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Abstract Sufficient conditions for the stability with respect to part of the functional differen-

tial equation variables are given. These conditions utilize Lyapunov functions to determine the

uniform stability and uniform asymptotic stability of functional differential equations. These

conditions for the partial stability develop the Razumikhin theorems on uniform stability and

uniform asymptotic stability of functional differential equations. An example is presented

which demonstrates these results and gives insight into the new stability conditions.
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1. Introduction

The study of the stability of the retarded functional differential equation (RFDE) with

respect to part of the variables, or the partial stability problem, naturally arises. The partial

stability problem seeks to determine if an equilibrium is stable with respect to a specific subset

of the RFDE variables. RFDEs are a general type of equations and they include ordinary

differential equations and differential difference equations [1]. There are many areas where these

types of the partial stability problems arise, and the partial stability problems were studied for

ordinary differential equations (ODEs), and difference equations. For some examples and results

in the area see, for example, [1–15] and the references cited therein. Vorotnikov and Martyshenko

[2] considered the stability problem with respect to a part of variables of the zero equilibrium

position for ODEs. As compared to known assumptions, more general assumptions are made on

the initial values of variables non-controlled in the course of studying stability. In addition, a

stability problem is considered with respect to a part of variables of the “partial” equilibrium

position, with similar assumptions made for initial values of variables that do not define the

given equilibrium position. On the results of ODEs, Fisher and Bhattacharya [3] proposed a

methodology for algorithmic construction of Lyapunov functions for problems concerning the

stability of an equilibrium with respect to part of the system variables. Conditions for stability

with respect to part of the variables are developed that allow for Lyapunov functions to be

determined in terms of a sum of squares. Asymptotic stability conditions in terms of sum of

squares polynomials are developed for autonomous and non-autonomous systems. An example
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is presented which demonstrates the methodology. Hancock and Hill [5] used set invariance

methods to ensure that the ‘auxiliary’ variables remain on a restricted domain, and then use

this framework to develop new results for both local and global partial stability theory. On the

results of the partial stability for difference equations, Xiao and Liao [14] obtained two results

(sufficient conditions) for the partial stability (see Theorems 3.1 and 3.3). Boundedness problems

of partial solutions of the RFDEs were also studied. For example, Zhao [16] studied uniform

boundedness and uniform ultimate boundedness of solutions of RFDEs. Nonetheless, there are

still very few results on the partial stability of RFDEs [1].

Liapunov functions are simpler than Liapunov functionals. In this paper, two results (suf-

ficient conditions) for the partial stability (uniform stability and uniform asymptotic stability)

of the RFDEs are given. These conditions utilize Liapunov functions to determine the partial

stability. These conditions for the partial stability develop well-known Razumikhin theorems

on uniform stability and uniform asymptotic stability of the RFDEs. An example is presented

which demonstrates these results and gives insight into the new stability conditions.

Of course, the following definitions of uniform stability and uniform asymptotic stability,

and these conditions for the Theorems 3.1 and 3.3 can still be improved. We will publish the

further research results in another article.

2. Preliminaries

Suppose r ≥ 0 is a given real number, R = (−∞,∞), R+ = [0,∞), Rn is an n-dimensional

linear vector space over the reals with norm | · |, C = C([−r, 0],Rn) is the Banach space of con-

tinuous functions mapping the interval [−r, 0] into Rn with the topology of uniform convergence.

We designate the norm of an element ϕ in C by |ϕ| = sup−r≤θ≤0 |ϕ(θ)|. If

σ ∈ R, A ≥ 0 and x ∈ C([σ − r, σ +A],Rn),

then for any t ∈ [σ, σ + A], we let xt ∈ C be defined by xt(θ) = x(t + θ), θ ∈ [−r, 0]. |x| is the

norm of x. Let

xi∼j = (xi, xi+1, . . . , xj)
T ∈ Rj+1−i (1 ≤ i ≤ j ≤ n), x = x1∼n;

Ci = C([−r, 0],Ri), ϕi∼j = (ϕi, ϕi+1, . . . , ϕj)
T ∈ Cj+1−i, ϕ = ϕ1∼n;

yt = x1∼m(t+ θ), zt = xm+1∼n(t+ θ) (1 ≤ m ≤ n).

Suppose F : R × Cm × Cn−m → Rn is continuous and consider retarded functional differential

equation [1]

ẋ(t) = F (t, yt, zt) (xt = x(t+ θ) = (yTt , z
T
t )

T ∈ Cn = C). (1)

We will assume that there is a unique solution x(t, t0, ϕ) of Eq. (1) through (t0, ϕ) ∈ R×C. Let

x(t) = x(t, t0, ϕ) (x(t, t0, ϕ) = xt(t0, ϕ) = x(t0, ϕ)(t)).

Definition 2.1 Suppose F (t, 0, 0) = 0 for all t ∈ R and 1 ≤ m ≤ n. The zero solution of Eq. (1)

is said to be uniformly stable with respect to x1∼m if for any t0 ≥ 0, ε > 0, there is a δ = δ(ε)

such that |ϕ| < δ (ϕ ∈ C) implies |x1∼m(t, t0, ϕ)| < ε for t ≥ t0. The zero solution of Eq. (1)
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is said to be uniformly asymptotically stable with respect to x1∼m if it is uniformly stable with

respect to x1∼m and there is a b0 > 0 such that, for every η > 0, there is a T (η) > 0 such that

|ϕ| < b0 implies |x1∼m(t, t0, ϕ)| < η for t ≥ t0 + T (η) for every t0 ≥ 0.

If V : R × Rm × Rn−m → R is a continuous function, then V̇ (t, ϕ1∼m(0), ϕm+1∼n(0)), the

derivative of V along the solutions of Eq. (1) is defined to be

V̇ (t, ϕ1∼m(0), ϕm+1∼n(0)) =lim sup
α→0+

1

α
[V (t+ α, x1∼m(t, ϕ)(t+ α), xm+1∼n(t, ϕ)(t+ α))−

V (t, ϕ1∼m(0), ϕm+1∼n(0))].

3. Main results

Suppose F : R× Cm × Cn−m → Rn takes R× (bounded sets of Cm)× Cn−m into bounded

sets of Rn and F (t, 0, 0) = 0 for all t ∈ R. Suppose there are positive integers m and k with

1 ≤ m ≤ k ≤ n. Suppose h,w1, w2, w3 : R+ → R+ are continuous, nondecreasing functions,

h(0) = w1(0) = w2(0) = 0, h′(s) ≥ 1 for s ≥ 0, w1(s), w2(s), w3(s) > 0 for s > 0, w2 strictly

increasing. Suppose g : R+ → R+ is a continuous function, g(s) ≥ h(s) for s ≥ 0.

Theorem 3.1 If there is a continuous function V : R× Rm × Rn−m → R such that

w1(|x1∼m|) ≤ V (t, x1∼m, xm+1∼n) ≤ w2(|x1∼k|), t ∈ R, x ∈ Rn, (2)

and

V̇ (t, ϕ1∼m(0), ϕm+1∼n(0)) ≤ 0 (3)

if there is a θ0 in [−r, 0] such that

h(V (t+ θ, ϕ1∼m(θ), xm+1∼n)) ≤ g(V (t+ θ0, ϕ1∼m(θ0), xm+1∼n))

for θ ∈ [−r, 0], then the zero solution of Eq. (1) is uniformly stable with respect to x1∼m.

Remark 3.2 The well-known Razumikhin theorems on uniform stability [1] become the conse-

quence of Theorem 3.1 of this paper (m = k = n, θ0 = 0, h(s) = g(s) = s).

Theorem 3.3 If there is a continuous function V : R× Rm × Rn−m → R such that

w1(|x1∼m|) ≤ V (t, x1∼m, xm+1∼n) ≤ w2(|x1∼k|), t ∈ R, x ∈ Rn, (4)

and

V̇ (t, ϕ1∼m(0), ϕm+1∼n(0)) ≤ −w3(|ϕ1∼m(0)|) (5)

if there is a θ0 in [−r, 0] such that

h(V (t+ θ, ϕ1∼m(θ), xm+1∼n)) ≤ g(V (t+ θ0, ϕ1∼m(θ0), xm+1∼n))

for θ ∈ [−r, 0], then the zero solution of Eq. (1) is uniformly asymptotically stable with respect

to x1∼m.

Remark 3.4 The well-known Razumikhin theorems on uniform asymptotic stability [1] become
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the consequence of Theorem 3.3 of this paper (m = k = n, θ0 = 0, h(s) = s, g(s) is a continuous

function, g(s) ≥ s for s ≥ 0 (p(s) is a continuous, nondecreasing function, p(s) > s for s > 0,

and p(V (t, ϕ(0))) > V (t+ θ, ϕ(θ)))).

4. The proof of the theorems

Now we are in the position to prove our Theorem 3.1.

Proof of Theorem 3.1 For any ε > 0, there is a δ = δ(ε), 0 < δ < ε, such that w2(δ) < w1(ε). If

|ϕ| < δ (ϕ ∈ C), then using |x1∼k| ≤ |x|, the inequality (2), and the fact that w2 is nondecreasing,

we have

V (t, x1∼m, xm+1∼n) ≤ w2(|x1∼k|) ≤ w2(|x|), t ≥ t0, (6)

and using x(t0, t0, ϕ) = ϕ and the inequality (6), we get

V (t0, x1∼m(t0, t0, ϕ), xm+1∼n(t0, t0, ϕ)) ≤ w2(|ϕ|) ≤ w2(δ). (7)

If

V(t, ϕ1∼m, ϕm+1∼n) = sup
θ∈[−r, 0]

V (t+ θ, ϕ1∼m(θ), ϕm+1∼n(0)) (8)

for t ∈ R, ϕ1∼m ∈ Cm, ϕm+1∼n ∈ Cn−m, then there is a θ0 in [−r, 0] such that

V(t, ϕ1∼m, ϕm+1∼n) = V (t+ θ0, ϕ1∼m(θ0), ϕm+1∼n(0)) (9)

and

V (t+ θ, ϕ1∼m(θ), ϕm+1∼n(0)) ≤ sup
θ∈[−r, 0]

V (t+ θ, ϕ1∼m(θ), ϕm+1∼n(0))

= V(t, ϕ1∼m, ϕm+1∼n) = V (t+ θ0, ϕ1∼m(θ0), ϕm+1∼n(0)). (10)

Using the inequality (10), g(s) ≥ h(s) for s ≥ 0, and the fact that h is nondecreasing, we have

h(V (t+ θ, ϕ1∼m(θ), ϕm+1∼n(0))) ≤ h(V (t+ θ0, ϕ1∼m(θ0), ϕm+1∼n(0)))

≤ g(V (t+ θ0, ϕ1∼m(θ0), ϕm+1∼n(0))), θ ∈ [−r, 0]. (11)

From (3) and (11), we obtain

V̇ (t, ϕ1∼m(0), ϕm+1∼n(0)) ≤ 0 (12)

for all t ≥ t0. Using (2), (7), (12) and our choice of w2(δ), we have [1]

w1(|x1∼m(t, t0, ϕ)|) ≤ V (t, x1∼m(t, t0, ϕ), xm+1∼n(t, t0, ϕ))

≤ V (t0, x1∼m(t0, t0, ϕ), xm+1∼n(t0, t0, ϕ)) ≤ w2(δ) < w1(ε), t ≥ t0. (13)

Using (13) and the fact that w1 is nondecreasing, we have

|x1∼m(t, t0, ϕ)| < ε, t ≥ t0. (14)

The proof of the Theorem 3.1 is therefore completed. �

Proof of Theorem 3.3 From (4) and (5), we obtain (2) and (3); that is, Theorem 3.3 implies
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uniform stability. By Definition 2.1, for ε = 1, there is a δ0 = δ(ε) = δ(1) such that |ϕ| < δ0 (ϕ ∈
C) implies

|x1∼m(t, t0, ϕ)| < 1 (15)

for t ≥ t0 for any t0 ≥ 0. To complete the proof of the theorem, choose b0 = δ0 = δ(1). For

every η > 0, we claim that there exists a T (η) > 0 such that |ϕ| < b0 implies |x1∼m(t, t0, ϕ)| < η

for t ≥ t0 +T (η) for every t0 ≥ 0. If this were no so, then there would exist an η0 > 0, a ϕ0 ∈ C,

|ϕ0| < b0, a constant α0 > 0, and a sequence {tj}, tj → +∞ as j → +∞, tj − tj−1 ≥ α0 (j =

1, 2, . . .) such that

|x1∼m(tj , t0, ϕ0)| ≥ η0. (16)

Since (15) and the fact that F takes R× (bounded sets of Cm)×Cn−m into bounded sets of Rn,

there exists a constant M > 0 such that

|ẋ(t, t0, ϕ0)| ≤M, t ≥ t0, |ϕ0| < b0. (17)

Let

β0 = min{ η0
4M

,
α0

4
}. (18)

If t ∈ [tj − β0, tj + β0], then using (16)–(18), and the mean value theorem, we have

|x1∼m(t, t0, ϕ0)| = |x1∼m(tj , t0, ϕ0) + (ẋ1(ξ1, t0, ϕ0), ẋ2(ξ2, t0, ϕ0), . . . , ẋm(ξm, t0, ϕ0))
T (t− tj)|

≥ |x1∼m(tj , t0, ϕ0)| − |(ẋ1(ξ1, t0, ϕ0), ẋ2(ξ2, t0, ϕ0), . . . , ẋm(ξm, t0, ϕ0))
T | × |t− tj |

≥ η0 −M × 2β0 ≥ η0 − (η0/2) = η0/2 (19)

for t ∈ [tj − β0, tj + β0]. From (5) and (11) (see (8)–(10)), we obtain

V̇ (t, x1∼m(t, t0, ϕ0), xm+1∼n(t, t0, ϕ0)) ≤ −w3(|x1∼m(t, t0, ϕ0)|) (20)

for all t ≥ t0. Using (19) and the fact that w3 is nondecreasing, we have

−w3(|x1∼m (t, t0, ϕ0)|) ≤ −w3( η0/2 ), t ∈ [tj − β0, tj + β0]. (21)

From |ϕ0| < b0 (ϕ0 ∈ C), we obtain

V (t0, x1∼m(t0, t0, ϕ0), xm+1∼n(t0, t0, ϕ0)) ≤ w2(|ϕ0|) ≤ w2(b0) (see (6) and (7)). (22)

Using (4), (20)–(22), and the properties of the function w1, we have

0 ≤w1(|x1∼m(tj + β0, t0, ϕ0)|)

≤V (tj + β0, x1∼m(tj + β0, t0, ϕ0), xm+1∼n(tj + β0, t0, ϕ0))

=V (t0, x1∼m(t0, t0, ϕ0), xm+1∼n(t0, t0, ϕ0))+∫ tj+β0

t0

V̇ (τ, x1∼m(τ, t0, ϕ0), xm+1∼n(τ, t0, ϕ0))dτ ≤ w2(b0)+∫ tj+β0

t0

V̇ (τ, x1∼m(τ, t0, ϕ0), xm+1∼n(τ, t0, ϕ0))dτ ≤ w2(b0)+∫ tj+β0

t0

−w3(|x1∼m(τ, t0, ϕ0)|)dτ ≤ w2(b0)+
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j∑
i=1

∫ ti+β0

ti−β0

−w3(|x1∼m(τ, t0, ϕ0)|)dτ ≤ w2(b0)+

j∑
i=1

∫ ti+β0

ti−β0

−w3(η0/2)dτ = w2(b0)− 2jβ0w3(η0/2). (23)

If J is the smallest integer ≥ w2(b0)/[2β0w3(η0/2)], then

w2(b0)− 2Jβ0w3(η0/2) ≤ 0. (24)

If j ≥ J + 1, then using (23) and (24), we have

0 ≤ V (tj + β0, x1∼m(tj + β0, t0, ϕ0), xm+1∼n(tj + β0, t0, ϕ0))

≤ w2(b0)− 2jβ0w3(η0/2) ≤ w2(b0)− 2β0(J + 1)w3(η0/2)

= w2(b0)− 2β0Jw3(η0/2)− 2β0w3(η0/2) ≤ 0− 2β0w3(η0/2) < 0,

which is a contradiction. Therefore, there is a b0 > 0 (b0 = δ0 = δ(1)) such that, for every η > 0,

there is a T (η) > 0 such that |ϕ| < b0 implies |x1∼m(t, t0, ϕ)| < η for t ≥ t0 + T (η) for every

t0 ≥ 0. This proves the uniform asymptotic stability. We complete the proof of the theorem. �

5. Example

We give the following example in order to demonstrate the Theorems 3.1 and 3.3 in this

paper and give insight into the new stability conditions. It is easy to see that the well-known

Razumikhin theorems on uniform stability and uniform asymptotic stability of RFDEs cannot

apply to the following example.

Example 5.1 Consider the second-order equation

ẋ(t) = y2m1−1(t),

ẏ(t) = −f(x(t))− Φ(t, x(t), y(t)) +

∫ 0

−r

G(t+ θ, x(t+ θ), y(t+ θ))dθ, (25)

where m1 = 1, 2, . . . ,M1. If m1 = 1, G(t+ θ, x(t+ θ), y(t+ θ)) = y(t+ θ) ·df(x(t+ θ))/dx(t+ θ),
then Eq. (25) includes the second-order scalar equation

ẍ(t) + Φ(t, x(t), ẋ(t)) + f(x(t− r)) = 0. (26)

Eq. (26) includes the equation of controlling a ship [20, p.149], the sunflower equation [20, p.151]

and the Zhao example [19, Eq. (2)]. Eq. (25) also is generalization of the Burton example [20,

p.278]

ẋ(t) = y(t),

ẏ(t) = −g(x(t))− ψ(x(t), y(t))y(t) +

∫ 0

−r

g∗(x(t+ s))y(t+ s)ds. (27)

We make the following assumptions on Eq. (25):

(a) Φ : R3 → R is continuous, Φ takes R× (bounded sets of R2) into bounded sets,

Φ(t, 0, 0) = 0 for all t ∈ R, and there is a constant H > 0, such that (Φ(t, x, y)/y) ≥ H for all
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t, x, y ∈ R (y ̸= 0).

(b) f : R → R is continuous, f(0) = 0 and xf(x) > 0 (x ̸= 0).

(c) G : R3 → R is continuous, G(t, 0, 0) = 0 for all t ∈ R, and there is a constant L > 0,

such that |G(t, x, y)| ≤ L|y| for all t, x, y ∈ R.
(d) Lr = H (Lr < H).

It is always assumed that a uniqueness result holds for the solutions of Eq. (25). Under the

above hypotheses, we will show that the zero solution of Eq. (25) is uniformly stable (uniformly

asymptotically stable) with respect to y.

If V (x, y) =
∫ x

0
f(s)ds+(y2m1/(2m1)), h(s) = g(s) = s, h(V (x, y(t+θ))) ≤ g(V (x, y(t))) (θ0 =

0), θ ∈ [−r, 0], then |y(t+ θ)| ≤ |y(t)| and

V̇ (x(t), y(t)) = f(x(t))ẋ(t) + y2m1−1(t)ẏ(t)

= f(x(t))y2m1−1(t) + y2m1−1(t)
[
− f(x(t))− Φ(t, x(t), y(t))+∫ 0

−r

G(t+ θ, x(t+ θ), y(t+ θ))dθ
]

= −y2m1−1(t)Φ(t, x(t), y(t)) + y2m1−1(t)

∫ 0

−r

G(t+ θ, x(t+ θ), y(t+ θ))dθ

≤ −Hy2m1(t) + |y(t)|2m1−1

∫ 0

−r

|G(t+ θ, x(t+ θ), y(t+ θ))|dθ

≤ −Hy2m1(t) + |y(t)|2m1−1

∫ 0

−r

L|y(t+ θ)|dθ

≤ −Hy2m1(t) + |y(t)|2m1−1

∫ 0

−r

L|y(t)|dθ

= −(H − Lr)y2m1(t).

Therefore, the Theorem 3.1 (Theorem 3.3) implies the zero solution of Eq. (25) is uniformly

stable (uniformly asymptotically stable) with respect to y.

6. Conclusion

This paper mainly focuses on the partial stability analysis of the RFDEs. Two new sufficient

criteria are given to guarantee the partial stability (uniform stability and uniform asymptotic

stability) of the RFDEs. These results can be applied widely in more areas.
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