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Abstract In this paper we give combinatorial proofs of two recurrence relations for the special

class of objects known as inplace compositions. We also obtain new identities for the numbers

of inplace 1-2 compositions and palindromic compositions.
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1. Introduction

In the classical theory of partitions, studying identities has always been an interesting topic.

In recent years, a large number of researchers have been studying and many results in this field

have been got [1–6].

In particular, Andrews, Hirschhon and Sellers established the following identity.

Theorem 1.1 ([1]) The number of partitions of n in which each even part occurs with even

multiplicity equals the number of partitions of n where no part is congruent to 2 (mod 4).

In 2015, Munagi-Sellers gave some corresponding identities of compositions.

Theorem 1.2 ([7]) For all n ≥ 1, the number of compositions of n when each even part

occurs inplace with even multiplicity equals the number of compositions of n in which no part is

congruent to 2 (mod 4).

Theorem 1.3 ([7]) For all n ≥ 1, the number of compositions of 2n such that each odd part

appears inplace with even multiplicity equals the number of compositions of n where each odd

part can be of two kinds.

Further, the generalizations of the above identities are also obtained.

Theorem 1.4 ([7]) Let k ≥ 2 and l ≥ 2 be fixed integers. For all n ≥ 1, the number of

compositions of n when each part divisible by k occurs inplace with multiplicity a multiple of

l equals the number of compositions of n in which no part is congruent to ik (mod lk), where

1 ≤ i ≤ l − 1.

Theorem 1.5 ([7]) Let k ≥ 2 be fixed integer. For all n ≥ 1, the number of compositions of kn
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such that each part not divisible by k appears inplace with multiplicity divisible by k equals the

number of compositions of n when each part not divisible by k can be of two kinds.

In this paper, we still adopt the term inplace formulated by researchers. A part appears j

times inplace in a composition if it appears in j consecutive positions in the composition. For

example, in the composition (2, 2, 2, 2, 3, 4, 4, 5, 6, 6, 2, 2, 3, 1, 1), even parts appear inplace with

even multiplicity while odd parts are inplace distinct.

Let C2,2(n) denote the number of compositions of n in which no part is congruent to

2 (mod 4), and let O2(n) denote the number of compositions of n when each odd part with

two kinds. Munagi-Sellers [7] designated the second “kind” of odd part with the use of an

asterisk.

In this paper, we will show the combinatorial proofs of the recurrence relation of C2,2(n)

and O2(n), respectively. In Section 3, some inplace identities about the compositions with parts

being 1 or 2 and the palindromic compositions can be obtained.

Definition 1.6 ([8]) A palindromic composition of n is a composition that reads the same

forward as backward.

Thus, for example, the palindromic compositions of 4 are as follows:

(4), (2, 2), (1, 2, 1), (1, 1, 1, 1).

2. Two combinatorial proofs

The generating function of C2,2(n) as
∑

n≥1 C2,2(n)x
n = x+x3+x4

1−x−x3−2x4 is given by Munagi-

Sellers in [7]. From the generating function one can easily get the following recurrence relation

of C2,2(n).

Theorem 2.1 Let C2,2(n) denote the number of compositions of n in which no part is congruent

to 2 (mod 4). Then

C2,2(1) = 1, C2,2(2) = 1, C2,2(3) = 2, C2,2(4) = 4,

C2,2(n) = C2,2(n− 1) + C2,2(n− 3) + 2C2,2(n− 4), n ≥ 5.

Proof Obviously, the relevant composition of 1 is (1), the relevant composition of 2 is (1, 1),

the relevant compositions of 3 are (3), (1, 1, 1), and the relevant compositions of 4 are (4), (1, 3),

(3, 1), (1, 1, 1, 1).

When n ≥ 5, we split the compositions of n in which no part is congruent to 2 (mod 4) into

three classes:

(A) the part on the right end is 1;

(B) the part on the right end is 3;

(C) the part on the right end is > 3.

Given any composition in class (A), we delete the part 1 on the right end to get the com-

position of n− 1 in which no part is congruent to 2 (mod 4). And vice versa.
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Given any composition in class (B), we delete the part 3 on the right end to produce the

composition of n− 3 in which no part is congruent to 2 (mod 4). And vice versa.

For all compositions in class (C), let d denote the part on the right end of the composition,

where d ≥ 4. If d = 4, then deleting d = 4, we get the composition of n− 4 in which no part is

congruent to 2 (mod 4). If d > 4, then replacing d by (d− 4), we can also get the composition of

n− 4 in which no part is congruent to 2 (mod 4). Conversely, for every composition of n− 4 in

which no part is congruent to 2 (mod 4), we have two ways to get the compositions of n in which

no part is congruent to 2 (mod 4). One is adding 4 to the right end, the other is appending 4 to

the right end.

For example, the composition (1, 1) of 2 produces two compositions of 6 as follows:

(1, 1) −→ (1, 5), (1, 1) −→ (1, 1, 4).

Hence the class (C) has 2C2,2(n− 4) compositions, and we have

C2,2(n) = C2,2(n− 1) + C2,2(n− 3) + 2C2,2(n− 4).

Therefore, we completes the proof. �
Further, Munagi-Sellers [7] gave the recurrence relation of the number of compositions of n

when each odd part with two kinds:

Theorem 2.2 ([7]) Let O2(n) denote the number of compositions of n when each odd part can

be of two kinds. Then

O2(n) = 2(O2(n− 1) +O2(n− 2)), n ≥ 3

with initial conditions O2(1) = 1, O2(2) = 5.

They obtained the recurrence relation of O2(n) from the generating function. In this paper,

we give the combinatorial proof of it.

Proof We split the compositions of n when each odd part has two kinds into two classes:

(A) the part on the right end is 1 or 1∗;

(B) the part on the right end is t or t∗, where t > 1.

Given any composition in class (A), we delete the right part 1 or 1∗ to get the composition

of n− 1, with which each odd part has two kinds. Because there are two compositions of n with

the same parts except the part 1 or 1∗ on the right end, we have an identical composition of

n − 1 from two compositions of n by deleting 1 or 1∗ on the right end. Conversely, for every

composition with each odd part having two kinds of n − 1, we append 1 or 1∗ to the right end

respectively to obtain two compositions of n. Of course the compositions with only even parts

are included in this case. So there are 2O2(n− 1) compositions in class (A).

Given any composition in class (B), if t = 2, then we delete t = 2 to get the composition with

each odd part having two kinds of n− 2, and vice versa. As a result, we obtain all compositions

with each odd part having two kinds of n − 2 . If t > 2, then replace t by (t − 2) or replace t∗

by (t − 2)∗ to get composition of n − 2. Conversely, for every composition with each odd part
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having two kinds of n − 2, we add 2 to the part on the right end to obtain the composition

with each odd part having two kinds of n, and the right part is more than 2. Since t and t − 2

have the same parity, we will still get all compositions of n − 2 with each odd part having two

kinds. Of course, the compositions with even parts are included in these cases above. So we have

2O2(n− 2) compositions in class (B).

Hence we obtain O2(n) = 2(O2(n− 1) +O2(n− 2)).

Clearly, the relevant compositions of 1 are (1), (1∗), and the relevant compositions of 2 are

(2), (1, 1), (1, 1∗), (1∗, 1), (1∗, 1∗). �
We use the following example to demonstrate the proof.

Example 2.3 Let n = 3. Then the corresponding relations about the compositions of 3 with

each odd part having two kinds, the compositions of 2 with each odd part having two kinds and

the compositions of 1 with each odd part having two kinds are as follows.

(2, 1)←→ (2)←→ (2, 1∗), (1, 1, 1)←→ (1, 1)←→ (1, 1, 1∗),

(1, 1∗, 1)←→ (1, 1∗)←→ (1, 1∗, 1∗), (1∗, 1, 1)←→ (1∗, 1)←→ (1∗, 1, 1∗),

(1∗, 1∗, 1)←→ (1∗, 1∗)←→ (1∗, 1∗, 1∗),

(3)←→ (1)←→ (1, 2), (3∗)←→ (1∗)←→ (1∗, 2).

3. Several identities for special compositions

We now consider the compositions having parts of size 1 or 2 and the compositions having

only odd parts, and referred to here as 1-2 compositions and odd compositions, respectively. We

have the following identity.

Theorem 3.1 For all n ≥ 1, the number of 1-2 compositions of n when 2 occurs inplace with

even multiplicity equals the number of odd compositions of n+ 1 in which no part is congruent

to 3 (mod 4).

Proof Given any 1-2 composition of n and 2 occurs inplace with even multiplicity, we first

append 1 to the right end, then we adjoin 1 with all 2’s to the left to form a new part from right

to left. Consequently we obtain the odd compositions of n+1 and each odd part is congruent to

1 (mod 4). This correspondence is one-to-one. �
Some further study gives the following identity.

Theorem 3.2 For all n ≥ 1, the number of 1-2 compositions of n with the first part being

1 when 2 occurs inplace with even multiplicity equals the number of odd compositions of n in

which no part is congruent to 3 (mod 4).

Proof The proof is similar to that of Theorem 3.1, except for that we adjoin 1 with all 2’s to

the right to form a new part from left to right. �
Similarly, we also get the following result.



Some notes on inplace identities for compositions 519

Theorem 3.3 For all n ≥ 1, the number of 1-2 compositions of n with the last part being

1 when 2 occurs inplace with even multiplicity equals the number of odd compositions of n in

which no part is congruent to 3 (mod 4).

In the followings we study palindromic compositions. The palindromic compositions having

only odd parts, we call them as odd palindromic compositions while the palindromic compositions

having parts of size 1 or 2, we call them as 1-2 palindromic compositions. We have the following

result.

Theorem 3.4 For all n ≥ 1, the number of 1-2 palindromic compositions of n when 2 occurs

inplace with even multiplicity equals the number of odd palindromic compositions of n + 1 in

which no part is congruent to 3 (mod 4).

The proof is similar to that of Theorem 3.1, so we omit it. We offer the following example

to illustrate Theorem 3.4.

Example 3.5 Let n = 8. Then the first set of compositions contains the following 3 objects:

(2, 2, 2, 2), (1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 2, 2, 1, 1).

The second set of compositions contains these 3 objects:

(9), (1, 1, 1, 1, 1, 1, 1, 1, 1), (1, 1, 5, 1, 1).

For palindromic compositions, we also give the following corollaries presented by Munagi-

Sellers.

Corollary 3.6 For all n ≥ 1, the number of palindromic compositions of n when each even

part occurs inplace with even multiplicity equals the number of palindromic compositions of n

in which no part is congruent to 2 (mod 4).

Corollary 3.7 For all n ≥ 1, the number of palindromic compositions of 2n such that each

odd part appears inplace with even multiplicity equals the number of palindromic compositions

of n where each odd part can be of two kinds.

And the generalizations of these results mentioned above are as follows.

Corollary 3.8 Let k ≥ 2 and l ≥ 2 be fixed integers. For all n ≥ 1, the number of palindromic

compositions of n when each part divisible by k occurs inplace with multiplicity a multiple of l

equals the number of palindromic compositions of n in which no part is congruent to ik (mod lk),

where 1 ≤ i ≤ l − 1.

Corollary 3.9 Let k ≥ 2 be fixed integer. For all n ≥ 1, the number of palindromic compositions

of kn such that each part not divisible by k appears inplace with even multiplicity divisible by

k equals the number of palindromic compositions of n when each part not divisible by k can be

of two kinds.

We know that Corollary 3.8 is the generalization of Corollary 3.6, and Corollary 3.9 is the

generalization of Corollary 3.7.
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The proofs of these corollaries are similar to Munagi-Sellers’s proofs in [7], we only give an

example to show Corollary 3.7.

Example 3.10 Let n = 3. Then the first set of compositions contains the following 6 objects:

(6), (3, 3), (2, 2, 2), (2, 1, 1, 2), (1, 1, 2, 1, 1), (1, 1, 1, 1, 1, 1).

The second set of compositions contains these 6 objects:

(3), (3∗), (1, 1, 1), (1, 1∗, 1), (1∗, 1, 1∗), (1∗, 1∗, 1∗).
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