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Abstract A spanning tree with no more than 3 leaves is called a spanning 3-ended tree.

In this paper, we prove that if G is a k-connected (k ≥ 2) almost claw-free graph of or-

der n and σk+3(G) ≥ n+ k + 2, then G contains a spanning 3-ended tree, where σk(G) =

min{
∑

v∈S deg(v) : S is an independent set of G with |S| = k}.
Keywords spanning 3-ended tree; almost claw-free graph; insertible vertex; non-insertible

vertex
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1. Introduction

We consider only finite and simple graphs in this paper. For notation and terminology not

defined here we refer to [1]. A subset B of V (G) is a dominating set if every vertex of G is in B

or adjacent to the vertices in B. The domination number of a graph G denoted by γ(G) is the

minimum cardinality of all the dominating sets of G. Let α(G) denote the independent number

of a graph G. A graph G is claw-free if G contains no K1,3 induced subgraph. A graph G is

almost claw-free if there exists an independent set A in V (G) such that α(N(v)) ≤ 2 for any

vertex v /∈ A, and α(N(v)) ≤ 2 < γ(N(v)) for every v ∈ A. Let NH(S) denote the set of all

vertices in R adjacent to some vertex of S and dH(S) = |NH(S)|. For a subgraph R of a graph

G, G−H denotes the induced subgraph by V (G)−V (H). For a vertex v of G, the neighborhood

of v is the induced subgraph on the set of all vertices that are adjacent to v, and for convenience,

we use N(v) to denote both the induced subgraph and the set of vertices adjacent to v in G.

Let N [v] = N(v) ∪ {v}. We define σk(G) = min{
∑

v∈S deg(v) : S is an independent set of

G with |S| = k}. P [a, b] (or aPb) denotes a path along positive orientation with end vertices

a, b. For a path P [a, b], x, y ∈ V (P ), let xPy denote the subpath from x to y along the positive

orientation, and yP−x denote the subpath from y to x along the negative orientation. A graph

G is hamiltonian-connected, if there exists a hamiltonian path with end vertices a, b for every

pair of distinct vertices a, b ∈ V (G).
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There are a lot of sufficient conditions on the degree sum of vertices in an independent

vertex set of a graph to contain spanning k-ended trees.

Theorem 1.1 ([2]) Let k ≥ 2 and G be a connected graph of order n ≥ 2. If σ2(G) ≥ n−k+1,

then G contains a spanning k-ended tree.

Kyaw [3,4] gave some degree sum conditions for K1,4-free graphs to contain a spanning

k-ended tree.

Theorem 1.2 ([3]) Every connected K1,4-free graph with σ4(G) ≥ |G| − 1 contains a spanning

3-ended tree.

Theorem 1.3 ([4]) Let G be a connected K1,4-free graph. Then

(i) If σ3(G) ≥ |G|, then G contains a hamiltonian path.

(ii) If σk+1(G) ≥ |G| − k
2 for an integer k ≥ 3, then G contains a spanning k-ended tree.

On the other hand, Kano et al. [5] obtained sharp sufficient conditions for claw-free graphs

to contain a spanning k-ended tree.

Theorem 1.4 ([5]) Let k ≥ 2 and G be a connected claw-free graph of order n. If σk+1(G) ≥
n− k, then G contains a spanning k-ended tree with the maximum degree at most 3.

Recently, Chen et al. [6] gave some degree sum conditions for k-connected K1,4-free graphs

to contain a spanning 3-ended tree.

Theorem 1.5 ([6]) Let G be a k-connected K1,4-free graph of order n with k ≥ 2. If σk+3(G) ≥
n+ 2k − 2, then G contains a spanning 3-ended tree.

Chen et al. [7] proposed if G is a k-connected almost claw-free graph of order n with k ≥ 2,

and σk+3(G) ≥ n+ 2k − 2, then G contains a spanning 3-ended tree. In this paper, we decrease

the bound to improve the above result.

Theorem 1.6 If G is a k-connected almost claw-free graph of order n with k ≥ 2, and

σk+3(G) ≥ n+ k + 2, then G contains a spanning 3-ended tree.

Obviously, there are a lot of almost claw-free graphs which contain K1,4 subgraphs, so in

some extent Theorem 1.6 is a generalization of Theorem 1.5.

2. Preliminaries

The properties of insertible vertices [8] and the following results are needed in the proof of

Theorem 1.6.

Lemma 2.1 ([9]) If v is a claw center of an almost claw-free graph, then γ(N(v)) = 2.

Assume that G is a connected non-hamiltonian graph and C is a longest cycle in G with

counter-clockwise direction as positive orientation. Suppose that R is a component of G − C

and NC(R) = {u1, u2, . . . , um} such that u1, u2, . . . , um are labeled in order along the positive

direction of C. Let Sj = C(uj , uj+1], 1 ≤ j ≤ m− 1, and Sm = C(um, u1]. A vertex u in Sj is an
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insertible vertex if u has two consecutive neighbors v and v+ in C − Sj .

Lemma 2.2 ([8]) For each Sj , Sj − {uj+1} contains a non-insertible vertex.

Let vj denote the first non-insertible vertex in Sj − {uj+1} for each j ∈ [1,m].

Lemma 2.3 ([8]) Let xi ∈ C[ui, vi], xj ∈ C[uj , vj ] with 1 ≤ i < j ≤ m. Then

(a) There is no path P [xi, xj ] in G such that P [xi, xj ] ∩ V (C) = {xi, xj}.
(b) For any vertex u in C[x+

i , x
−
j ], if uxi ∈ E(G), then u−xj /∈ E(G). By symmetry, for

any vertex u in C[x+
j , x

−
i ], if uxj ∈ E(G), then u−xi /∈ E(G).

(c) For any vertex u in C[xi, xj ], if uxi, uxj ∈ E(G), then u−u+ /∈ E(G). By symmetry, for

any vertex u in C[xj , xi], if uxi, uxj ∈ E(G), then u−u+ /∈ E(G).

Suppose for some i ∈ [1,m], N(vi) ∩ V (G− C −R) ̸= ∅ and v′i is the second non-insertible

vertex in Si − {ui+1}. Then Chen, Chen and Hu [6] gave the following result.

Lemma 2.4 ([5]) Let 1 ≤ i < j ≤ m, xi ∈ C[v+i , v
′
i] and xj ∈ C[u+

j , vj ]. Then

(a) There does not exist a path P [xi, xj ] in G such that P [xi, xj ] ∩ V (C) = {xi, xj}.
(b) For every vertex u ∈ C[x+

i , x
−
j ], if uxi ∈ E(G), then u−xj /∈ E(G); Similarly, for every

u ∈ C[x+
j , x

−
i ], if uxj ∈ E(G), then u−xi /∈ E(G).

(c) For every vertex u ∈ C[xi, xj ], if uxi, uxj ∈ E(G), then u−u+ /∈ E(G); By symmetry,

for any vertex u in C[xj , xi], if uxi, uxj ∈ E(G), then u−u+ /∈ E(G).

3. Proof of Theorem 1.6

Suppose, to the contrary, G satisfies the conditions of Theorem 1.6 and contains no spanning

3-ended tree in G. Let P = P [x, y] be a longest path in G such that P satisfies the following two

conditions:

(T1) w(G− P ) is minimum;

(T2) |P [x, u1]| is minimum such that u1 is the first vertex in P with N(u1)∩V (G−P ) ̸= ∅,
subject to (T1).

Suppose R is a component in G − P, and {u1, . . . , um} = NP (R) with u1, . . . , um in order

along the positive direction of P. Let RI denote an independent set in R.

Let G′ denote a graph with V (G′) = V (G) ∪ {u0}, E(G′) = E(G) ∪ {u0u : u ∈ V (G)}.
Then C = u0P [x, y]u0 is a maximum cycle in G′. We define the counter-clockwise orientation

as the positive direction of C. Let Si denote the segment C(ui, ui+1] for 0 ≤ i ≤ m − 1, and

Sm = C(um, u0]. By Lemma 2.2, let vi denote the first non-insertible vertex in Si for i ∈ [0,m],

and U = {v0, v1, . . . , vm}. By Lemma 2.3(a), U is an independent set.

C can be divided into disjoint intervals S = C[a, b] with a, b+ /∈ N(U) and C[a+, b] ⊆ N(U).

We call the intervals U -segments. If a = b, then C[a+, b] = ∅, i.e., if |S| = 1, then dU (S) = 0. By

the definition of U -segment, for any U -segment S, there exists l ∈ [0,m] such that S ⊆ C[vl, v
−
l+1]

(subscripts expressed modulo m+ 1).

Though Claims 1–5 in the following proof have been proved in [7], we give them a proof

here for the sake of completeness.
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Claim 1 x = v0 and y /∈ N(vi) for any i ∈ [0,m− 1].

Proof Suppose x is an insertible vertex such that xu, xu+ ∈ E(G), where u, u+ ∈ C − S0.

If u ̸= y, then we can get a path P ′ = P [x+, u]xP [u+, y], which contradicts (T2). If u = y,

then let P ′ = P [x+, y]x, which contradicts (T2). Thus x = v0. Suppose viy ∈ E(G), for some

i ∈ [0,m − 1]. Obviously, u0 = y+. Since yvi, y
+vi ∈ E(G) and y ∈ C − Si, vi is an insertible

vertex, a contradiction. �

Claim 2 For any vertex u ∈ V (P ), if N [u] is claw-free, then dU (u) ≤ 1.

Proof Suppose u is in some U -segment S with S ⊆ C[vi, v
−
i+1], i ∈ [0,m], and vi1 , vi2 ∈ NU (v)

with 0 ≤ i1 < i2 ≤ m. Then by Lemma 2.3(c), u−u+ /∈ E(G). Obviously, at least one vertex

in {vi1 , vi2} is not in C[vi, v
−
i+1]. Without loss of generality, suppose vi1 /∈ C[vi, v

−
i+1]. If u /∈

C[ui+1, v
−
i+1], then vi1 ̸= vi+1, and vi1v

−, vi1v
+ /∈ E(G) by vi1 is a non-insertible vertex. Thus

G[u, u−, u+, vi1 ] = K1,3, a contradiction. Suppose vi1 = vi+1. If u ∈ C[vi, ui+1), then by the

previous proof, we can get a contradiction. If u ∈ C[ui+1, v
−
i+1], then we consider vi2 and by the

previous proof, we can get a contradiction. �

Claim 3 dU (u) ≤ 2 for any vertex u ∈ V (P ), and if dU (u) = 2, then u is a center of a claw.

Proof Without loss of generality, suppose u is in U -segment S and S ⊆ C[v0, v
−
1 ]. If |S| = 1,

then dU (u) = 0. Suppose |S| ≥ 2 and S = {x0, x1, x2, . . . , xh}, where x0, x1, x2, . . . , xh are in

order along the positive direction of C. Then x0 /∈ N(U), xi ∈ N(U) for i ∈ [1, h]. For some

i ∈ [1, h], suppose vi1 , vi2 , vi3 ∈ NU (xi) with 0 ≤ i1 < i2 < i3 ≤ m. Then xi is a claw center. By

Lemma 2.1, suppose y1, y2 are the two distinct domination vertices of N(xi). Then N [y1], N [y2]

are claw-free and at least two vertices in {vi1 , vi2 , vi3} are incident with y1 or y2. Without loss of

generality, suppose vi1y1, vi2y1 ∈ E(G). Then y1 ∈ V (P ), and y−1 y
+
1 /∈ E(G) by Lemma 2.3(c).

Suppose Sj = C(uj , uj+1] containing y1, 0 ≤ j ≤ m. Obviously, at least one vertex in {vi1 , vi2}
is not in Sj . Without loss of generality, suppose vi1 /∈ Sj . Since vi1 is a non-insertible vertex

and vi1y1 ∈ E(G), y−1 vi1 , y
+
1 vi1 /∈ E(G). Thus G[y1, y

−
1 , y

+
1 , vi1 ] = K1,3, a contradiction. If

dU (u) = 2, then by Claim 2, u is a claw center. �

Claim 4 For any U -segment S not containing y, S contains at most one vertex u with dU (u) = 2,

and dU (S) ≤ |S|.

Proof Without loss of generality, suppose S = {x0, x1, x2, . . . , xh} ⊆ C[vi, v
−
i+1], 0 ≤ i ≤ m,

where x0, x1, x2, . . . , xh are in order along the positive direction of C. By Claim 3, suppose that xj

is the first vertex in S with dU (xj) = 2, 1 ≤ j ≤ h, and {vi1 , vi2} = NU (xj), where 0 ≤ i1 < i2 ≤
m. By Claim 3, xj is a center of a claw. Then N [x+

j ] is claw-free, and by Claim 2, dU (x
+
j ) ≤ 1.

Thus if j ≤ h ≤ j + 1, then we are done. Suppose h > j + 1 and NU (xj+1) = {vi3}. Since
G[xj+1, xj+2, xj , vi3 ] ̸= K1,3, E(G) contains at least one edge in {xjvi3 , xj+2vi3 , xjxj+2}. If xjvi3
or xj+2vi3 ∈ E(G), then vi3 = vi, which contradicts Lemma 2.3(b) since xjvi1 , xjvi2 , xj+1vi3 ∈
E(G). Thus vi3 ̸= vi, and xjxj+2 ∈ E(G). Then N [xj+2] is claw-free and by Claim 2, dU (xj+2) ≤
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1. Thus if h = j+2, then we are done. Suppose h > j+2 and {vi4} = NV (xj+2). Since vi3 ̸= vi,

by Lemma 2.3(b) vi4 ̸= vi. Then vi4xj+3 /∈ E(G). Since G[xj+2, xj , xj+3, vi4 ] ̸= K1,3, vi4xj or

xjxj+3 ∈ E(G). If vi4xj ∈ E(G), then vi4 ∈ {vi1 , vi2}, and by Lemma 2.3(b), vi3 = vi4 . It

follows that vi3xj+1, vi3xj+2 ∈ E(G), a contradiction. Thus xjxj+3 ∈ E(G), and then N [xj+3]

is claw-free. By Claim 2, dU (xj+3) ≤ 1. Thus if h = j + 3, then we are done. If h > j + 3, then

proceeding in the above manners to the set L = {xj+4, . . . , xh}, we can get N [u] is claw-free for

any vertex u in L, and then by Claim 2, dU (u) ≤ 1. It follows that S has exactly one vertex xj

with dU (xj) = 2, and then dU (S) ≤ |S|. �

Claim 5 Suppose the U -segment S0 contains y. Then dU (u) ≤ 1 for any vertex u ∈ S0 − {u0}.

Proof If S0 = {y, u0}, then dU (y) = 0, and we are done. Suppose |S0| ≥ 3. Then by Claim 1,

NU (y) = {vm}. Thus by Lemma 2.3(b), NU (u) ⊆ {vm} for any vertex u ∈ S0 − {u0}. �

Claim 6 For the vertices in U = {v0, . . . , vm},
∑m

i=0 dP (vi) ≤ |P | − 1.

Proof Obviously, V (P ) =
∪m−1

i=0
V (P [vi, v

−
i+1]) ∪ V (P [vm, y]). Recall that

∑m
i=0 dP (vi) =

dU (P ). Then
∑m

i=0 dP (vi) =
∑m−1

i=0 dU (P [vi, v
−
i+1]) + dU (P [vm, y]). By Claim 5, dU (P [vm, y]) ≤

|P [vm, y]| − 1. By Claim 4, dU (P [vi, v
−
i+1]) ≤ |P [vi, v

−
i+1]| for 1 ≤ i ≤ m− 1. Thus

∑m
i=0 dP (vi) ≤∑m−1

i=0 |P [vi, v
−
i+1]|+ |P [vm, y]| − 1 = |P | − 1. �

Claim 7 Suppose z1, z2 ∈ V (G−P ) are two nonadjacent vertices. Then |NP (z1)∩NP (z2)| ≤ 2.

Proof Obviously, NP (z1) ∩ NP (z2) ⊆ {u1, u2, . . . , um}. Suppose |NP (z1) ∩ NP (z2)| ≥ 3 and

without loss of generality, suppose u1, u2, u3 ∈ NP (z1) ∩ NP (z2). Obviously, G[u1, z1, z2, u
−
1 ] =

K1,3. Similarly, u2, u3 are claw-centers. Thus {u1, u2, u3} is an independent set. Since z1u1 ∈
E(G), N [z1] contains no claw. Then G[z1, u1, u2, u3] ̸= K1,3. Thus E(G) contains at least one

edge in {u1u2, u1u3, u2u3}, which contradicts the independent set {u1, u2, u3}. �

Claim 8 For every component R of G− P, |NP (R)| = k, and R is hamiltonian-connected.

Proof By Lemma 2.3(a), for 0 ≤ i ̸= j ≤ m, NG−P (vi)∩NG−P (vj) = ∅, and then
∑m

i=0 dG−P (vi)

≤ n−|P |−|R|. Since G is k-connected, m ≥ k. Supposem > k. Ifm ≥ k+2, then {v0, v1, . . . , vm}
is an independent set with order at least k + 3. By Claim 6, we can get

m∑
i=0

d(vi) =
m∑
i=0

dP (vi) +
m∑
i=0

dG−P (vi) ≤ (|P | − 1) + (n− |P | − |R|) = n− 1− |R|,

which contradicts σk+3(G) ≥ n+k+2. Supposem = k+1 and u ∈ V (R). Then {u, v0, v1, . . . , vm}
is an independent set with order k + 3. Since d(u) = dP (u) + dR(u) ≤ m+ |R| − 1 = k + |R|,

k+1∑
i=0

d(vi) + d(u) =

k+1∑
i=0

dP (vi) +

k+1∑
i=0

dG−P (vi) + d(u)

≤ (|P | − 1) + (n− |P | − |R|) + k + |R| = n+ k − 1,

which contradicts σk+3(G) ≥ n+ k + 2. It follows that m = k.
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Suppose that R is not hamiltonian-connected. Then by Ore’s theorem in [10], there exists

two nonadjacent vertices z1 and z2 such that dR(z1)+dR(z2) ≤ |R|. By Claims 7 and 8, dP (z1)+

dP (z2) ≤ k + 2. Since {z1, z2, v0, v1, . . . , vk} is an independent set with order k + 3,

k∑
i=0

d(vi) + d(z1) + d(z2) =

k∑
i=0

dP (vi) +

k∑
i=0

dG−P (vi) + (dP (z1) + dP (z2)) + (dR(z1) + dR(z2))

≤ (|P | − 1) + (n− |P | − |R|) + (k + 2) + |R| = n+ k + 1,

which contradicts σk+3(G) ≥ n+ k + 2. �

Claim 9 Let ui, uj ∈ NP (R), 1 ≤ i ̸= j ≤ k. Then G[V (R) ∪ {ui, uj}] contains a hamiltonian

path with ended vertices ui and uj .

Proof By Claim 8, R is hamiltonian-connected. If |R| = 1, then we are done. Suppose |R| ≥ 2.

If NR(ui) = NR(uj) = {u}, then NP (R) − {ui, uj} ∪ {u} is a vertex cut of G with order k − 1,

a contradiction with the k-connectedness of G. Thus |NR(ui) ∪NR(uj)| ≥ 2 and then the claim

holds. �
If G − P contains only component of R, then by Claim 8, G contains a spanning 3-ended

tree. Thus we assume that v(G− P ) ≥ 2 and R′ is a component in G− P −R.

Claim 10 N(vi) ∩ V (R′) ̸= ∅ for some 1 ≤ i ≤ k.

Proof By Claim 1, N(v0) ∩ V (R′) = ∅. Suppose N(vi) ∩ V (R′) = ∅ for any i ∈ [1, k]. Let

z1 ∈ V (R), z2 ∈ V (R′). Then {z1, z2, v0, v1, . . . , vk} is an independent set of order k + 3. By

Claims 7 and 8, dP (z1)+dP (z2) ≤ k+2. Obviously,
∑k

i=0 dG−P (vi) ≤ n−|P |− |R|− |R′|. Then
k∑

i=0

d(vi) + d(z1) + d(z2) =

k∑
i=0

dP (vi) +

k∑
i=0

dG−P (vi) + dP (z1) + dP (z2) + dR(z1) + dR′(z2)

≤ (|P | − 1) + (n− |P | − |R| − |R′|) + (k + 2) + |R| − 1 + |R′| − 1

= n+ k − 1,

which contradicts σk+3(G) ≥ n+ k + 2. �
By Claim 10, we assume N(vi) ∩ V (R′) ̸= ∅ for some i ∈ [1, k]. By Lemma 2.3(a), N(vj) ∩

V (R′) = ∅ for j ∈ [0, k]− {i}.
By the proof in [5], we can get the following two results.

Claim 11 There exists a second non-insertible vertex v′i in Si − {ui+1} and v′i /∈ N(R′).

Proof Suppose Si − {ui+1} contains only one non-insertible vertex vi. Then we can get a path

P1[ui+1, ui] such that V (P1) = V (C)−{vi} by inserting all the vertices in Si−{vi} to C[ui+1, ui].

Suppose |V (R)| = {u}. Then we get a cycle C ′ = P1[ui+1, ui]uui+1. Let P
′ = V (C ′)−{u0}. Then

w(G−P ′) < w(G−P ), which contradicts (T1). Suppose |V (R)| ≥ 2. If NR(ui)∪NR(ui+1) = {z},
then NP (R) ∪ {z} − {ui, ui+1} is a vertex cut of G with order k− 1, which contradicts Claim 8.

Thus |NR(ui)∪NR(ui+1)| ≥ 2. By Claim 9, there is a hamiltonian path uiP2ui+1 of R∪{ui, ui+1}.
Thus we can get a cycle C1 = ui+1P1uiP2ui+1 longer than C, a contradiction. �
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Now, we complete Theorem 1.6. Let z1 ∈ V (R), z2 ∈ V (R′). By Claim 11 and Lemma 2.4,

U ′ = {v0, . . . , vi−1, v
′
i, vi+1, . . . , vk} is an indendent set. By Lemma 2.4 and the preceding proof,

U ′ has the same properties as U . Obviously, U ′ ∪{z1, z2} is an independent set of order k+3 in

G. Obviously,
∑

u∈U ′ dG−P (u) ≤ n−|P |−|R|−|R′|. By Claims 7 and 8, dP (z1)+dP (z2) ≤ k+2.

Obviously, dR(z1) ≤ |R| − 1, dR′(z2) ≤ |R′| − 1. Then we can get∑
u∈U ′

d(u) + d(z1) + d(z2) =
∑
u∈U ′

dP (u) +
∑
u∈U ′

dG−P (u) + dP (z1) + dP (z2) + dR(z1) + dR′(z2)

≤ (|P | − 1) + (n− |P | − |R| − |R′|) + (k + 2) + (|R| − 1) + (|R′| − 1)

= n+ k − 1,

which contradicts σk+3(G) ≥ n+ k + 2. It follows that Theorem 1.6 holds.
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