Journal of Mathematical Research with Applications
Jul., 2016, Vol. 36, No. 4, pp.457-466
DOI:10.3770/j.issn:2095-2651.2016.04.008
Http://jmre.dlut.edu.cn

The Central Extension of an Elementary Abelian p-Group
by a Miniaml Non-Abelian p-Group
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Abstract Assume that N, F and G are groups. If there exsits N, a normal subgroup of
G such that N = G and G/N = F, then G is called a central extension of N by F. In this
paper, the central extension of N by a minimal non-abelian p-group is determined, where N
is an elementary abelian p-group of order p®. Together with our previous work, all central
extensions of N by a minimal non-abelian p-group is determined, where NN is an elementary
abelian p-group.
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1. Introduction

Finite p-groups are an important class of finite groups. After the classification of finite
simple groups was finally completed, the study of finite p-groups becomes more and more active.
Many leading group theorists, for example, Glauberman, Janko, etc., have turned their attentions
to the study of finite p-groups. As Janko mentioned in the Foreword of [1], to study p-groups
with “large” abelian subgroups is another approach to finite p-groups. A well-known important
result is the classification of finite p-groups with a cyclic subgroup of index p, which was obtained
by Burnside [2]. Tuan [3] studied finite p-groups with an abelian subgroup of index p. Another
important concept in finite p-groups is minimal non-abelian p-groups. A non-abelian group G is
said to be minimal non-abelian if every proper subgroup of G is abelian. Minimal non-abelian
groups were classified in [4], and in more detail for finite p-groups in [5]. Recently the author
and his colleagues classified finite p-groups with a minimal non-abelian subgroup of index p.

Groups in this paper are finite p-groups. Notation and terminology are consistent with that
in [6-8]. Assume that N, F and G are groups. If there exsits N, a normal subgroup of G such
that N = G and G/N 2 F, then G is called a central extension of N by F.

In this paper, the central extension of N by a minimal non-abelian p-group is determined,
where N is an elementary abelian p-group of order p3. Together with our previous work, all cen-
tral extensions of N by a minimal non-abelian p-group is determined, where N is an elementary

abelian p-group.
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2. Preliminaries

In this paper, p is always a prime. We use F}, to denote the finite field containing p elements.
F is the multiplicative group of F,. (Fy)? = {a*|a € F}} is a subgroup of Fr. F? = (F)*U{0}.
For a finite non-abelian p-group G, we use p™» and p'max to denote the minimal index and the
maximal index of Aj-subgroups of G, respectively. For a square matrix A, |A| denotes the
determinant of A. We need the following lemmas.

Lemma 2.1 (]9, Lemma 2.2]) Suppose that G is a finite non-abelian p-group. Then the following
conditions are equivalent:
(1) G is an Ay-group; (2) d(G) = 2 and |G'| = p; (3) d(G) =2 and ®(G) = Z(G).

Lemma 2.2 ([8, Lemma 2.1]) Suppose that p is odd, {1,n} is a transversal for (F)* in Fy.
Then the following matrices form a transversal for the congruence classes of invertible matrices

of order 2 over F:

(1)(01 é) (2)(”1 ;) (3)(3 0) (4)(11 1)

wherev=1orn,r=1,2,...,p—2

Lemma 2.3 ([6, Lemma 4.3]) The following matrices form a transversal for the congruence

classes of invertible matrices of order 2 over Fj.

R

Lemma 2.4 ([8, Lemma 2.3]) Suppose that p is a prime (p = 2 is possible). For odd p, {1,n} is
a transversal for (F)? in F¥. Then the following matrices form a transversal for the congruence

classes of non-invertible matrices of order 2 over Fj:

0 1 0 0 0 0
(U(O 0>7 (2)<0 1/)’ (3)<O O),Whereyzlorn.

Theorem 2.5 ([10, Theorem 2.3]) A p-group G is metacyclic if and only if G/®(G')Gs is

metacyclic.

3. The central extension of C’;’ by a miniaml non-abelian p-group

Theorem 3.1 Suppose that G is a finite p-group. If there exists N == CS such that N < Z(G)NG’
and G/N is minimal abelian, then
(1) N = ®(G")G3; (2) G/N is not metacyclic; (3) Gz = C} and G' = Cp2 x Cp, x Cy.

p

Proof (1) By Theorem 2.1, |(G/N)’| = p. It follows that ®(G')G5 < N. Since |(G/®(G")G3)'| =
p, ®(G’)G3 is maximal in G’. Since N < G', N = &(G')G3.

(2) If G/N is metacyclic, then, by (1), G/®(G')G3 is metacyclic. By Theorem 2.5, G is
also metacyclic. It follows that G’ is cyclic. Since N < G’, N is also cyclic, which contradicts
N =C3.

(3) It is obvious that d(G) = 2. Let G = (a,b) where [a,b] = ¢. Then G’ = (¢, G3) and
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Gs = ([c,a],[c,b]). Hence ®(G")Gs = (c?,[c,a],[c,b]). Since ®(G")G3 = C3, we have G3 = C;
and G' =2 Cp2 x C, x Cp. O

p

Theorem 3.2 Suppose that G and G are finite p such that ®(G')Gs = C3 and G/®(G')G3 =
My,(n,m,1), where n > m > 2 and n > 3 for p = 2. Then G = G if and only if there

exists Y = ( ylnl_m Y12 ), an invertible matrix over F,, such that w(G) = Yyw(G)YT and
Y21p Y22

n—m

v(G) = Y1v(G), where Y; = Yy yizp .
Y21 Y22

Proof Suppose that w(G),v(G), w(G) and v(G) are characteristic matrices and characteristic

vectors corresponding to generators a,b and a, b, respectively. Let # be an isomorphism from G

to G. We may let
a’ = a®1b™12¢"3 mod B(G')Gs, b = a™P" b2 mod B(G) G,

where X := 2 is an invertible matrix over F,. By calculation, we have
lepn ™ Tog
= [a,0)? = [a?, "] = [a®1 b2, 0P " b722] = X1 mod ®(G')Gs
and
=’ =, = [alep'“'”bwzz’chl] = gl Xlwazy = X[z21p" ™
7 =le.a) = [@,a"] = [N, amipre] = g Xlmeg Xl

By transforming z%1 §%12¢%13? = @?" by 6, we have
o X|zaa —|X|zorp"™™ _ wi] W12
(W11, W12) | = (z11, 712" ™) (3.1)
—|X|$12 |X\3311 Wa1 W22

and

W23

w
| X w013 = (211, 212" ™) < 9 > . (3.2)

By transforming z%21§@22¢%23P = b by 6, we have
o Xl|roe  —|X|worp"™™ w1l wi2
(w21,w22) | | ‘ | = (1‘2171”22) (3~3)
*|X|I12 |X|I11 W21 W22

and

| X | o3 = (w21, 222) < o > : (3.4)

Wa3
By Egs. (3.1) and (3.3),

X W11 Wiz Tap  —xap" ™\ [z zgp"™ w1l Wiz (3.5)
W21  Wa2 —Z12 T11 Ta1 T22 w21 Wa2

By Egs. (3.2) and (3.4),

W13 T11  T12p" T w13
w23 T21 T22 w23
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Let
y — \X|_1X: |X|_1 Z11 Z12 Y11 Y12
To1p" ™" Tao y210" """ Y22
and v, = [ U1 2P . Right multiplying Y7 on Eq. (3.5), we have
Ya1 Y22
an 11112 —y, w11 W12 yT. (3.7)
Wo1 W22 w21 W22
By Eq. (3.6),
v(G) = Y10(G). (3.8)
. . . . . Y1 Y12
Conversely, if there exists an invertible matrix ¥ = ( ) such that the Egs. (3.7)
Yy21p" " Y22

and (3.8) hold, then, let X = |YV|7'Y = (

T11 T12 . o
. By using above argument, it is

n—m

r21p

Z22

easy to check the map 6 : @ — a®1b%2, b — a®?" "b*? is an isomorphism from G to G. O

Theorem 3.2 Let G be a finite p-group such that ®(G')Gs = C3, ®(G')G3 < Z(G) and
G/®(G")Gs = M,(n,m,1), where n > m > 2. Then G is one of the following non-isomorphic

groups:

(A1)

e
© 0 NSO L

—~
—_
—_ — D e D D O

(a,b|a*=b*=c*=d?> =¢e? =1,[a,b] = ¢,[c,a] = d,[c,b] = e,[d,a] = [d,b] = [e,a] =
[evb]:1>;
a,b|a®=b*=c*=d?=1,[a,b] = ¢,[c,a] = d,[c,b] = a*,[d,a] = [d,b] = 1);
a,b|a®=b*=c*=d?=1,[a,b] = ¢,[c,a] = a*, [¢c,b] = d, [d,a] = [d,b] = 1);

b = ¢, |c,a] = d, [c,b] = a*d,[d, a] = [d,b] = 1);

17[0'7 }:C, [Cva] :b4,[cab] =a’ )
a,bla® =08 =c*=d?>=1,b* =% [a,b] = ¢, [c,a] = d, [c,b] = a*, [d,a] = [d,b] = 1);
a,b|a® =08 =c*=1,[a,b] =c,[c,a] = a*, [c,b] = b*);
a,b|a® =08 =c*=1,[a,b] = ¢, [c,a] = b*c?, [c,b] = a?);
a,b|a® =0 =c*=d? =1,a* = 2, [a,b] = ¢,[c,a] = b 2, [c,b] = d,[d,a] = [d,b] =
1);
{a,b|a® =% =c* =d? =1,a* = 2, [a,b] = ¢,[c,a] = d,[c,b] = b*c?,[d,a] = [d,b] =
1);
(a,b]a®=1%=c*=1,[a,b] = ¢, [c,a] = a*c?, [c,b] = b*c?);
(a,b]a®=1t%=c*=1,[a,b] = ¢, [c,a] = b*c?,[c,b] = a*c?);
{a,b]a® =% =c*=1,[a,b] = ¢, [c,a] = a*b?, [c,b] = a*c?);

(a,byc | a?" =" =

n>2;



The central extension of an elementary abelian p-group by a miniaml non-abelian p-group 461

(B2)

(B3)

(B10)

(C1)

(C2)

(C3)
(1)
(C5)
(C6)
(c1)
(C8)
(D1)
(D2)

(D3)

n+1 n+1

(a,byc | a?”  =b = = 1,[a,b] = ¢,[c,a] = a?" b*P", [c,b] = bP"), where p > 2,

n > 2, v =1 or a fixed quadratic non-residue modular p;

(a,b,c | " =" = = 1,[a,b] = ¢,[c,a] = b"P",[c,b] = a~P"), where p > 2,
n > 2, v =1 or a fixed quadratic non-residue modular p;
(abe|a =" =" =1,[a,b] = ¢ et = a?" B e, b1 = a "),

wherep >2,n>2,r=12,...,p—2;
(a,bc|a® =p"" =t =1,[a,b] =c b

(a,b,c | a2 = =t = 1,[a,b] = ¢, [c,a] = a®", [c,b] = b?
(a,bc|a® =p"" =t =1,[a,b] =c a

(a,b,c,d | "= = =g = 1,[a,b] = ¢, [c,a] = aP",[c,b] = d,[d,a] = [d,b] =
1), wheren > 3 forp =2 and n > 2;

(a,b,c,d | a?" =" = =dP =1,[a,b] = ¢, [c,a] = 07", [c,b] = d, [d,a] = [d,b] =
1), wheren > 3 for p =2 and n > 2, v = 1 or a fixed quadratic non-residue modular

p;

(a,b,c,d,e | a?" = bP" = P = dP = P = 1,[a,b] = ¢,[c,a] = d,[c,b] = e,[d,a] =
[d,b] = [e,a] = [e,b] = 1), wheren > 3 for p=2 and n > 2;
(a,b,c|a?" =" = =1,[a,b] = ¢, [c,a] = bP ¢, ¢, b] = a VP bR 5P,

where n > 3 for p =2 and n > 2, v = 1 or a fixed quadratic non-residue modular p,
sEFy t=0,1,... L
(a,bc,d | a?" =" =a@p =1,¢P =" [a,b] = ¢, [c,a] = d,[c,b] = a P d, [d, a] =

n+1
[d,b] = 1), wheren > 3 for p =2 and n > 2, v = 1 or a fixed quadratic non-residue

modular p, t = 0,1,...,”7_1;

(a,b,c | " =" = @ = [a,b] = ¢,[c,a] = a?",[c,b] = a®P" WP ¢ P), where
n>3forp=2andn>2,s¢ckFy

(a,b,c | " =" = =1 [a,b] = ¢, [c,a] = aP", [c,b] = b*P" ¢~*P), where n > 3

forpz?andnEQ,3:2,3,...,%;

a,b,c,d | a?” Pt =g = 1,c? =" [a,b] = ¢, [c,a] = a®",[c,b] = d,[d,a] =
bye,d | e ="

[d,b] = 1), wheren > 3 for p =2 and n > 2;

(a,b,c,d | a?" = =P = = 1,[a,b] = ¢, [c,a] = d,[c,b] = b ¢ 7P, [d,a] =

[d,b] = 1), where n > 3 for p =2 and n > 2;

a,b,c,d | a?" = " o = = 1,[a,b] = ¢, [c,a]l = b% "¢ [e,b] = d,[d,a] =
b.e.d | aP ppt P

[d,b] = 1), wheren > 3 forp =2 and n > 2, s € F};;

a,bc,d,e|a?” = nl:dpzepzl,cp:bpn,a,b:c,c,a:d,c,b:e,d,a:
bc,de | a?" ="

[d,b] = [e,a] = [e,b] = 1), wheren >3 forp=2 and n > 2;

(a,byc|a? =" = =1,[a,b] = ¢, [c,a] = aP",[c,b] = bP"), where n > m >
2, sely;

(a,byc | a?"" =" = " = 1,]a,b] = ¢, [c,a] = bP" [e,b] = a=2P"), where
n>m > 2, v,s =1 or a fixed quadratic non-residue modular p;

(a,b,c,d | " =" = = P = 1,[a,b] = ¢ [c,a] = d,[c,b] = a=¥P",[d,a] =

[d,b] = 1), where n. >m > 2, v =1 or a fixed quadratic non-residue modular p;
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m+1 m

(D4) {a,b,c,d | a?" =" =" =dP =1,]a,b] = ¢, [c,a] = bP",[e,b] = d, [d,a] = [d,b] =
1), where n > m > 2, v =1 or a fixed quadratic non-residue modular p;

(D5) {a,b,c,d | a?” =" =" =dP =1,]a,b] = ¢, [c.a] = d,[c,b] = ", [d,a] = [d,b] =
1), where n > m > 2;

(D6) {(a,b,c,d | a?" =" =P =dP =1,[a,b] = ¢, [c,a] = a?",[c,b] = d, [d,a] = [d,b] =
1), where n > m > 2;

(D7) {a,b,c,dye | a?" =" = =dP = e = 1,[a,b] = ¢,[c,a] = d,[c,b] = e,[d,a] =
[d,b] = [e,a] = [e,b] = 1), where n > m > 2;

(E1) (a,b,c|a?" =" =" =1,[a,b] =, [c,b] = a= P bP" P [c, a] = b*P"), where

n>m > 2, v =1 ora fixed quadratic non-residue modular p, s € F;,t =0,1,..., p%l;

(B2) (a,b,c,d | a?" =" =P = 1,cP = a?" b """ [a,b] = ¢, [c,a] = 0P [e,b] =
d,[d,a) = [d,b] = 1), wheren > m > 2, v = 1 or a fixed quadratic non-residue modular
p7t20717"'7L717'

(E3) (a,b,c | a?" =" = @ = 1,[a,b] = ¢ [c,a] = a? P, [c,b] = b*"), where
n>m>2s€kFy;

(B4) (a,b,c,d | a® =" = =dP = 1,[a,b] = ¢, [c,a] = a? ¢ P, [e,b] = d,[d,a] =
[d,b] = 1), where n > m > 2;

a,b,c, "= " = g = 1,e? = a?"b?" [a,b] = ¢ c,a] = d,[c,b] =

E5) {(a,b,c,d | a?""

W, [d,a] = [d,b] = 1), where n >m > 2, s € F),;

(B6) (a,b,c;d | a?"" =" = " = dP = 1,[a,b] = ¢,[c,a] = d,[c,b] = a " ¢P,[d,a] =
[d,b] = 1), where n >m > 2, s € F};

(E7) (a,b,c,d,e | a?" =" = dP =P = 1,¢P = aP", [a,b] = ¢,[c,a]l = d,[c,b] = e, [d,a] =
[d,b] = [e,a] = [e,b] = 1), where n. > m > 2;

(F1) {(a,b,c | " =" = @ = 1,[a,b] = ¢, [c,a] = aP",[c,b] = b*P" c*P), where
n>m2>2s€ky;

(F2) {(a,b,c | a?"" = pp = =1, [a,b] = ¢, [c,a] = bP" ¢ P [c,b] = a~P"), where
n>m2>2s€Fly v=1ora fixed quadratic non-residue modular p;

(F3) (a,bc,d | a?” " =" =dr =1,cP =" [a,b] = ¢, [c,a] = d, [c,b] = V", [d,a] =
[d,b] = 1), where n >m > 2, v =1 or a fixed quadratic non-residue modular p;

(F4) (a,b,c,d | a®" =" = =dP = 1,[a,b] = ¢, [c,a] = b ¢, [¢,b] = d,[d,a] =
[d,b] = 1), wheren >m > 2, s € F;

(F5) (a,bc,d | a?" =" =@ = dP = 1,[a,b] = ¢,[c,a] = d,[c,b] = "¢ P,[d,a] =
[d,b] = 1), where n > m > 2;

(F6) (a,b,c,d | a?" =" =dP = 1,c? = " [a,b] = ¢,[c,a] = a?",[c,b] = d,[d,a] =
[d,b] = 1), where n > m > 2;

(F7) (a,b,c,d,e | a?" = P = dp =P = 1Le? =" [a,b] = ¢, [c,a] = d, [c,b] = e,[d,a] =
[d,b] = [e,a] = [e,b] = 1), where n. > m > 2.

m+1

Proof Case 1 n=m.
If p=n =m = 2, then |G| = 28. By checking the list of groups of order 2%, we get the
groups of type (Al)—(A15). In the following we may assume that n > 2 for p = 2.
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Subcase 1.1 v(G) = (0,0)7T.
Assume that G and G are two groups described in the theorem with v(G) = v(G)(0,0)%.
Y11 Y12

Y21 Y22
F, such that w(G) = Yw(G)YT. That is w(G) and w(G) are mutually congruent. By Lemmas
0).

2.2-2.4, we get the groups of type (B1)—(B1

By Theorem 3.2, G = G if and only if there exists Y = < ) , an invertible matrix over

Subcase 1.2 v(G) # (0,0)7.
—wwy Wiy

0
If wyz # 0, then, let Y7 = ( T ), Yiv(G) = < ) If wy3 = 0, then
Wi 0 1

-1
0 0 _
wag # 0. Let Y7 = ( w(z)g 1 ) Then Y1v(G) = ( ) ) Let G and G be two groups with
w

23
_ ~ 0
v(G) =v(G) = (0,1)T. By Theorem 3.2, G = G if and only if there exists Y = i ) >, an
Y21

invertible matrix over F), such that w(G) = Yw(G)YT.
By suitably choosing y21, we can simplify w(G) to be one of the following types:

(a) < Wi w2 ) where w1 # 0,

0 wa
0 w12
(b) where wys # 0,
—Wi2 W22

W21 0

(d) ( 0 0>Wherew217é0and(e)<0 0 )
wa; 0 0 woa

In the following, we assume that both w(G) and w(G) are such matrices. It is easy to check

0
(c) ( w2 > where wis # 0 and we; # —w1a,

that (i) different types give non-isomorphic groups, (ii) G = G if and only if there exists y;; € Fy
such that w(G) = Yw(G)Y”T where Y = diag(y11,1). By Table 1, we get the groups of Type
(C1)—(C8).

w(Q) Y11 Remark 1 w(G) Group Remark 2
1 2 v w12271 (C].) if was 7& 0 s = (w22)71
(a) z w1 = vz . 1
0 w22 (CQ) lf Wo2 = 0 t= w122
1
) wp ( ’ ) (c3)
-1 wa
(C) w71 0 1 (04) if w21 76 0 S = —(IU21)_1’LU12
12 ’UJ21’UJ;21 0 (05) if w21 = O
_ 0 o0
(d) *wzll ( _ 0 > (Ce)
© 0 0 (C7) if waea #0 5= Wiy
e
0 w22 (CS) if Wo2 = 0

Table 1 Subcase 1.2 in Theorem 3.3
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Case 2 n > m.

Subcase 2.1 v(G) = (0,0)7.
Let G and G be two groups such that v(G) = v(G) = (0,0)T. By Theorem 3.2, G = G
Y11 Y12

if and only if there exists ¥ =
0 w2

>7 an invertible matrix over F, such that w(G) =

0
Yiw(G)YT, where Y; = oy .
Y21 Y22
By suitably choosing y21 and y12, that is, using an elementary row operation and an elemen-

tary column operation, we can simplify w(G) to be such a matrix, in which every column and

every row have at most one non-zero entry. In the following, we assume that both w(G) = (w;)

and w(G) = (w;;) are such matrices. It is easy to check that (i) for all possible subscripts 1, j,

w;; # 0 if and only if w;; # 0; (ii) G = G if and only if there exists Y = diag(y11,y22), an

invertible matrix over F),, such that w(G) = Yw(GQ)Y.

0
If w(@) = ( wgz where wipwz; # 0, then letting Y = diag(w;y, 1), we have
W21
_ 0 1 -1
w(G) =Yw(@)Y = 1 . Hence we get the group of type (D1) where s = —wg5; wi2.
W21W1g 0

It is easy to see that different s gives non-isomorphic groups.

0
If w(G) = ( w011 where wiawa # 0, then letting Y = diag(y12,y22), we have
Wa2
_ 2 0 0
w(G) = Yw(G)Y = i . Hence we can simplify w(G) to be 1
0 wggy%Q 0 Vo

where v1,v5 = 1 or a fixed quadratic non-residue modular p. Thus we get the group of type
(D2). It is easy to see that different vy or vs gives non-isomorphic groups.
If w(@G) is invertible, then w(G) is one of the above types. If w(G) is of rank 1, then w(G)

is one of the following types:

w11 0 0 0 0 0 0 w12
(a)< 0 0)’(b)<0 w22>’(c)<w21 o)’(d)<0 0 )

By similar arguments as above, we get the groups of type (D3)—(D6), respectively. If w(G) = 0,
then G is the group of type (D7).

Subcase 2.2 v(G) # (0,0)T.
Wiy 0

If wig # 0, then, letting Y7 = )
wygwaz  —1

1
), we have Y10(G) = ( 0 > If wiz = 0,
0

-1
Was

and (0,1)7 respectively are mutually non-isomorphic.

1 0
then wes # 0. Let Y7 = ( 0 > Then Y1v(G) = ( ) ) By Theorem 3.2, v(G) = (1,0)”

Subcase 2.2.1 v(G) = (1,0)T.

0 1 1
By calculation, . = if and only if yo; = 0 and y1; = 1. Suppose
Y21 Y22 0 0
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that G and G are two groups described in that theorem with v(G) = v(G)(1,0)T. By Theorem

_ 1 0 1
3.2, G = @ if and only if there exist Y7 = and Y = Y12 where 195 such
Y22 0 yo2o

that w(G) = Yiw(G)YT.
By suitable choosing 12, that is, using an elementary column operation, we can simplify
w(G) to be one of the following types:
0
(a) ( oo ) where wag # 0, (b) ( 2 > where wg # 0,

0 w22 wa1 0

wip 0 wi; O
(c) ( wyr 0 > where wa; # 0, (d) ( 0 o >

In the following, we may assume that both w(G) and w(G) are such matrix. It is easy to
check that (i) different types give non-isomorphic groups;(ii) G = G if and only if there exists

Y = diag(1, y22), an invertible matrix over F),, such that w(G) = Yw(G)Y. By Table 2, we get
the groups of types (E1)-(E7).

w(G) Y22 w(Q) Group Remark
(a) where ., wy1  wWwiez ! (E1) if w1 #0 s=(w1)7!
z
Woo = vz? 0 14 (E2) if wi1 =0 t= wlgz’l
(b) w;21 0 1 (ES) lf Wa1 75 0 S = —’LU2_11’U)12
W21Wqo 0 (E4) if Wo1 = 0
0
(c) —wgy' ( ’w111 0 ) (E5) s = wiy

wy; 0 (E6) if w3 # 0 s =wp
(E?) if W11 = 0

Table 2 Subcase 2.2.1 in Theorem 3.3

Subcase 2.2.2 v(G) = (0,1)T.

0 0 0 _
By calculation, yul = if and only if 95 = 1. Let G and G be two
Y21 Y22 1 1

groups described in theorem with v(G) = v(G) = (0,1)”. By Theorem 3.2, G = G if and only

if there exist Y = y(l)l yiz ) and Y7 = yu 0 , invertible matrices over Fj,, such that
w(G) = Yiw(G@)YT.

By suitably choosing 21 and y12, that is, using an elementary row operation and an elemen-
tary column operation, we can simplify w(G) to be such a matrix, in which every column and
every row have at most one non-zero entry. In the following, we assume that both w(G) = (w;;)
and w(G) = (w;;) are such matrices. It is easy to check that (i) for all possible subscripts i, j,
w;; # 0 if and only if w;; # 0; (ii) G = G if and only if there exists Y = diag(y11, 1), an invertible

matrix over Fj, such that w(G) = Yw(G)Y.
If w(G) = (

0 w12

0 ) where wipwz; # 0, then letting Y = diag(wiy, 1), we have
w21
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_ 0 1
w(G) =Yw(G)Y = . . Hence we get the group of type (F1) where s = —w5, wia.
W21W19 0

It is easy to see that different s gives non-isomorphic groups.

0
If w(G) = IUS1 where wiswey # 0, then letting Y = diag(yi2,1), we have
W22
A wiyl 0 N v 0
w(G) = Yw(Q)Y = . Hence we can simplify w(G) to be where
0 Wo2 0 wa

v =1 or a fixed quadratic non-residue modular p. Thus we get the group of type (F2). It is easy
to see that different v gives non-isomorphic groups.
If w(G) is invertible, then w(G) is one of the above types. If w(G) is of rank 1, then w(G)

is one of the following types:
w11 0 0 0 0 0 0 w12
(a)

) b ) C ) d
0 0 ( ) 0 w22 ( ) w21 0 ( ) 0 0

By similar arguments as above, we get the groups of type (F3)—(F6), respectively. If w(G) =0,
then G is the group of type (F7). O

Acknowledgements We thank the referees for their time and comments.

References

[1] Y. BERKOVICH. Groups of Prime Power Order (Vol.1). Walter de Gruyter GmbH & Co. KG, Berlin, 2008.

[2] W. BURNSIDE. Theory of Groups of Finite Order. Cambridge University Press, 1897.

[3] H. S. TUAN. A theorem about p-groups with abelian subgroup of index p. Acad. Sinica Science Record,
1950, 3: 17-23.

[4] G. A. MILLER, H. C. MORENO. Non-abelian groups in which every subgroup is abelian. Trans. Amer.
Math. Soc., 1903, 4: 398-404.

[5] L. REDEI. Das schiefe Produkt in der Gruppen theorie. Comment. Math. Helvet., 1947, 20: 225-264.

[6] Lijian AN, Lili LI, Haipeng QU, et al. Finite p-groups with a minimal non-abelian subgroup of index p (II).
Sci. China Math., 2014, 57(4): 737-753.

[7] Lijian AN, Ruifang HU, Qinhai ZHANG. Finite p-groups with a minimal non-abelian subgroup of index p

(IV). J. Algebra Appl., 2015, 14(2): 1-54.

Haipeng QU, Mingyao XU, Lijian AN. Finite p-groups with a minimal non-abelian subgroup of index p (III).

Sci. China Math., 2015, 58 (4): 763-780.

[9] Mingyao XU, Lijian AN, Qinhai ZHANG. Finite p-groups all of whose non-abelian proper subgroups are
generated by two elements. J. Algebra, 2008, 319(9): 3603-3620.

[10] N. BLACKBURN. On prime-power groups with two generators. Proc. Cambridge Philos. Soc., 1958, 54:
327-337.

8



