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Abstract Assume that N , F and G are groups. If there exsits Ñ , a normal subgroup of

G such that Ñ ∼= G and G/Ñ ∼= F , then G is called a central extension of N by F . In this

paper, the central extension of N by a minimal non-abelian p-group is determined, where N

is an elementary abelian p-group of order p3. Together with our previous work, all central

extensions of N by a minimal non-abelian p-group is determined, where N is an elementary

abelian p-group.
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1. Introduction

Finite p-groups are an important class of finite groups. After the classification of finite

simple groups was finally completed, the study of finite p-groups becomes more and more active.

Many leading group theorists, for example, Glauberman, Janko, etc., have turned their attentions

to the study of finite p-groups. As Janko mentioned in the Foreword of [1], to study p-groups

with “large” abelian subgroups is another approach to finite p-groups. A well-known important

result is the classification of finite p-groups with a cyclic subgroup of index p, which was obtained

by Burnside [2]. Tuan [3] studied finite p-groups with an abelian subgroup of index p. Another

important concept in finite p-groups is minimal non-abelian p-groups. A non-abelian group G is

said to be minimal non-abelian if every proper subgroup of G is abelian. Minimal non-abelian

groups were classified in [4], and in more detail for finite p-groups in [5]. Recently the author

and his colleagues classified finite p-groups with a minimal non-abelian subgroup of index p.

Groups in this paper are finite p-groups. Notation and terminology are consistent with that

in [6–8]. Assume that N , F and G are groups. If there exsits Ñ , a normal subgroup of G such

that Ñ ∼= G and G/Ñ ∼= F , then G is called a central extension of N by F .

In this paper, the central extension of N by a minimal non-abelian p-group is determined,

where N is an elementary abelian p-group of order p3. Together with our previous work, all cen-

tral extensions of N by a minimal non-abelian p-group is determined, where N is an elementary

abelian p-group.
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2. Preliminaries

In this paper, p is always a prime. We use Fp to denote the finite field containing p elements.

F ∗
p is the multiplicative group of Fp. (F

∗
p )

2 = {a2|a ∈ F ∗
p } is a subgroup of F ∗

p . F
2
p = (F ∗

p )
2∪{0}.

For a finite non-abelian p-group G, we use pImin and pImax to denote the minimal index and the

maximal index of A1-subgroups of G, respectively. For a square matrix A, |A| denotes the

determinant of A. We need the following lemmas.

Lemma 2.1 ([9, Lemma 2.2]) Suppose that G is a finite non-abelian p-group. Then the following

conditions are equivalent:

(1) G is an A1-group; (2) d(G) = 2 and |G′| = p; (3) d(G) = 2 and Φ(G) = Z(G).

Lemma 2.2 ([8, Lemma 2.1]) Suppose that p is odd, {1, η} is a transversal for (F ∗
p )

2 in F ∗
p .

Then the following matrices form a transversal for the congruence classes of invertible matrices

of order 2 over Fp:

(1)

(
0 1

−1 0

)
, (2)

(
ν 1

−1 0

)
, (3)

(
1 0

0 ν

)
, (4)

(
1 1

−1 r

)
,

where ν = 1 or η, r = 1, 2, . . . , p− 2.

Lemma 2.3 ([6, Lemma 4.3]) The following matrices form a transversal for the congruence

classes of invertible matrices of order 2 over F2.

(1)

(
1 0

0 1

)
, (2)

(
0 1

1 0

)
, (3)

(
1 0

1 1

)
.

Lemma 2.4 ([8, Lemma 2.3]) Suppose that p is a prime (p = 2 is possible). For odd p, {1, η} is

a transversal for (F ∗
p )

2 in F ∗
p . Then the following matrices form a transversal for the congruence

classes of non-invertible matrices of order 2 over Fp:

(1)

(
0 1

0 0

)
, (2)

(
0 0

0 ν

)
, (3)

(
0 0

0 0

)
, where ν = 1 or η.

Theorem 2.5 ([10, Theorem 2.3]) A p-group G is metacyclic if and only if G/Φ(G′)G3 is

metacyclic.

3. The central extension of C3
p by a miniaml non-abelian p-group

Theorem 3.1 Suppose thatG is a finite p-group. If there existsN ∼= C3
p such thatN ≤ Z(G)∩G′

and G/N is minimal abelian, then

(1) N = Φ(G′)G3; (2) G/N is not metacyclic; (3) G3
∼= C2

p and G′ ∼= Cp2 × Cp × Cp.

Proof (1) By Theorem 2.1, |(G/N)′| = p. It follows that Φ(G′)G3 ≤ N . Since |(G/Φ(G′)G3)
′| =

p, Φ(G′)G3 is maximal in G′. Since N < G′, N = Φ(G′)G3.

(2) If G/N is metacyclic, then, by (1), G/Φ(G′)G3 is metacyclic. By Theorem 2.5, G is

also metacyclic. It follows that G′ is cyclic. Since N ≤ G′, N is also cyclic, which contradicts

N ∼= C3
p .

(3) It is obvious that d(G) = 2. Let G = ⟨a, b⟩ where [a, b] = c. Then G′ = ⟨c,G3⟩ and
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G3 = ⟨[c, a], [c, b]⟩. Hence Φ(G′)G3 = ⟨cp, [c, a], [c, b]⟩. Since Φ(G′)G3
∼= C3

p , we have G3
∼= C2

p

and G′ ∼= Cp2 × Cp × Cp. �

Theorem 3.2 Suppose that G and Ḡ are finite p such that Φ(G′)G3
∼= C3

p and G/Φ(G′)G3
∼=

Mp(n,m, 1), where n ≥ m ≥ 2 and n ≥ 3 for p = 2. Then G ∼= Ḡ if and only if there

exists Y =

(
y11 y12

y21p
n−m y22

)
, an invertible matrix over Fp, such that w(Ḡ) = Y1w(G)Y T and

v(Ḡ) = Y1v(G), where Y1 =

(
y11 y12p

n−m

y21 y22

)
.

Proof Suppose that w(G),v(G), w(Ḡ) and v(Ḡ) are characteristic matrices and characteristic

vectors corresponding to generators a, b and ā, b̄, respectively. Let θ be an isomorphism from Ḡ

to G. We may let

āθ ≡ ax11bx12cx13 modΦ(G′)G3, b̄θ ≡ ax21p
n−m

bx22cx23 modΦ(G′)G3,

where X :=

(
x11 x12

x21p
n−m x22

)
is an invertible matrix over Fp. By calculation, we have

c̄θ = [ā, b̄]θ = [āθ, b̄θ] ≡ [ax11bx12 , ax21p
n−m

bx22 ] ≡ c|X| mod Φ(G′)G3

and

x̄θ = [b̄, c̄]θ = [b̄θ, c̄θ] = [ax21p
n−m

bx22 , c|X|] = x|X|x22y−|X|x21p
n−m

,

ȳθ = [c̄, ā]θ = [c̄θ, āθ] = [c|X|, ax11bx12 ] = x−|X|x12y|X|x11 .

By transforming x̄w̄11 ȳw̄12 c̄w̄13p = āp
n

by θ, we have

(w̄11, w̄12)

(
|X|x22 −|X|x21p

n−m

−|X|x12 |X|x11

)
= (x11, x12p

n−m)

(
w11 w12

w21 w22

)
(3.1)

and

|X|w̄13 = (x11, x12p
n−m)

(
w13

w23

)
. (3.2)

By transforming x̄w̄21 ȳw̄22 c̄w̄23p = b̄p
m

by θ, we have

(w̄21, w̄22)

(
|X|x22 −|X|x21p

n−m

−|X|x12 |X|x11

)
= (x21, x22)

(
w11 w12

w21 w22

)
(3.3)

and

|X|w̄23 = (x21, x22)

(
w13

w23

)
. (3.4)

By Eqs. (3.1) and (3.3),

|X|

(
w̄11 w̄12

w̄21 w̄22

)(
x22 −x21p

n−m

−x12 x11

)
=

(
x11 x12p

n−m

x21 x22

)(
w11 w12

w21 w22

)
. (3.5)

By Eqs. (3.2) and (3.4),

|X|

(
w̄13

w̄23

)
=

(
x11 x12p

n−m

x21 x22

)(
w13

w23

)
. (3.6)
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Let

Y = |X|−1X = |X|−1

(
x11 x12

x21p
n−m x22

)(
y11 y12

y21p
n−m y22

)

and Y1 =

(
y11 y12p

n−m

y21 y22

)
. Right multiplying Y T on Eq. (3.5), we have

(
w̄11 w̄12

w̄21 w̄22

)
= Y1

(
w11 w12

w21 w22

)
Y T . (3.7)

By Eq. (3.6),

v(Ḡ) = Y1v(G). (3.8)

Conversely, if there exists an invertible matrix Y =

(
y11 y12

y21p
n−m y22

)
such that the Eqs. (3.7)

and (3.8) hold, then, let X = |Y |−1Y =

(
x11 x12

x21p
n−m x22

)
. By using above argument, it is

easy to check the map θ : ā 7→ ax11bx12 , b̄ 7→ ax21p
n−m

bx22 is an isomorphism from Ḡ to G. �

Theorem 3.2 Let G be a finite p-group such that Φ(G′)G3
∼= C3

p , Φ(G′)G3 ≤ Z(G) and

G/Φ(G′)G3
∼= Mp(n,m, 1), where n ≥ m ≥ 2. Then G is one of the following non-isomorphic

groups:

(A1) ⟨a, b | a4 = b4 = c4 = d2 = e2 = 1, [a, b] = c, [c, a] = d, [c, b] = e, [d, a] = [d, b] = [e, a] =

[e, b] = 1⟩;
(A2) ⟨a, b | a8 = b4 = c4 = d2 = 1, [a, b] = c, [c, a] = d, [c, b] = a4, [d, a] = [d, b] = 1⟩;
(A3) ⟨a, b | a8 = b4 = c4 = d2 = 1, [a, b] = c, [c, a] = a4, [c, b] = d, [d, a] = [d, b] = 1⟩;
(A4) ⟨a, b | a8 = b4 = c4 = d2 = 1, [a, b] = c, [c, a] = d, [c, b] = a4d, [d, a] = [d, b] = 1⟩;
(A5) ⟨a, b | a8 = b8 = c4 = d2 = 1, a4 = b4, [a, b] = c, [c, a] = a4, [c, b] = d, [d, a] = [d, b] = 1⟩;
(A6) ⟨a, b | a8 = b8 = c4 = d2 = e2 = 1, a4 = b4 = c2, [a, b] = c, [c, a] = d, [c, b] = e⟩;
(A7) ⟨a, b | a8 = b8 = c4 = 1, [a, b] = c, [c, a] = b4, [c, b] = a4⟩;
(A8) ⟨a, b | a8 = b8 = c4 = d2 = 1, b4 = c2, [a, b] = c, [c, a] = d, [c, b] = a4, [d, a] = [d, b] = 1⟩;
(A9) ⟨a, b | a8 = b8 = c4 = 1, [a, b] = c, [c, a] = a4, [c, b] = b4⟩;
(A10) ⟨a, b | a8 = b8 = c4 = 1, [a, b] = c, [c, a] = b4c2, [c, b] = a4⟩;
(A11) ⟨a, b | a8 = b8 = c4 = d2 = 1, a4 = c2, [a, b] = c, [c, a] = b4c2, [c, b] = d, [d, a] = [d, b] =

1⟩;
(A12) ⟨a, b | a8 = b8 = c4 = d2 = 1, a4 = c2, [a, b] = c, [c, a] = d, [c, b] = b4c2, [d, a] = [d, b] =

1⟩;
(A13) ⟨a, b | a8 = b8 = c4 = 1, [a, b] = c, [c, a] = a4c2, [c, b] = b4c2⟩;
(A14) ⟨a, b | a8 = b8 = c4 = 1, [a, b] = c, [c, a] = b4c2, [c, b] = a4c2⟩;
(A15) ⟨a, b | a8 = b8 = c4 = 1, [a, b] = c, [c, a] = a4b4, [c, b] = a4c2⟩;
(B1) ⟨a, b, c | apn+1

= bp
n+1

= cp
2

= 1, [a, b] = c, [c, a] = ap
n

, [c, b] = bp
n⟩, where p > 2,

n ≥ 2;
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(B2) ⟨a, b, c | apn+1

= bp
n+1

= cp
2

= 1, [a, b] = c, [c, a] = ap
n

bνp
n

, [c, b] = bp
n⟩, where p > 2,

n ≥ 2, ν = 1 or a fixed quadratic non-residue modular p;

(B3) ⟨a, b, c | apn+1

= bp
n+1

= cp
2

= 1, [a, b] = c, [c, a] = bνp
n

, [c, b] = a−pn⟩, where p > 2,

n ≥ 2, ν = 1 or a fixed quadratic non-residue modular p;

(B4) ⟨a, b, c | apn+1

= bp
n+1

= cp
2

= 1, [a, b] = c, [c, a]1+r = ap
n

bp
n

, [c, b]1+r = a−rpn

bp
n⟩,

where p > 2, n ≥ 2, r = 1, 2, . . . , p− 2;

(B5) ⟨a, b, c | a2n+1

= b2
n+1

= c4 = 1, [a, b] = c, [c, a] = b2
n

, [c, b] = a2
n⟩, where n ≥ 3;

(B6) ⟨a, b, c | a2n+1

= b2
n+1

= c4 = 1, [a, b] = c, [c, a] = a2
n

, [c, b] = b2
n⟩, where n ≥ 3;

(B7) ⟨a, b, c | a2n+1

= b2
n+1

= c4 = 1, [a, b] = c, [c, a] = a2
n

b2
n

, [c, b] = a2
n⟩, where n ≥ 3;

(B8) ⟨a, b, c, d | apn+1

= bp
n

= cp
2

= dp = 1, [a, b] = c, [c, a] = ap
n

, [c, b] = d, [d, a] = [d, b] =

1⟩, where n ≥ 3 for p = 2 and n ≥ 2;

(B9) ⟨a, b, c, d | apn

= bp
n+1

= cp
2

= dp = 1, [a, b] = c, [c, a] = bνp
n

, [c, b] = d, [d, a] = [d, b] =

1⟩, where n ≥ 3 for p = 2 and n ≥ 2, ν = 1 or a fixed quadratic non-residue modular

p;

(B10) ⟨a, b, c, d, e | apn

= bp
n

= cp
2

= dp = ep = 1, [a, b] = c, [c, a] = d, [c, b] = e, [d, a] =

[d, b] = [e, a] = [e, b] = 1⟩, where n ≥ 3 for p = 2 and n ≥ 2;

(C1) ⟨a, b, c | apn+1

= bp
n+1

= cp
2

= 1, [a, b] = c, [c, a] = bsp
n

c−sp, [c, b] = a−νpn

bstνp
n

c−stp⟩,
where n ≥ 3 for p = 2 and n ≥ 2, ν = 1 or a fixed quadratic non-residue modular p,

s ∈ F ∗
p , t = 0, 1, . . . , p−1

2 ;

(C2) ⟨a, b, c, d | apn+1

= bp
n+1

= dp = 1, cp = bp
n

, [a, b] = c, [c, a] = d, [c, b] = a−νpn

dtν , [d, a] =

[d, b] = 1⟩, where n ≥ 3 for p = 2 and n ≥ 2, ν = 1 or a fixed quadratic non-residue

modular p, t = 0, 1, . . . , p−1
2 ;

(C3) ⟨a, b, c | apn+1

= bp
n+1

= cp
2

= 1, [a, b] = c, [c, a] = ap
n

, [c, b] = asp
n

bp
n

c−p⟩, where
n ≥ 3 for p = 2 and n ≥ 2, s ∈ Fp;

(C4) ⟨a, b, c | apn+1

= bp
n+1

= cp
2

= 1, [a, b] = c, [c, a] = ap
n

, [c, b] = bsp
n

c−sp⟩, where n ≥ 3

for p = 2 and n ≥ 2, s = 2, 3, . . . , p−1
2 ;

(C5) ⟨a, b, c, d | apn+1

= bp
n+1

= dp = 1, cp = bp
n

, [a, b] = c, [c, a] = ap
n

, [c, b] = d, [d, a] =

[d, b] = 1⟩, where n ≥ 3 for p = 2 and n ≥ 2;

(C6) ⟨a, b, c, d | apn

= bp
n+1

= cp
2

= dp = 1, [a, b] = c, [c, a] = d, [c, b] = bp
n

c−p, [d, a] =

[d, b] = 1⟩, where n ≥ 3 for p = 2 and n ≥ 2;

(C7) ⟨a, b, c, d | apn

= bp
n+1

= cp
2

= dp = 1, [a, b] = c, [c, a] = bsp
n

c−sp, [c, b] = d, [d, a] =

[d, b] = 1⟩, where n ≥ 3 for p = 2 and n ≥ 2, s ∈ F ∗
p ;

(C8) ⟨a, b, c, d, e | apn

= bp
n+1

= dp = ep = 1, cp = bp
n

, [a, b] = c, [c, a] = d, [c, b] = e, [d, a] =

[d, b] = [e, a] = [e, b] = 1⟩, where n ≥ 3 for p = 2 and n ≥ 2;

(D1) ⟨a, b, c | apn+1

= bp
m+1

= cp
2

= 1, [a, b] = c, [c, a] = ap
n

, [c, b] = bsp
m⟩, where n > m ≥

2, s ∈ F ∗
p ;

(D2) ⟨a, b, c | ap
n+1

= bp
m+1

= cp
2

= 1, [a, b] = c, [c, a] = bν1p
m

, [c, b] = a−ν2p
n⟩, where

n > m ≥ 2, ν1, ν2 = 1 or a fixed quadratic non-residue modular p;

(D3) ⟨a, b, c, d | apn+1

= bp
m

= cp
2

= dp = 1, [a, b] = c, [c, a] = d, [c, b] = a−νpn

, [d, a] =

[d, b] = 1⟩, where n > m ≥ 2, ν = 1 or a fixed quadratic non-residue modular p;
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(D4) ⟨a, b, c, d | apn

= bp
m+1

= cp
2

= dp = 1, [a, b] = c, [c, a] = bνp
m

, [c, b] = d, [d, a] = [d, b] =

1⟩, where n > m ≥ 2, ν = 1 or a fixed quadratic non-residue modular p;

(D5) ⟨a, b, c, d | apn

= bp
m+1

= cp
2

= dp = 1, [a, b] = c, [c, a] = d, [c, b] = bp
m

, [d, a] = [d, b] =

1⟩, where n > m ≥ 2;

(D6) ⟨a, b, c, d | apn+1

= bp
m

= cp
2

= dp = 1, [a, b] = c, [c, a] = ap
n

, [c, b] = d, [d, a] = [d, b] =

1⟩, where n > m ≥ 2;

(D7) ⟨a, b, c, d, e | apn

= bp
m

= cp
2

= dp = ep = 1, [a, b] = c, [c, a] = d, [c, b] = e, [d, a] =

[d, b] = [e, a] = [e, b] = 1⟩, where n > m ≥ 2;

(E1) ⟨a, b, c | apn+1

= bp
m+1

= cp
2

= 1, [a, b] = c, [c, b] = a−spn

bstνp
m

csp, [c, a] = bνp
m⟩, where

n > m ≥ 2, ν = 1 or a fixed quadratic non-residue modular p, s ∈ F ∗
p , t = 0, 1, . . . , p−1

2 ;

(E2) ⟨a, b, c, d | apn+1

= bp
m+1

= dp = 1, cp = ap
n

b−tνpm

, [a, b] = c, [c, a] = bνp
m

, [c, b] =

d, [d, a] = [d, b] = 1⟩, where n > m ≥ 2, ν = 1 or a fixed quadratic non-residue modular

p, t = 0, 1, . . . , p−1
2 ;

(E3) ⟨a, b, c | ap
n+1

= bp
m+1

= cp
2

= 1, [a, b] = c, [c, a] = ap
n

c−p, [c, b] = bsp
m⟩, where

n > m ≥ 2, s ∈ F ∗
p ;

(E4) ⟨a, b, c, d | apn+1

= bp
m

= cp
2

= dp = 1, [a, b] = c, [c, a] = ap
n

c−p, [c, b] = d, [d, a] =

[d, b] = 1⟩, where n > m ≥ 2;

(E5) ⟨a, b, c, d | ap
n+1

= bp
m+1

= dp = 1, cp = ap
n

bsp
m

, [a, b] = c, [c, a] = d, [c, b] =

bp
m

, [d, a] = [d, b] = 1⟩, where n > m ≥ 2, s ∈ Fp;

(E6) ⟨a, b, c, d | apn+1

= bp
m

= cp
2

= dp = 1, [a, b] = c, [c, a] = d, [c, b] = a−spn

csp, [d, a] =

[d, b] = 1⟩, where n > m ≥ 2, s ∈ F ∗
p ;

(E7) ⟨a, b, c, d, e | apn+1

= bp
m

= dp = ep = 1, cp = ap
n

, [a, b] = c, [c, a] = d, [c, b] = e, [d, a] =

[d, b] = [e, a] = [e, b] = 1⟩, where n > m ≥ 2;

(F1) ⟨a, b, c | ap
n+1

= bp
m+1

= cp
2

= 1, [a, b] = c, [c, a] = ap
n

, [c, b] = bsp
m

c−sp⟩, where

n > m ≥ 2, s ∈ F ∗
p ;

(F2) ⟨a, b, c | apn+1

= bp
m+1

= cp
2

= 1, [a, b] = c, [c, a] = bsp
m

c−sp, [c, b] = a−νpn⟩, where
n > m ≥ 2, s ∈ F ∗

p , ν = 1 or a fixed quadratic non-residue modular p;

(F3) ⟨a, b, c, d | apn+1

= bp
m+1

= dp = 1, cp = bp
m

, [a, b] = c, [c, a] = d, [c, b] = a−νpn

, [d, a] =

[d, b] = 1⟩, where n > m ≥ 2, ν = 1 or a fixed quadratic non-residue modular p;

(F4) ⟨a, b, c, d | apn

= bp
m+1

= cp
2

= dp = 1, [a, b] = c, [c, a] = bsp
m

c−sp, [c, b] = d, [d, a] =

[d, b] = 1⟩, where n > m ≥ 2, s ∈ F ∗
p ;

(F5) ⟨a, b, c, d | apn

= bp
m+1

= cp
2

= dp = 1, [a, b] = c, [c, a] = d, [c, b] = bp
m

c−p, [d, a] =

[d, b] = 1⟩, where n > m ≥ 2;

(F6) ⟨a, b, c, d | apn+1

= bp
m

= dp = 1, cp = bp
m

, [a, b] = c, [c, a] = ap
n

, [c, b] = d, [d, a] =

[d, b] = 1⟩, where n > m ≥ 2;

(F7) ⟨a, b, c, d, e | apn

= bp
m+1

= dp = ep = 1, cp = bp
m

, [a, b] = c, [c, a] = d, [c, b] = e, [d, a] =

[d, b] = [e, a] = [e, b] = 1⟩, where n > m ≥ 2.

Proof Case 1 n = m.

If p = n = m = 2, then |G| = 28. By checking the list of groups of order 28, we get the

groups of type (A1)–(A15). In the following we may assume that n > 2 for p = 2.
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Subcase 1.1 v(G) = (0, 0)T .

Assume that G and Ḡ are two groups described in the theorem with v(G) = v(Ḡ)(0, 0)T .

By Theorem 3.2, G ∼= Ḡ if and only if there exists Y =

(
y11 y12

y21 y22

)
, an invertible matrix over

Fp such that w(Ḡ) = Y w(G)Y T . That is w(Ḡ) and w(G) are mutually congruent. By Lemmas

2.2–2.4, we get the groups of type (B1)–(B10).

Subcase 1.2 v(G) ̸= (0, 0)T .

If w13 ̸= 0, then, let Y1 =

(
−w23w

−1
13 w−1

13

w−1
13 0

)
, Y1v(G) =

(
0

1

)
. If w13 = 0, then

w23 ̸= 0. Let Y1 =

(
w−1

23 0

0 w−1
23

)
. Then Y1v(G) =

(
0

1

)
. Let G and Ḡ be two groups with

v(G) = v(Ḡ) = (0, 1)T . By Theorem 3.2, G ∼= Ḡ if and only if there exists Y =

(
y11 0

y21 1

)
, an

invertible matrix over Fp such that w(Ḡ) = Y w(G)Y T .

By suitably choosing y21, we can simplify w(G) to be one of the following types:

(a)

(
w11 w12

0 w22

)
where w11 ̸= 0,

(b)

(
0 w12

−w12 w22

)
where w12 ̸= 0,

(c)

(
0 w12

w21 0

)
where w12 ̸= 0 and w21 ̸= −w12,

(d)

(
0 0

w21 0

)
where w21 ̸= 0 and (e)

(
0 0

0 w22

)
.

In the following, we assume that both w(G) and w(Ḡ) are such matrices. It is easy to check

that (i) different types give non-isomorphic groups, (ii) G ∼= Ḡ if and only if there exists y11 ∈ F ∗
p

such that w(Ḡ) = Y w(G)Y T where Y = diag(y11, 1). By Table 1, we get the groups of Type

(C1)–(C8).

w(G) y11 Remark 1 w(Ḡ) Group Remark 2

(a) z−1 w11 = νz2

(
ν w12z

−1

0 w22

)
(C1) if w22 ̸= 0

(C2) if w22 = 0

s = (w22)
−1

t = w12z
−1

(b) w−1
12

(
0 1

−1 w22

)
(C3)

(c) w−1
12

(
0 1

w21w
−1
12 0

)
(C4) if w21 ̸= 0

(C5) if w21 = 0

s = −(w21)
−1w12

(d) −w−1
21

(
0 0

−1 0

)
(C6)

(e)

(
0 0

0 w22

)
(C7) if w22 ̸= 0

(C8) if w22 = 0

s = w−1
22

Table 1 Subcase 1.2 in Theorem 3.3
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Case 2 n > m.

Subcase 2.1 v(G) = (0, 0)T .

Let G and Ḡ be two groups such that v(G) = v(Ḡ) = (0, 0)T . By Theorem 3.2, G ∼= Ḡ

if and only if there exists Y =

(
y11 y12

0 y22

)
, an invertible matrix over Fp such that w(Ḡ) =

Y1w(G)Y T , where Y1 =

(
y11 0

y21 y22

)
.

By suitably choosing y21 and y12, that is, using an elementary row operation and an elemen-

tary column operation, we can simplify w(G) to be such a matrix, in which every column and

every row have at most one non-zero entry. In the following, we assume that both w(G) = (wij)

and w(Ḡ) = (w̄ij) are such matrices. It is easy to check that (i) for all possible subscripts i, j,

w̄ij ̸= 0 if and only if wij ̸= 0; (ii) G ∼= Ḡ if and only if there exists Y = diag(y11, y22), an

invertible matrix over Fp, such that w(Ḡ) = Y w(G)Y .

If w(G) =

(
0 w12

w21 0

)
where w12w21 ̸= 0, then letting Y = diag(w−1

12 , 1), we have

w(Ḡ) = Y w(G)Y =

(
0 1

w21w
−1
12 0

)
. Hence we get the group of type (D1) where s = −w−1

21 w12.

It is easy to see that different s gives non-isomorphic groups.

If w(G) =

(
w11 0

0 w22

)
where w12w21 ̸= 0, then letting Y = diag(y12, y22), we have

w(Ḡ) = Y w(G)Y =

(
w11y

2
11 0

0 w22y
2
22

)
. Hence we can simplify w(G) to be

(
ν1 0

0 ν2

)
where ν1, ν2 = 1 or a fixed quadratic non-residue modular p. Thus we get the group of type

(D2). It is easy to see that different ν1 or ν2 gives non-isomorphic groups.

If w(G) is invertible, then w(G) is one of the above types. If w(G) is of rank 1, then w(G)

is one of the following types:

(a)

(
w11 0

0 0

)
, (b)

(
0 0

0 w22

)
, (c)

(
0 0

w21 0

)
, (d)

(
0 w12

0 0

)
.

By similar arguments as above, we get the groups of type (D3)–(D6), respectively. If w(G) = 0,

then G is the group of type (D7).

Subcase 2.2 v(G) ̸= (0, 0)T .

If w13 ̸= 0, then, letting Y1 =

(
w−1

13 0

w−1
13 w23 −1

)
, we have Y1v(G) =

(
1

0

)
. If w13 = 0,

then w23 ̸= 0. Let Y1 =

(
1 0

0 w−1
23

)
. Then Y1v(G) =

(
0

1

)
. By Theorem 3.2, v(G) = (1, 0)T

and (0, 1)T respectively are mutually non-isomorphic.

Subcase 2.2.1 v(G) = (1, 0)T .

By calculation,

(
y11 0

y21 y22

)(
1

0

)
=

(
1

0

)
if and only if y21 = 0 and y11 = 1. Suppose
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that G and Ḡ are two groups described in that theorem with v(G) = v(Ḡ)(1, 0)T . By Theorem

3.2, G ∼= Ḡ if and only if there exist Y1 =

(
1 0

0 y22

)
and Y =

(
1 y12

0 y22

)
where y22 such

that w(Ḡ) = Y1w(G)Y T .

By suitable choosing y12, that is, using an elementary column operation, we can simplify

w(G) to be one of the following types:

(a)

(
w11 w12

0 w22

)
where w22 ̸= 0, (b)

(
0 w12

w21 0

)
where w12 ̸= 0,

(c)

(
w11 0

w21 0

)
where w21 ̸= 0, (d)

(
w11 0

0 0

)
.

In the following, we may assume that both w(G) and w(Ḡ) are such matrix. It is easy to

check that (i) different types give non-isomorphic groups;(ii) G ∼= Ḡ if and only if there exists

Y = diag(1, y22), an invertible matrix over Fp, such that w(Ḡ) = Y w(G)Y . By Table 2, we get

the groups of types (E1)–(E7).

w(G) y22 w(Ḡ) Group Remark

(a) where

w22 = νz2
z−1

(
w11 w12z

−1

0 ν

)
(E1) if w11 ̸= 0

(E2) if w11 = 0

s = (w11)
−1

t = w12z
−1

(b) w−1
12

(
0 1

w21w
−1
12 0

)
(E3) if w21 ̸= 0

(E4) if w21 = 0

s = −w−1
21 w12

(c) −w−1
21

(
w11 0

−1 0

)
(E5) s = w11

(d)

(
w11 0

0 0

)
(E6) if w11 ̸= 0

(E7) if w11 = 0

s = w−1
11

Table 2 Subcase 2.2.1 in Theorem 3.3

Subcase 2.2.2 v(G) = (0, 1)T .

By calculation,

(
y11 0

y21 y22

)(
0

1

)
=

(
0

1

)
if and only if y22 = 1. Let G and Ḡ be two

groups described in theorem with v(G) = v(Ḡ) = (0, 1)T . By Theorem 3.2, G ∼= Ḡ if and only

if there exist Y =

(
y11 y12

0 1

)
and Y1 =

(
y11 0

y21 1

)
, invertible matrices over Fp, such that

w(Ḡ) = Y1w(G)Y T .

By suitably choosing y21 and y12, that is, using an elementary row operation and an elemen-

tary column operation, we can simplify w(G) to be such a matrix, in which every column and

every row have at most one non-zero entry. In the following, we assume that both w(G) = (wij)

and w(Ḡ) = (w̄ij) are such matrices. It is easy to check that (i) for all possible subscripts i, j,

w̄ij ̸= 0 if and only if wij ̸= 0; (ii) G ∼= Ḡ if and only if there exists Y = diag(y11, 1), an invertible

matrix over Fp, such that w(Ḡ) = Y w(G)Y .

If w(G) =

(
0 w12

w21 0

)
where w12w21 ̸= 0, then letting Y = diag(w−1

12 , 1), we have
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w(Ḡ) = Y w(G)Y =

(
0 1

w21w
−1
12 0

)
. Hence we get the group of type (F1) where s = −w−1

21 w12.

It is easy to see that different s gives non-isomorphic groups.

If w(G) =

(
w11 0

0 w22

)
where w12w21 ̸= 0, then letting Y = diag(y12, 1), we have

w(Ḡ) = Y w(G)Y =

(
w11y

2
11 0

0 w22

)
. Hence we can simplify w(G) to be

(
ν 0

0 w22

)
where

ν = 1 or a fixed quadratic non-residue modular p. Thus we get the group of type (F2). It is easy

to see that different ν gives non-isomorphic groups.

If w(G) is invertible, then w(G) is one of the above types. If w(G) is of rank 1, then w(G)

is one of the following types:

(a)

(
w11 0

0 0

)
, (b)

(
0 0

0 w22

)
, (c)

(
0 0

w21 0

)
, (d)

(
0 w12

0 0

)
.

By similar arguments as above, we get the groups of type (F3)–(F6), respectively. If w(G) = 0,

then G is the group of type (F7). �
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