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1. Introduction and main results

It is assumed that the reader is familiar with the standard notion used in the Nevanlinna

value distribution theory such as the characteristic function T (r, f), the proximate function

m(r, f), the counting function N(r, f), and so on [1,2].

The uniqueness of meromorphic functions in the complex plane C is an important subject

in the value distribution theory. In 1926, Nevanlinna [3] proved his famous five-value theorem:

For two nonconstant meromorphic functions f and g in C, if they have the same inverse images

(ignoring multiplicities) for five distinct values, then f(z) ≡ g(z). After this work, the uniqueness

of meromorphic functions with shared values in C attracted many investigations (references, see

the book [4] or some recent papers [5–7]). Here we shall mainly study the uniqueness of mero-

morphic functions in doubly connected domains of complex plane C. By the Doubly Connected

Mapping Theorem [8] each doubly connected domain is conformally equivalent to the annulus

{z : r < |z| < R}, 0 ≤ r < R ≤ +∞. We consider only two cases: r = 0, R = +∞ simultaneously

and 0 < r < R < +∞. In the latter case the homothety z 7→ z√
rR

reduces the given domain to

the annulus {z : 1
R0

< |z| < R0}, where R0 =
√

R
r . In two cases every annulus is invariant with

respect to the inversion z 7→ 1
z .

Recently, Khrystiyanyn and Kondratyuk [9,10] proposed the Nevanlinna theory for mero-

morphic functions on annulus (see also an important paper [11]). We will show the basic notions

of the Nevanlinna value on annulus in the next section. Thus, it is interesting to consider the
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uniqueness theory of meromorphic functions on annulus. The main purpose of this paper is to

deal with this subject.

2. Basic notions in the Nevanlinna theory on annuli

Let f(z) be a family of meromorphic function on the annuli A(R0) = {z : 1
R0

< |z| < R0},
where 1 < R0 ≤ +∞. We recall the classical notations of Nevanlinna value as follows

N(R, f) =

∫ R

0

n(t, f)− n(0, f)

t
dt+ n(0, f) logR,

m(R, f) =
1

2π

∫ 2π

0

log+ |f(Reiθ)|dθ,

T (R, f) = N(R, f) +m(R, f)

where log+ x = max{log x, 0}, n(t, f) is the counting function of poles of f in {z : |z| ≤ t}.
Here we show the notations of Nevanlinna value on the annuli. Let f be a nonconstant

meromorphic function on the annulus A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞.

Denote

m(R,
1

f − a
) =

1

2π

∫ 2π

0

log+
1

|f(Reiθ − a)|
dθ, m(R, f) =

1

2π

∫ 2π

0

log+ |f(Reiθ)|dθ,

where a ∈ C and 1
R0

< R < R0. Let

m0(R,
1

f − a
) = m(R,

1

f − a
) +m(

1

R
,

1

f − a
), 1 < R < R0

and

m0(R, f) = m(R, f) +m(
1

R
, f), 1 < R < R0.

Put

N1(R,
1

f − a
) =

∫ 1

1
R

n1(t,
1

f−a )

t
dt, N2(R,

1

f − a
) =

∫ R

1

n2(t,
1

f−a )

t
dt,

where n1(t,
1

f−a ) is the counting function of zeros of the function f − a in {z : t < |z| ≤ 1} and

n2(t,
1

f−a ) is the counting function of zeros of the function f −a in {z : 1 < |z| ≤ t}. Denote also

N1(R, f) =

∫ 1

1
R

n1(t, f)

t
dt, N2(R, f) =

∫ R

1

n2(t, f)

t
dt,

where n1(t, f) is the counting function of poles of the function f in {z : t < |z| ≤ 1} and n2(t, f)

is the counting function of poles of the function f in {z : 1 < |z| ≤ t}. Let

N0(R,
1

f − a
) = N1(R,

1

f − a
) +N2(R,

1

f − a
),

N0(R, f) = N1(R, f) +N2(R, f).

Denote

N0(R,
1

f − a
) =

∫ 1

1
R

n1(R, 1
f−a )

t
dt+

∫ R

1

n2(R, 1
f−a )

t
dt
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= N1(R,
1

f − a
) +N2(R,

1

f − a
)

where n1(R, 1
f−a ) is the counting function of zeros of the function of f − a in {z : t < |z| ≤ 1}

(ignoring multiplicity) and n2(R, 1
f−a ) is the counting function of zeros of the function of f − a

in {z : 1 < |z| ≤ t} (ignoring multiplicity).

In addition, we use n
k)
1 (t, 1

f−a ) (or n
(k
1 (t, 1

f−a )) to denote the counting function of zeros of

the functions f − a with multiplicities ≤ k (or > k) in {z : t < |z| ≤ 1}, and we use n
k)
2 (t, 1

f−a )

(or n
(k
2 (t, 1

f−a )) to denote the counting function of zeros of the functions f −a with multiplicities

≤ k (or > k) in {z : 1 < |z| ≤ R}, each point counted only once.

Similarly, we can give the notations N
k)

1 (t, f), N
k)

2 (t, f), N
k)

0 (t, f), N
(k

1 (t, f), N
(k

2 (t, f),

N
(k

0 (t, f).

We first define the Nevanlinna characteristic of f on A(R0) by

T0(R, f) = m0(R, f)− 2m(1, f) +N0(R, f), 1 < R0 ≤ +∞.

Then, we can define the deficiency by

δ0(a, f) = δ0(0, f − a) = lim inf
r 7→R0

m0(r,
1

f−a )

T0(r, f)
= 1− lim sup

r 7→R0

N0(r,
1

f−a )

T0(r, f)

and the reduced deficiency by

Θ0(a, f) = Θ0(0, f − a) = 1− lim sup
r 7→R0

N0(r,
1

f−a )

T0(r, f)
.

Suppose that f, g are two meromorphic functions on A(R0), where 1 < R0 ≤ +∞. Then

m0(R, fg) ≤ m0(R, f) +m0(R, g) +O(1). (2.1)

Lemma 2.1 (Generalization of Jensen’s theorem [9, Theorem 1]) Let f be a nonconstant

meromorphic function on the annulus A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Then

N0(R,
1

f
)−N0(R, f) =

1

2π

∫ 2π

0

log |f( 1

Reiθ
)|dθ+

1

2π

∫ 2π

0

log |f(Reiθ)|dθ − 1

π

∫ 2π

0

log |f(eiθ)|dθ

for every R such that 1 < R < R0.

Lemma 2.2 ([9]) Let f be a nonconstant meromorphic function on the annulus A(R0) = {z :
1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Then

(i) T0(R, f) = T0(R, 1
f ),

(ii) max{T0(R, f1 · f2), T0(R, f1
f2
), T0(R, f1 + f2)} ≤ T0(R, f1) + T0(R, f2) +O(1).

By Lemma 2.2, the first fundamental theorem on the annulus A(R0) is immediately ob-

tained.

Lemma 2.3 (The first fundamental theorem [9, Theorem 2]) Let f be a nonconstant meromor-

phic function on the annulus A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Let T0(R, f)
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be its Nevanlinna characteristic functions. Then

T0(R,
1

f − a
) = T0(R, f) +O(1), 1 < R < R0,

for every fixed a ∈ C.

Lemma 2.4 (Lemma on the logarithmic derivative [10, Theorem 1]) Let f be a nonconstant

meromorphic function on the annulus A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞ and

let λ ≥ 0. Then

(1) In the case R0 = +∞,

m0(R,
f ′

f
) = O

(
log(RT0(R, f))

)
for R ∈ (1,+∞) except for the set △R such that

∫
△R

Rλ−1dR < +∞;

(2) In the case R0 < +∞,

m0(R,
f ′

f
) = O

(
log(

T0(R, f)

R0 −R
)
)

for R ∈ (1, R0) except for the set △R
′ such that

∫
△R

′
1

(R0−R)λ−1 dR < +∞.

Lemma 2.5 (The second fundamental theorem [12, Theorem 2.2]) Let f be a nonconstant

meromorphic function on the annulus A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Let

a1, a2, . . . , ap be p distinct finite complex numbers and λ ≥ 0. Then

m0(R, f) +

p∑
ν=1

m0(R,
1

f − aν
) ≤ 2T0(R, f)−N

(1)
0 (R, f) + S(R, f),

where

N
(1)
0 (R, f) = N0(R,

1

f ′ ) + 2N0(R, f)−N0(R, f ′),

and

(1) In the case R0 = +∞,

S(R, f) = O(log(RT0(R, f)))

for R ∈ (1,+∞) except for the set △R such that
∫
△R

Rλ−1dR < +∞;

(2) In the case R0 < +∞,

S(R, f) = O(log(
T0(R, f)

R0 −R
))

for R ∈ (1, R0) except for the set △R
′ such that

∫
△R

′
1

(R0−R)λ−1 dR < +∞.

Khrystiyanyn and Kondratyuk also obtained the second fundamental theorem on the annu-

lus A. We show here the reduced form due to Cao, Yi and Xu.

Lemma 2.6 (The reduced second fundamental theorem [13,14]) Let f be a nonconstant mero-

morphic function on the annulus A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Let
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a1, a2, . . . , ap be p distinct finite complex numbers and λ ≥ 0. Then

(q − 2)T0(R, f) <

q∑
j=1

N0(R,
1

f − aj
) + S(R, f).

From the lemma on the logarithmic derivative and the second fundamental theorem, it is

easy to get the following theorem. Then there are

Lemma 2.7 ([15]) Let f be a nonconstant meromorphic function on the annulus A(R0) = {z :
1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Then

m0(R,
f (k)

f
) = S(R, f (k)) = S(R, f).

Lemma 2.8 ([12]) Let f be a nonconstant meromorphic function on the annulus A(R0) = {z :
1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Let a be an arbitrary complex number and k be a positive

integer. Then

(i) N0(R, 1
f−a ) ≤

k
k+1N

k)

0 (R, 1
f−a ) +

1
k+1N0(R, 1

f−a ),

(ii) N0(R, 1
f−a ) ≤

k
k+1N

k)

0 (R, 1
f−a ) +

1
k+1T0(R, f) +O(1).

Then, we can introduce other interesting forms of the second fundamental theorem on

annulus about the these notations as follows, which are similar to those on the complex plane C.

Lemma 2.9 ([12, Theorem 2.3]) Let f be a nonconstant meromorphic function on the annulus

A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Let a1, a2, . . . , aq be q distinct complex

numbers in the extended complex plane C = C ∪ {∞}, let k1, k2, . . . , kq be q positive integers

and let λ ≥ 0. Then

(i) (q − 2)T0(R, f) <
∑q

j=1
kj

kj+1N
kj)

0 (R, 1
f−aj

) +
∑q

j=1
1

kj+1N0(R, 1
f−aj

) + S(R, f),

(ii) (q − 2−
∑q

j=1
1

kj+1 )T0(R, f) <
∑q

j=1
kj

kj+1N
kj)

0 (R, 1
f−aj

) + S(R, f)

where

N
(1)
0 (R, f) = N0(R,

1

f ′ ) + 2N0(R, f)−N0(R, f ′).

and S(R, f) satisfies the properties (i) and (ii) mentioned in Lemma 2.5.

3. Multiple values and uniqueness of meromorphic functions on annuli
Let f be a nonconstant meromorphic function on the annulus A(R0) = {z : 1

R0
< |z| < R0},

where 1 < R0 ≤ +∞. Let a be a complex number in the extended complex plane C = C∪ {∞}.
Write E(a, f) = {z ∈ A(R0) : f(z) − a = 0}, where each zero with multiplicity m is counted

m times. If we ignore the multiplicity, then the set is denoted by E(a, f). We use Ek)(a, f) to

denote the set of zeros of f −a with multiplicity no greater than k, in which each zero is counted

only once.

Definition 3.1 Let f be a nonconstant meromorphic function on the annulus A(R0) = {z :
1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. We call f admissible or transcendental if

lim sup
R→∞

T0(R, f)

logR
= ∞, 1 < R < R0 = +∞
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or

lim sup
R→R0

T0(R, f)

− log(R0 −R)
= ∞, 1 < R < R0 < +∞.

Thus for a transcendental or admissible meromorphic function on the annulus A(R0), S(R, f) =

o(T0(R, f)) holds for all 1 < R0 ≤ ∞ except for the set △R or the set △R
′ mentioned in Lemma

2.4, respectively.

To prove a unicity theorem related to multiple values and derivatives of meromorphic func-

tions on annuli, we need to get the following Xiong inequality of meromorphic functions on

annuli.

Lemma 3.2 Let f(z) be an admissible or transcendental meromorphic function on the annulus

A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Let a be a finite complex number and

b1, b2, . . . , bq be q distinct finite non-zero complex numbers and k be a natural number. Then we

have

qT0(R, f) ≤N0(R, f) + qN0(R,
1

f − a
) +

q∑
j=1

N0(R,
1

f (k) − bj
)− (q − 1)N0(R,

1

f (k)
)−

N0(R,
1

f (k+1)
) + S(R, f). (3.1)

Proof From [11], we have

T0(R, f ′) =T0(R, f
f ′

f
) ≤ T0(R, f) + T0(R,

f ′

f
) +O(1)

=T0(R, f) +m0(R,
f ′

f
) +N0(R,

f ′

f
)− 2m(1,

f ′

f
) +O(1)

=T0(R, f) +N0(R, f) + S(R, f)

=2T0(R, f) + S(R, f). (3.2)

Hence, by Lemma 2.4 and (3.2), we have

S(R, f (k)) = O(logRT0(R, f (k))) = O(logRT0(R, f)) = S(R, f). (3.3)

m0(R,
f (k)

f − ai
) = S(R, f). (3.4)

From Lemma 2.4, (3.3) and (3.4), we have

m0(R,
f (k)∏p

i=1(f − ai)
) = S(R, f (k)), m0(R,

f (k+1)

f (k)
∏q

j=1(f
(k) − bj)

) = S(R, f (k))

and

1∏p
i=1(f − ai)n

= { f (k)∏p
i=1(f − ai)

}n · f (k+1)

f (k)
∏q

j=1(f
(k) − bj)

·
∏q

j=1(f
(k) − bj)

(f (k))n−1f (k+1)
.

Then

nm0(R,
1∏p

i=1(f − ai)
) ≤ m0(R,

∏q
j=1(f

(k) − bj)

(f (k))n−1f (k+1)
) + S(R, f (k)). (3.5)
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From Lemmas 2.1 and 2.4, (2.1) and (3.3), then

m0(R,

∏q
j=1(f

(k) − bj)

(f (k))n−1f (k+1)
) =N0(R,

(f (k))n−1f (k+1)∏q
j=1(f

(k) − bj)
)−N0(R,

∏q
j=1(f

(k) − bj)

(f (k))n−1f (k+1)
) + S(R, f (k))

=N0(R, f)− (q − n)N0(R, f (k)) +

q∑
j=1

N0(R,
1

f (k) − bj
)−

(n− 1)N0(R,
1

f (k)
)−N0(R,

1

f (k+1)
) + S(R, f (k)). (3.6)

From Lemma 2.1 and (3.2), (3.3), the left of (3.6) can be replaced by

nm0(R,
1∏p

i=1(f − ai)
) =nT0(R,

p∏
i=1

(f − ai))− nN0(R,
1∏p

i=1(f − ai)
) +O(1)

=npT0(R, f)− n

p∑
i=1

N0(R,
1

f − ai
) + S(R, f (k)). (3.7)

Put (3.6) and (3.7) into (3.5), then we have

npT0(R, f) ≤N0(R, f) + n

p∑
i=1

N0(R,
1

f(z)− ai
) +

q∑
j=1

N0(R,
1

f (k) − bj
)−

(q − n)N0(R, f (k))− (n− 1)N0(R,
1

f (k)
)−N(R,

1

f (k+1)
) + S(R, f).

Let n = q, p = 1, we get the inequality (3.1). The proof of Lemma 3.2 is completed. �
By Lemma 3.2, we can get the following lemma.

Lemma 3.3 Let f(z) be an admissible or transcendental meromorphic function on the annulus

A(R0) = {z : 1
R0

< |z| < R0} where 1 < R0 ≤ +∞ and b1, b2, b3 are three distinct finite non-zero

complex numbers. Then, we have

3T0(R, f) < N0(R, f) + 3N0(R,
1

f
) +

3∑
j=1

N0(R,
1

f (k) − bj
) + S(R, f).

We now show our main result below which is an analog of a result on the plane C obtained

by Yi [16] (see [4, Theorem 3.36]).

Theorem 3.4 Let f1, f2 be two admissible or transcendental meromorphic functions on the

annulus A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞. Let b1, b2, b3 be three distinct

complex numbers in the extended complex plane C = C ∪ {∞}, let k be a positive integer or ∞
and let n be a positive integer satisfying

Ek)(bj , f
(n)
1 ) = Ek)(bj , f

(n)
2 ), j = 1, 2, 3. (3.8)

Furthermore, let

Ci = 3(k + 1)δ0(0, fi) + (2nk + 3n+ k + 1)Θ0(∞, fi)− (2nk + 3n+ 3k + 4), i = 1, 2.

If

min{C1, C2} ≥ 0, (3.9)
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max{C1, C2} > 0, (3.10)

Then, f1(z) ≡ f2(z).

Proof By Lemma 3.8, we have

3T0(R, f1) < N0(R, f1) + 3N0(R,
1

f1
) +

3∑
j=1

N0(R,
1

f
(n)
1 − bj

) + S(R, f). (3.11)

Note that

T0(R, f
(n)
1 ) ≤ T0(R, f1) + nN0(R, f1) + S(R, f1).

We deduce that

N0(R,
1

f
(n)
1 − bj

) <
k

k + 1
N

k)

0 (R,
1

f
(n)
1 − bj

) +
1

k + 1
T0(R, f

(n)
1 ) +O(1)

<
k

k + 1
N

k)

0 (R,
1

f
(n)
1 − bj

) +
1

k + 1
T0(R, f1)+

n

k + 1
N0(R, f1) + S(R, f1). (3.12)

From (3,11) and (3.12), we can get

3T0(R, f1) <
3n+ k + 1

k + 1
N0(R, f1) + 3N0(R,

1

f1
) +

3

k + 1
T0(R, f1)+

k

k + 1

3∑
j=1

N
k)

0 (R,
1

f
(n)
1 − bj

) + S(R, f1)

<
3n+ k + 1

k + 1
(1−Θ0(∞, f1))T0(R, f1) + 3(1− δ0(0, f1))T0(R, f1)+

3

k + 1
T0(R, f1) +

k

k + 1

3∑
j=1

N
k)

0 (R,
1

f
(n)
1 − bj

) + S(R, f1).

Hence

(3δ0(0, f1) +
3n+ k + 1

k + 1
Θ0(∞, f1)−

3n+ k + 4

k + 1
)T0(R, f1)

<
k

k + 1

3∑
j=1

N
k)

0 (R,
1

f
(n)
1 − bj

) + S(R, f1).

Then

{2k + 2nk(1−Θ0(∞, f1)) + C1}T0(R, f1) < k
3∑

j=1

N
k)

0 (R,
1

f
(n)
1 − bj

) + S(R, f1). (3.13)

By (3.8), we have

3∑
j=1

N
k)

0 (R,
1

f
(n)
1 − bj

) =
3∑

j=1

N
k)

0 (R,
1

f
(n)
2 − bj

)

≤3T0(R, f
(n)
2 ) +O(1) ≤ 3(n+ 1)T0(R, f2) + S(R, f2). (3.14)
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Now that C1 ≥ 0. The inequalities (3.13) and (3.14) give

T0(R, f1) = O(T0(R, f2)), R → ∞, R ̸∈ E. (3.15)

Similarly, we have

T0(R, f2) = O(T0(R, f1)), R → ∞, R ̸∈ E. (3.16)

If f
(n)
1 ̸≡ f

(n)
2 , then from (3.8) and Lemma 2.2(ii) and Lemma 2.3, we have

3∑
j=1

N
k)

0 (R,
1

f
(n)
1 − bj

) =

3∑
j=1

N
k)

0 (R,
1

f
(n)
2 − bj

) ≤ N0(R,
1

f
(n)
1 − f

(n)
2

)

≤T0(R, f
(n)
1 ) + T0(R, f

(n)
2 ) +O(1)

≤T0(R, f1) + nN0(R, f1) + S(R, f1) + T0(R, f2) + nN0(R, f2) + S(R, f2)

≤T0(R, f1) + n(1−Θ0(∞, f1))T0(R, f1) + S(R, f1) + T0(R, f2)+

n(1−Θ0(∞, f2))T0(R, f2) + S(R, f2).

Substituting the above inequality into (3.13) gives

[k + nk(1−Θ0(∞, f1)) + C1]T0(R, f1)

< [k + nk(1−Θ0(∞, f2))]T0(R, f2) + S(R, f1) + S(R, f2).

Similarly, we have

[k + nk(1−Θ0(∞, f2)) + C2]T0(R, f2)

< [k + nk(1−Θ0(∞, f1))]T0(R, f1) + S(R, f1) + S(R, f2).

From the above two inequalities, we have

C1T0(R, f1) + C2T0(R, f2) < S(R, f1) + S(R, f2). (3.17)

By (3.9), (3.10), (3.15) and (3.16), the above inequality cannot hold, then f
(n)
1 ≡ f

(n)
2 , thus

f1(z) ≡ f2(z) + p(z) , where p(z) is a polynomial of at most degree n− 1.

From (3.9), we can see that δ0(0, fi) > 0,Θ0(∞, fi) > 0 (i = 1, 2). Therefore fi(z) (i = 1, 2)

must be transcendental meromorphic functions.

Hence T0(R, p) = o(T0(R, fi)) (i = 1, 2). If p(z) ̸≡ 0, then

Θ0(0, f1) + Θ0(p, f1) + Θ0(∞, f1) ≥ δ0(0, f1) + δ0(p, f1) + Θ0(∞, f1)

= δ0(0, f1) + δ0(0, f2) + Θ0(∞, f1)

≥ 2nk + 3n+ 3k + 4

3(k + 1)
− (

2nk + 3n+ k + 1

3(k + 1)
− 1)Θ0(∞, f1)+

2nk + 3n+ 3k + 4

3(k + 1)
− 2nk + 3n+ k + 1

3(k + 1)
Θ0(∞, f2)

≥ 1

3(k + 1)
[(2nk + 3n+ 3k + 4)− (2nk + 3n− 2k − 2)+

(2nk + 3n+ 3k + 4)− (2nk + 3n+ k + 1)]

=
7k + 9

3(k + 1)
> 2.
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This is impossible. Hence p(z) ≡ 0, thus f1(z) ≡ f2(z).

From [12, Theorem 3.1] and Theorem 3.4, we can get the following corollary.

Corollary 3.5 Let f(z) be an admissible or transcendental meromorphic function on the annulus

A(R0) = {z : 1
R0

< |z| < R0}, where 1 < R0 ≤ +∞ and satisfying 6δ0(0, f)+(5n+2)Θ0(∞, f) >

5n+7 for a positive integer n. Then f(z) can be uniquely determined by E1)(aj , f) (j = 1, 2, 3)

or E1)(bj , f) (j = 1, 2, 3), where aj (j = 1, 2, 3) and bj (j = 1, 2, 3) are two groups of finite

non-zero complex numbers, and ai ̸= aj , bi ̸= bj (i ̸= j).
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