\right) \\
& =n+k-1,
\end{aligned}
$$

which contradicts $\sigma_{k+3}(G) \geq n+k+2$. It follows that Theorem 1.6 holds.

References

[1] J. A. BONDY, U. S. R. MURTY. Graph Theory With Applications. Pure Appl. Math., 2004, 20(1): 10-13.
[2] H. BROERSMA, H. TUINSTRA. Independent trees and Hamilton cycles. J. Graph Theory, 1998, 29: 227-237.
[3] A. KYAW. Spanning trees with at most 3 leaves in $K_{1,4}$-free graphs. Discrete Math., 2009, 309(20): 61466148.
[4] A. KYAW. Spanning trees with at most k leaves in $K_{1,4}$-free graphs. Discrete Math., 2011, 311(20): 21352142.
[5] M. KANO, A. KYAW, H. MATSUDA, et al. Spanning trees with a bounded number of leaves in a claw-free graph. Ars Combin., 2012, 103: 137-154.
[6] Yuan CHEN, Guantao CHEN, Zhiquan HU. Spanning 3-ended trees in k-connected $K_{1,4}$-free graphs. Sci. China Math., 2014, 57(8): 1579-1586.
[7] Xiaodong CHEN, Meijn XU, Yanjun LIU. Spanning 3-ended trees in almost claw-free graphs. Discrete Dyn. Nat. Soc., 2015, Art. ID 476182, 5 pp.
[8] Guantao CHEN, R. SCHELP. Hamiltonicity for $K_{1,4}$-free graphs. J. Graph Theory, 1995, 20(4): 423-439.
[9] Z. RYJACEK. Almost claw-free graphs. J. Graph Theory, 1994, 18(5): 469-477.
[10] O. ORE. Hamiltonian connected graphs. J. Math Pure Appl., 1963, 42: 21-27.

[^0]: Received October 20, 2015; Accepted April 15, 2016
 Supported by the National Natural Science Foundation of China, Tian Yuan Special Foundation (Grant No. 11426125), by Educational Commission of Liaoning Province (Grant No. L2014239).

 * Corresponding author

 E-mail address: xiaodongchen74@126.com (Xiaodong CHEN); li_mingchu@yahoo.com (Mingchu LI)

