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Abstract In this paper, we study a class of hyperbolic-parabolic problems in periodically per-

forated domains with a homogeneous Neumann condition on the boundary of holes. We focus

on the homogenization of these equations, which generalizes those achieved by Bensoussan-

Lions-Papanicolau and Migorski. The proof is based on the periodic unfolding method in

perforated domains.
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1. Introduction

In this paper, we consider the hyperbolic-parabolic equation with homogenous Dirichlet-

Neumann boundary in the perforated domain, namely:

αεu
′′
ε + βεu

′
ε − div(Aε∇uε) = fε, in Ω∗

ε × (0, T ),

uε = 0, on ∂Ω× (0, T ),

Aε∇uε · nε = 0, on ∂Sε × (0, T ),

uε(x, 0) = u0ε, in Ω∗
ε,

αεu
′
ε(x, 0) =

√
αεu

1
ε, in Ω∗

ε,

(1.1)

where Ω ⊂ Rn is an open and bounded set with Lipschitz continuous boundary, Sε is a set of

ε-periodic holes of size ε and Ω∗
ε = Ω\Sε, nε is the outward unit normal vector field defined on

∂Sε. Let αε and βε be two coefficients such that:
αε, βε ∈ L∞(Ω),

αε ≥ 0 a.e. in Ω,

βε ≥ c > 0 a.e. in Ω.

For the initial data, we always assume u0ε ∈ H1
0 (Ω), u

1
ε ∈ L2(Ω∗

ε) and fε ∈ L2(0, T ;L2(Ω∗
ε)).
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The coefficient matrix Aε satisfies the following assumptions:{
Aε ∈M(α, β,Ω),

Aε symmetric,
(1.2)

where M(α, β,Ω) is the classical set of the n × n matrix-valued functions defined in Section 2

(see [1]). This problem models many kinds of phenomena arising in electricity and magnetism,

in the theory of elasticity, in vibrations theory and in hydrodynamics [2,3].

To the best knowledge of the author, the study of problem (1.1) was initiated by Bensous-

san, Lions and Papanicolau [4], where the homogenization was given for the fixed domains. In

the special case αε = 1 and βε = 0, Cioranescu and Donato [5] investigated the classical ho-

mogenization result in perforated domains. The corresponding corrector result was studied in

Nabil [6]. Recently, using the unfolding method, Donato and the first author [7] studied the

homogenization and corrector results under some weaker assumptions.

In [8], Migorski carried out a study of the problem (1.1), and derived the homogenization

in the perforated domains. Subsequently, Timofte [9] further extended the homogenization to

the nonlinear case. In the case that αε = 0 and βε = 1, Donato and Nabil [10] gave the

homogenization and corrector results. Also, they presented these results for the corresponding

semilinear problems in [11]. Observe that the above results were achieved for the classical case

Aε(x) = A(x/ε) with A being symmetric, periodic, bounded and uniformly elliptic.

This paper is devoted to the homogenization of problem (1.1) under some conditions weaker

than usual. For this purpose, we need to introduce some necessary assumptions. In what follows,

we suppose that the coefficient matrix Aε satisfies

Tε(Aε) → A strongly in (L1(Ω× Y ))n×n, (1.3)

where Tε is the unfolding operator in fixed domains [12]. These assumptions recover the classical

periodic coefficient case mentioned above.

For the coefficients αε and βε, we assume that αε > 0 and
(i) ∥αε∥L∞(Ω) ≤ C and ∥βε∥L∞(Ω) ≤ C,

(ii) Tε(αε) → α(x, y) strongly in L2(Ω× Y ) with α∗ = MY ∗(α) ≥ c > 0,

(iii) Tε(βε) → β(x, y) strongly in L2(Ω× Y ),

(iv)
√
αε ⇀ γ weakly in L2(Ω),

(1.4)

where C is a constant independent of ε. Note that this assumption is slightly weaker than that

in [8].

For the initial data, we make the following assumptions:
(v) u0ε ⇀ u0 weakly in H1

0 (Ω),

(vi) ũ1ε → u1 strongly in L2(Ω),

(vii) f̃ε ⇀ f weakly in L2(0, T ;L2(Ω)).

(1.5)

The main purpose of this paper is to derive the homogenization result under these assump-

tions, which are weaker than those imposed in Migorski [8]. Our method is also quite different.

The work of Migorski [8] was done by the Tartar’s oscillating test function method, while our
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study mainly relies on the time-dependent periodic unfolding method in perforated domains

[7]. This method was originally introduced in Cioranescu, Damlamian and Griso [12] (see [13]

for more details) and extended to perforated domains in Cioranescu, Donato and Zaki [14,15]

(see Cioranescu, Damlamian, Donato, et al. [16] for more general situations and see [7] for the

time-dependent case).

Now, we state our homogenization result, where we use some notations to be defined in the

next section.

Theorem 1.1 Let Aε be a matrix satisfying (1.2) and (1.3). Suppose that uε is the so-

lution of problem (1.1) with (1.4) and (1.5). Then there exist u ∈ L2(0, T ;H1
0 (Ω)) with

u′ ∈ L2(0, T ;L2(Ω)) and û ∈ L2(0, T ;L2(Ω,H1
per(Y

∗))) with MY ∗(û) = 0, such that
T ∗
ε (uε) → u strongly in L2(0, T ;L2(Ω,H1(Y ∗))),

T ∗
ε (u′ε)⇀ u′ weakly in L2(0, T ;L2(Ω× Y ∗)),

T ∗
ε (∇uε)⇀ ∇u+∇yû weakly in L2(0, T ;L2(Ω× Y ∗)),

∥uε − u∥L2(0,T ;L2(Ω∗
ε))

→ 0.

(1.6)

The pair (u, û) with MY ∗(û) = 0 is the unique solution of the following problem:

θ

∫ T

0

∫
Ω

α∗uΨφ′′dxdt+ θ

∫ T

0

∫
Ω

β∗uΨφ′dxdt+

1

|Y |

∫ T

0

∫
Ω×Y ∗

A(∇u+∇yû)(∇Ψ+∇yΦ)φdxdydt

=

∫ T

0

∫
Ω

fΨφdxdt

for any Ψ ∈ H1
0 (Ω), Φ ∈ L2(Ω;H1

per(Y
∗)) and φ ∈ D(0, T ),

u = 0 on Ω× (0, T ),

u(x, 0) = u0, u′(x, 0) =
γ

θα∗u
1 in Ω.

(1.7)

We also have

û =
n∑

j=1

∂u

∂xj
χj (1.8)

with χj ∈ L∞(Ω;H1
per(Y

∗)) (j = 1, . . . , n) being the solution of the cell problem
−divy

(
A∇y(χj + yj)

)
= 0, in Y ∗,

A∇y(χj + yj) · n1 = 0, on ∂S,

MY ∗(χj)(x, ·) = 0, χj(x, ·) Y -periodic.

Moreover, u is the unique solution of the following homogenized wave equation
α∗u′′ + β∗u′ − div(A0∇u) = θ−1f, in Ω× (0, T ),

u = 0, on ∂Ω× (0, T ),

u(x, 0) = u0, u′(x, 0) = γ
θα∗u

1, in Ω,

(1.9)
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where the homogenized matrix A0 = (a0ij)1≤i,j≤n is defined by

a0ij(x) = MY ∗

(
aij +

n∑
k=1

aik
∂χj

∂yk

)
. (1.10)

In addition, we have the following convergences:{
(i) ũε ⇀ θu weakly∗ in L∞(0, T ;L2(Ω)),

(ii) Aε∇̃uε ⇀ θA0∇u weakly∗ in L∞(0, T ;L2(Ω)).
(1.11)

We would like to mention that the effective matrix field A0 depends on x, while the classical

matrix is constant [17].

2. Preliminaries

In this section, we briefly recall some results related to the unfolding method in perforated

domains. For some details associated to the unfolding theory, we refer the reader to [13] for the

case of fixed domains and to [16] for the case of perforated domains.

2.1. Some notations

Let b = (b1, . . . , bn) be a basis in Rn. Set

G =
{
ξ ∈ Rn : ξ =

n∑
i=1

kibi, (k1, . . . , kn) ∈ Zn
}
,

Y =
{
ξ ∈ Rn : ξ =

n∑
i=1

yibi, (y1, . . . , yn) ∈ (0, 1)n
}
.

Suppose that Ω ⊂ Rn is an open and bounded set with Lipschitz continuous boundary

∂Ω, and S is a closed proper subset of Y with Lipschitz continuous boundary. Denote ε by the

general term of a sequence of positive real numbers which converge to zero. Define the perforated

domain Ω∗
ε = Ω \ τε(εS), where τε(εS) =

∪
ξ∈G ε(ξ + S).

We make the following assumption:

τε(εS) ∩ ∂Ω = ∅.

This implies ∂Ω∗
ε = ∂Ω ∪ ∂Sε, where Sε is the subset of τε(εS) contained in Ω.

Now we recall some notations related to the unfolding method introduced in [13] and [16].

Let

Ω̂ε = interior
{ ∪

ξ∈Ξε

ε(ξ + Y )
}
, Λε = Ω \ Ω̂ε,

where Ξε = {ξ ∈ G|ε(ξ + Y ) ⊂ Ω}. Set

Ω̂∗
ε = Ω̂ε \ Sε and Λ∗

ε = Ω∗
ε \ Ω̂∗

ε.

In what follows, we will use the following notations:

• |D| denotes the Lebesgue measure of a measurable set D in Rn;

• Y ∗ = Y \ S̄;
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• θ = |Y ∗|
|Y | ;

• MO(v) =
1

|O|
∫
O vdx. For convenience, let v

∗ := MY ∗(v);

• g̃ is the zero extension to Ω (resp., Ω × (0, T )) of any function g defined on Ω∗
ε (resp.,

Ω∗
ε × (0, T ));

• V ε is defined by

V ε = {v ∈ H1(Ω∗
ε) | v = 0 on ∂Ω}

endowed with the norm ∥v∥V ε = ∥∇v∥L2(Ω1ε);

• M(α, β,O) is the set of the n× n matrix-valued functions in L∞(O) such that

(B(x)λ, λ) ≥ α|λ|2, |B(x)λ| ≤ β|λ|

for any λ ∈ Rn and a.e., on O, where α, β ∈ R and 0 < α < β;

• The notation Lp(O) will be used both for scalar and vector-valued functions defined on

the set O, since no ambiguity will arise;

• c and C denote generic constants which do not depend on ε.

2.2. The time-dependent unfolding operator in perforated domains

In this subsection, we list some results associated to the unfolding operator which will be

used in this paper. For other properties and related comments, we refer the reader to [13] and

[16].

For z ∈ Rn, we use [z]Y to denote the unique integer combination
∑n

j=1 kjbj of the period

such that z − [z]Y ∈ Y . Let {z}Y = z − [z]Y ∈ Y a.e., for z ∈ Rn. Then we have

x = ε
(
[
x

ε
]Y + {x

ε
}Y

)
for x ∈ Rn.

Definition 2.1 For p ∈ [1,+∞) and q ∈ [1,∞], let ϕ be in Lq(0, T ;Lp(Ω∗
ε)). The unfolding

operator T ∗
ε : Lq(0, T ;Lp(Ω∗

ε)) 7→ Lq(0, T ;Lp(Ω× Y ∗)) is defined as follows:

T ∗
ε (ϕ)(x, y, t) =

{
ϕ
(
ε[
x

ε
]Y + εy, t

)
, a.e., for (x, y, t) ∈ Ω̂ε × Y ∗ × (0, T ),

0, a.e., for (x, y, t) ∈ Λε × Y ∗ × (0, T ).

Remark 2.2 Let Tε be the unfolding operator for the fixed domain Ω× (0, T ) (see [18]). Then

we have

T ∗
ε (ω|Ω∗

ε×(0,T )) = Tε(ω)|Ω×Y ∗×(0,T ),

where ω is defined on Ω×(0, T ). For simplicity, we always write T ∗
ε (ω) instead of T ∗

ε (ω|Ω∗
ε×(0,T )).

The following propositions contain some basic properties associated to the unfolding and

the averaging operators.

Proposition 2.3 Let p ∈ [1,+∞) and q ∈ [1,∞].

(i) T ∗
ε is linear and continuous from Lq(0, T ;Lp(Ω∗

ε)) to L
q(0, T ;Lp(Ω× Y ∗)).

(ii) Let w ∈ Lq(0, T ;Lp(Ω∗
ε)). For a.e. t ∈ (0, T ), we have

∥T ∗
ε (w)∥Lp(Ω×Y ∗) = |Y |1/p∥w∥Lp(Ω̂∗

ε)
≤ |Y |1/p∥w∥Lp(Ω∗

ε)
.
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(iii) For w, v ∈ Lq(0, T ;Lp(Ω∗
ε)), T ∗

ε (vw) = T ∗
ε (v)T ∗

ε (w).

(iv) For ψ ∈ Lp(Ω∗
ε) and φ ∈ Lq(0, T ), T ∗

ε (ψφ) = φT ∗
ε (ψ).

(v) For p, q ∈ [1,∞), let {ωε} be a sequence in Lq(0, T ;Lp(Ω)) such that

ωε → ω strongly in Lq(0, T ;Lp(Ω)).

Then T ∗
ε (ωε) → ω strongly in Lq(0, T ;Lp(Ω× Y ∗)).

(vi) For p ∈ (1,∞) and q ∈ (1,∞], let {ωε} be a sequence in Lq(0, T ;Lp(Ω∗
ε)) such that

∥ωε∥Lq(0,T ;Lp(Ω∗
ε))

≤ C.

If T ∗
ε (ωε)⇀ ω̂ weakly in Lq(0, T ;Lp(Ω× Y ∗)), then we have

ω̃ε ⇀ θMY ∗(ω̂) weakly in Lq(0, T ;Lp(Ω)).

For q = ∞, the weak convergences above are replaced by the weak∗ convergences, respectively.

Proposition 2.4 For q ∈ [1,+∞], let ϕε be in Lq(0, T ;L1(Ω∗
ε)) and satisfy∫ T

0

∫
Λ∗

ε

|ϕε|dxdt→ 0.

Then ∫ T

0

∫
Ω∗

ε

ϕεdxdt−
1

|Y |

∫ T

0

∫
Ω×Y ∗

T ∗
ε (ϕε)dxdydt→ 0.

In particular, we have the following result:

For p, q ∈ (1,+∞), let {φε} and {ψε} be two sequences in Lq(0, T ;Lp(Ω∗
ε)) and L

q′(0, T ;Lp′
(Ω∗

ε))

(1/p+ 1/p′ = 1, 1/q + 1/q′ = 1), respectively. Suppose that

T ∗
ε (φε) → φ strongly in Lq(0, T ;Lp(Ω× Y ∗)),

T ∗
ε (ψε)⇀ ψ weakly in Lq′(0, T ;Lp′

(Ω× Y ∗)).

Then for any ϕ ∈ D(Ω), we have∫ T

0

∫
Ω∗

ε

φεψεϕdxdt→
1

|Y |

∫ T

0

∫
Ω×Y ∗

φψϕdxdydt.

Finally, we complete this section with the following convergence theorem which plays a

crucial role in proving our homogenization result.

Theorem 2.5 Let {wε} be a sequence in L2(0, T ;V ε) such that

∥∇wε∥L2(0,T ;L2(Ω∗
ε))

≤ C and
∥∥∂wε

∂t

∥∥
L2(0,T ;L2(Ω∗

ε))
≤ C.

Then there exist w ∈ L2(0, T ;H1
0 (Ω)) with

∂w
∂t ∈ L2(0, T ;L2(Ω)) and ŵ ∈ L2(0, T ;L2(Ω;H1

per(Y
∗)))

with MY ∗(ŵ) ≡ 0, such that, up to a subsequence,

(i) T ∗
ε (wε) → w strongly in L2(0, T ;L2(Ω;H1(Y ∗))),

(ii) T ∗
ε (∇wε)⇀ ∇w +∇yŵ weakly in L2(0, T ;L2(Ω× Y ∗)),

(iii) T ∗
ε (∂wε

∂t )⇀ ∂w
∂t weakly in L2(0, T ;L2(Ω× Y ∗)),

(iv) ∥wε − w∥L2(0,T ;L2(Ω∗
ε))

→ 0.
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In fact, the proof can be directly obtained by the same arguments as those in the proof of

Theorem 2.19 in [7] (see also the proof of Theorem 2.12 in [16]).

3. Proof of Theorem 1.1

In this section, we give the proof of Theorem 1.1. Our proof is fundamentally based on

the periodic unfolding method. Our starting point is the following variational formulation of

problem (1.1):

Find uε ∈ L2(0, T ;V ε) with u′ε ∈ L2(0, T ;L2(Ω∗
ε)) and αεu

′′
ε ∈ L2(0, T ; (V ε)′) such that

⟨αεu
′′
ε , v⟩(V ε)′,V ε +

∫
Ω∗

ε

βεu
′
εvdx+

∫
Ω∗

ε

Aε∇uε · ∇vdx =

∫
Ω∗

ε

fεvdx

in D′(0, T ) for all v ∈ V ε,

uε(x, 0) = u0ε, αεu
′
ε(x, 0) =

√
αεu

1
ε in Ω∗

ε.

(3.1)

For every fixed ε, following the classical arguments [8], we know that the problem (1.1) has a

unique solution uε such that

uε ∈ L∞(0, T ;V ε), u′ε ∈ L2(0, T ;L2(Ω∗
ε)) and αεu

′′
ε ∈ L2(0, T ; (V ε)′).

Furthermore, we have the following uniform estimates. For the proof, we refer the interested

readers to [8, Theorem 4.1] and [4, Theorem 1.1]:

Lemma 3.1 Suppose that the assumptions (1.2), (1.4) and (1.5) are satisfied. For every ε, we

have the following uniform estimates:

∥uε∥L∞(0,T ;V ε)) + ∥u′ε∥L2(0,T ;L2(Ω∗
ε))

+ ∥
√
αεu

′
ε∥L∞(0,T ;L2(Ω∗

ε))
≤ C, (3.2)

where the constant C does not depend on ε.

With Theorem 2.5 and Lemma 3.1 at our disposal, we proceed to prove Theorem 1.1.

Proof of Theorem 1.1 In view of (3.2), we use Theorem 2.5 to get that there exist u ∈
L2(0, T ;H1

0 (Ω)) with u
′ ∈ L2(0, T ;L2(Ω)) and û ∈ L2(0, T ;L2(Ω,H1

per(Y
∗))) with MY ∗(û) = 0,

such that, up to a subsequence (still denoted by ε), the convergences in (1.6) hold.

Let Ψ, ϕ ∈ D(Ω) and ψ ∈ H1
per(Y

∗). Set

vε(x) = Ψ(x) + εϕ(x)ψε(x) with ψε(x) = ψ(
x

ε
),

then

∇vε = ∇Ψ+ εψε∇ϕ+ ϕ(∇yψ)(
·
ε
).

From Proposition 2.3, we have
T ∗
ε (vε) → Ψ strongly in L2(Ω× Y ∗),

T ∗
ε (ϕψε) → Φ strongly in L2(Ω× Y ∗) with Φ = ϕ(x)ψ(y),

T ∗
ε (∇vε) → ∇Ψ+∇yΦ strongly in L2(Ω× Y ∗).

(3.3)

Let φ ∈ D(0, T ). By (1.3), (1.6) and (3.3), we use Proposition 2.4 to get∫ T

0

∫
Ω∗

ε

αεuεvεφ
′′dxdt→ θ

∫ T

0

∫
Ω

α∗uΨφ′′dxdt. (3.4)
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0

∫
Ω∗

ε

βεuεvεφ
′dxdt→ θ

∫ T

0

∫
Ω

β∗uΨφ′dxdt. (3.5)

∫ T

0

∫
Ω∗

ε

Aε∇uε∇vεφdxdt→
1

|Y |

∫ T

0

∫
Ω×Y ∗

A(∇u+∇yû)(∇Ψ+∇yΦ)φdxdydt. (3.6)

The fact that vε strongly converges to Ψ in L2(Ω), together with (1.5), leads to∫ T

0

∫
Ω∗

ε

fεvεφdxdt→
∫ T

0

∫
Ω

fΨφdxdt. (3.7)

Choosing vεφ as test function in the variational formulation (3.1), passing to the limit and making

use of (3.4)–(3.7), we obtain

θ

∫ T

0

∫
Ω

α∗uΨφ′′dxdt− θ

∫ T

0

∫
Ω

β∗uΨφ′dxdt+

1

|Y |

∫ T

0

∫
Ω×Y ∗

A(∇u+∇yû)(∇Ψ+∇yΦ)φdxdydt

= θ

∫ T

0

∫
Ω

fΨφdxdt.

This gives the equation in (1.7), due to the density of D(Ω) in H1
0 (Ω) and the density of D(Ω)⊗

H1
per(Y

∗) in L2(Ω,H1
per(Y

∗)).

Setting Ψ = 0 in (1.7), we get

1

|Y |

∫ T

0

∫
Ω×Y ∗

A(∇u+∇yû)(∇yΦ)φdxdydt = 0

which implies that divyA(∇u + ∇yû) = 0. Since u is independent of y and MY ∗(û) = 0, we

obtain (1.8). Then by a standard computation [7], we have the following identity:∫
Y ∗
A(∇u+∇yû)∇Ψdy = |Y ∗|A0∇u∇Ψ,

where A0 is defined by (1.10). Substituting this and (1.8) into (1.7), we get

α∗u′′ + β∗u′ − div(A0∇u) = θ−1f in Ω× (0, T ) (3.8)

which is exactly the equation in (1.9).

In what follows, we will check the initial conditions. Firstly, we prove the following conver-

gence:

βεũ
′
ε ⇀ θβ∗u′ weakly in L2(0, T ;L2(Ω)). (3.9)

In fact, the second condition of (1.4) implies that {βεũ′ε} is bounded in L2(0, T ;L2(Ω)). On the

other hand, by (1.4) and (1.6), we use Proposition 2.4 to get that∫ T

0

∫
Ω

βεũ
′
εϕφdxdt→

1

|Y |

∫ T

0

∫
Ω×Y ∗

βu′ϕφdxdydt

holds for ϕ ∈ D(Ω) and φ ∈ D(0, T ). This gives (3.9). In the same way, we have the convergence:

αεũ
′
ε ⇀ θα∗u′ weakly in L2(0, T ;L2(Ω)). (3.10)
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From (3.8) and (3.9), we know θα∗u′′ ∈ L2(0, T ;H−1(Ω)). Moreover, by the classical results,

we have

u ∈ C0([0, T ];L2(Ω)) and θα∗u′ ∈ C0([0, T ];H−1(Ω)).

Let Ψ ∈ D(Ω) and φ ∈ C∞([0, T ]) with φ(0) = 1 and φ(T ) = 0. Choosing Ψφ as test

function in the variational formulation (3.1) and integrating by parts, we have

−
∫ T

0

∫
Ω∗

ε

Aε∇uε∇Ψφdxdt+

∫ T

0

∫
Ω∗

ε

fεΨφdxdt

=

∫ T

0

⟨αεu
′′
ε ,Ψ⟩(V ε)′,V εφdt+

∫ T

0

⟨βεu′ε,Ψ⟩(V ε)′,V εφdt

=

∫
Ω∗

ε

αε(u
′
εφ)|T0 Ψdx−

∫ T

0

∫
Ω∗

ε

αεu
′
εΨφ

′dxdt+

∫ T

0

∫
Ω∗

ε

βεu
′
εΨφdxdt

= −
∫
Ω

√
αεΨũ1εdx−

∫ T

0

∫
Ω∗

ε

αεu
′
εΨφ

′dxdt+

∫ T

0

∫
Ω∗

ε

βεu
′
εΨφdxdt

Passing to the limit, we use (3.4)–(3.7) and (3.10) to derive

− 1

|Y |

∫ T

0

∫
Ω×Y ∗

A(∇u+∇yû)(∇Ψ)φdxdydt+ θ

∫ T

0

∫
Ω

fΨφdxdt

= −
∫
Ω

γu1Ψdx− θ

∫ T

0

∫
Ω

α∗u′Ψφ′dxdt+ θ

∫ T

0

∫
Ω

β∗u′Ψφdxdt

= −
∫
Ω

γu1Ψdx+ θ

∫
Ω

α∗u′(x, 0)Ψdx+

θ

∫ T

0

⟨α∗u′′,Ψ⟩H−1(Ω),H1
0 (Ω)φdt+ θ

∫ T

0

∫
Ω

β∗u′Ψφdxdt.

Combining this with (1.7), we have u′(x, 0) = γ
θα∗u

1.

Choosing φ ∈ C∞([0, T ]) with φ(0) = φ(T ) = φ′(T ) = 0, φ′(0) = 1 and taking Ψφ as

test function in the variational formulation (3.1), by a similar argument, we obtain u(x, 0) = u0.

Consequently, u solves problem (1.9).

By the standard arguments [7], we obtain the uniform ellipticity of A0 and the uniqueness of

the solution of problem (1.9). Together with (1.8), we get that the pair (u, û) with MY ∗(û) = 0

is a unique solution of problem (1.7). This implies that each convergence in Theorem 1.1 holds

for the whole sequence.

Finally, we turn to the proof of (1.11). From Proposition 2.3 (iv), we get

ũε ⇀ θu weakly in L2(0, T ;L2(Ω)).

Due to (3.2), convergence (1.11) (i) holds for the above subsequence. Then arguing as we have

done for getting (3.9), we obtain the following convergence

Aε∇̃uε ⇀ θMY ∗ [A(∇u+∇yû)] weakly in L2(0, T ;L2(Ω)).

By the standard computation (see the proof of Theorem 3.1 in [7]), we have

Aε∇̃uε ⇀ θA0∇u weakly in L2(0, T ;L2(Ω)).



494 Zhanying YANG and Xianhe ZHAO

Together with (3.2), we get (1.11) (ii). �
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