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Abstract A multi-group epidemic model with a variables separated incidence rate and de-

lays is analyzed. For strongly and non-strongly connected networks, the basic reproductive

number R0 is calculated, respectively. By applying the Lyapunov functionals and the LaSalle

invariance principle, we prove the global asymptotic stability of infection-free equilibrium P0

when R0 < 1 and the endemic equilibrium P ∗ when R0 > 1.
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1. Introduction

In recent years, there are many works on the global dynamics of coupled systems. Multi-

group models are used widely to describe the transmission dynamics of some infectious diseases in

heterogeneous host populations, such as gonorrhea [1], sexually transmitted diseases [2], malaria

[3], and cholera [4], etc. In most deterministic epidemic models, the host population is often

divided into susceptible, infective and recovered subclasses. For some epidemic diseases, infected

individuals can experience incubation before showing symptoms, so an exposed subclass also

occurs in the host population. Recently, Feng and Teng [5] proposed a SEIR model with a

variables separated incidence rate as follows:

S′
k = Λk −

n∑
j=1

βkjϕk(Sk)ψj(Ij)− dSkSk,

E′
k =

n∑
j=1

βkjϕk(Sk)ψj(Ij)− (dEk + ϵk)Ek, (1)

I ′k = ϵkEk − (dIk + rk + αk)Ik + ηkRk,

R′
k = rkIk − dRk Rk − ηkRk.

Here the matrix [βkj ] is the contact matrix, where βkj > 0 represents the transmission

coefficient between compartments Sk and Ij . Λk represents the constant input in the k-th
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group, dSk , d
E
k , d

I
k and dRk represent death rates of S, E, I and R population in the k-th group,

respectively, ϵk stands for the rate of becoming infectious after a latent period in the k-th group.

rk is the recovery rate of infectious individuals in the i-th group. αk represents disease-caused

death rate and ηk represents the rate that recovered individuals relapse and regain infectiousness

in the k-th group, All parameters are assumed to be nonnegative except Λk, d
S
k , d

E
k , which are

positive for all k. Nonnegative functions ϕk and ψj are assumed to be differentiable and have

the following properties:

[H1] (nonnegativity) All nonnegative functions ϕk and ψj only vanish at 0.

[H2] (monotone) ϕk and ψj are monotonically nondecreasing.

[H3] (concavity)
ψj(Ij)
Ij

are monotonically nonincreasing.

When the transmission network is strongly-connected, Feng and Teng [5] showed that the global

dynamics of system (1) is completely determined by the basic reproduction number R0.

Time delays are inevitable in biological models, which may change the qualitative behavior

of a model. For example, an epidemic model with generalized logistic dynamics can have periodic

solutions even when the time in the infective stage is constant [6]. Considering that all infectious

diseases have so-called latent period, time delays can be introduced to model constant sojourn

times in a state. In this paper, we develop the above model with discrete time delays as follows:

S′
k(t) = Λk −

n∑
j=1

βkjϕk(Sk(t))ψj(Ij(t− τjk))− dSkSk,

E′
k(t) =

n∑
j=1

βkjϕk(Sk(t))ψj(Ij(t− τjk))− (dEk + ϵk)Ek(t), (2)

I ′k(t) = ϵkEk(t)− (dIk + rk + αk)Ik(t) + ηkRk,

R′
k(t) = rkIk(t)− dRk Rk(t)− ηkRk.

Generally speaking, the underlying network of infectious disease is assumed to be strongly con-

nected, which means the disease can be transmitted from one group to another directly or

indirectly. Sometimes, strong connectivity does not hold in reality. So in this paper, we studied

the global dynamics of system (2) when the underlying network is strong connected or not strong

connected.

The paper is organized as follows. In Section 2, the invariant region is presented by analyzing

the positivity and boundedness of solutions for system (2). In Section 3, we investigate the global

stability of infection-free equilibrium P0 and positive equilibrium P ∗ of strongly connected model.

In Section 4, the global dynamics of the non-strongly connected model is studied using Lyapunov

functionals and the LaSalle invariance principle.

2. Positivity and boundedness

Consider system (2) in the set X1 =
∏n
k=1(R2

+ × C+
k × R+), where

C+
k = C([−τk, 0],R+), τk = max{τjk}, 1 ≤ j ≤ n.
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The initial conditions

(S10, E10, φ1(θ), R10, S20, E20, φ2(θ), R20, . . . , Sn0, En0, φn(θ), Rn0) ∈ X1, (3)

satisfy

Sk0 > 0, Ek0 > 0, φk(0) > 0, Rk0 > 0, k = 1, 2, . . . , n. (4)

Then we have the following results

Theorem 1.1 The solutions of system (2) with initial conditions (3) and (4) are positive for all

t > 0 and ultimately uniformly bounded in X1.

Proof We first prove that Sk(t) > 0 for all t ≥ 0. If there exists a tk1 > 0 such that Sk(tk1) = 0

and Sk(t) > 0 for 0 ≤ t < tk1. From the first equation of system (2), we have

S′
k (tk1) = Λk > 0.

Hence, for a sufficiently small σ1, Sk(t) < 0 when t ∈ (tk1 − σ1, tk1). This contradicts Sk(t) > 0

for 0 ≤ t < tk1, and hence Sk(t) > 0 for all t ≥ 0.

Next we prove that Ek(t) is positive. Suppose tk2 > 0 is the first time such that Ek(tk2) = 0.

From the second equation of system (2), we have

E′
k(tk2) =

n∑
j=1

βkjϕk(Sk(tk2))ψj(Ij(tk2 − τjk)) > 0.

Hence Ek(t) < 0 for t ∈ (tk2 −σ2, tk2) and a sufficiently small σ2. This contradicts Ek(t) < 0 for

0 ≤ t < tk2, and hence Ek(t) > 0 for all t ≥ 0.

Similarly, if there exists a tk3 > 0 such that Ik(tk3) = 0 and Ik(tk3) > 0 for 0 ≤ t < tk3.

Then from the third equation of system (2), we have

I ′k(tk3) = ϵkEk(tk3) + ηkRk(tk3). (5)

The solution of the fourth equation of system (2) with Rk(0) = Rk0 is given by

Rk(t) =
(
Rk0 +

∫ t

0

rkIk(θ)e
(dRk +ηk)θdθ

)
e−(dRk +ηk)t. (6)

Substituting t = tk3 into Eq. (5) leads to

Rk(tk3) =
(
Rk0 +

∫ tk3

0

rkIk(θ)e
(dRk +ηk)θdθ

)
e−(dRk +ηk)tk3 > 0.

From Eq. (5), we know I ′k(tk3) > 0. This is also a contradiction, and hence Ik(t) > 0 for all

t ≥ 0. Then from Eq. (6), it is not difficult to find the positivity of Rk(t) by the positivity of

Ik(t).

This completes the proof of the positivity of the solutions.

Summing up the four equations in system (2), we obtain

(Sk(t) + Ek(t) + Ik(t) +Rk(t))
′ =Λk − dSkSk(t)− dEk Ek(t)− (dIk + α)Ik(t)− dRk R(t)

≤Λk − dk(Sk(t) + Ek(t) + Ik(t) +Rk(t)),
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where dk = min{dSk , dEk , dIk + α, dRk }. Then

lim
t→∞

(Sk(t) + Ek(t) + Ik(t) +Rk(t))
′ ≤ Λk

dk
.

This completes the proof of the boundedness of the solutions. �
Therefore, the attracting region for system (2) is

Γ1 =
{
(S1, E1, φ1(θ), R1, S2, E2, φ2(θ), R2, . . . , Sn, En, φn(θ), Rn) ∈ X1 :

0 ≤ Sk + Ek + ∥φk∥+Rk ≤ Λk
dk
, k = 1, 2, . . . , n

}
.

3. Global stability under strong connectivity

Model (2) always has the disease-free equilibrium P0 = (S0
1 , 0, 0, 0, S

0
2 , 0, 0, 0, . . . , S

0
n, 0, 0, 0)

with

S0
k =

Λk
dSk
. (7)

It follows from [7,8] that the next generation matrix for system (2) is

M = [aij ]n×n = [βijϕi(S
0
i )ψ

′
j(0)lj ]n×n,

where

lj =
ϵj(d

R
j + ηj)

[(dRj + ηj)(dIj + αj) + dRj rj ][d
E
j + ϵj ]

.

And the spectral radius of M is the basic reproduction number R0 = ρ(M).

Theorem 2.1 Suppose that the contact matrix B = (βij)n×n is irreducible.

(i) If R0 < 1, then P0 is globally asymptotically stable in Γ1.

(ii) If R0 > 1, then P0 is unstable and system (2) is uniformly persistent.

(iii) If R0 > 1, then P ∗ is globally asymptotically stable in
◦
Γ1.

Proof (i) We first claim that M is irreducible since B is irreducible. Then when the spectral

radius ρ(M) < 1, it has a corresponding positive left eigenvector (v1, v2, . . . , vn). Consider a

Lyapunov function for system (2):

L =

n∑
i=1

vili

(
Ei +

n∑
j=1

βijϕi(Si)

∫ 0

−τji
ψj(φi(θ))dθ

)
+

n∑
i=1

vimiIi +

n∑
i=1

viniRi, (8)

where

mi =
dRi + ηi

(dRi + ηi)(dIi + αi) + dRi ri
, ni =

ηi
(dRi + ηi)(dIi + αi) + dRi ri

.

Differentiating L, we have

L′ =

n∑
i=1

vili

[ n∑
j=1

βijϕi(S
0
i )ψ

′
j(0)Ij +

n∑
j=1

βijϕi(S
0
i )Ij

(ϕi(Si)ψj(Ij)
ϕi(S0

i )Ij
− ψ′

j(0)
)
−

(dEi + ϵi)Ei

]
+

n∑
i=1

vimi

[
ϵiEi − (dIi + ri + αi)Ii + ηiRi

]
+
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n∑
i=1

vini
[
riIi(t)− dRi Ri(t)− ηiRi

]
=

n∑
i=1

vili

n∑
j=1

βijϕi(S
0
i )Ij(t− τji)

(ϕi(Si)ψj(Ij)
ϕi(S0

i )Ij
− ψ′

j(0)
)
+

n∑
i=1

vili

n∑
j=1

βijϕi(S
0
i )ψ

′
j(0)Ij −

n∑
i=1

viIi

=
n∑
i=1

vili

n∑
j=1

βijϕi(S
0
i )Ij

(ϕi(Si)ψj(Ij)
ϕi(S0

i )Ij
− ψ′

j(0)
)
+

n∑
j=1

Ij

n∑
i=1

βijϕi(S
0
i )ψ

′
j(0)vili −

n∑
i=1

viIi

=
n∑
i=1

vili

n∑
j=1

βijϕi(S
0
i )Ij

(ϕi(Si)ψj(Ij)
ϕi(S0

i )Ij
− ψ′

j(0)
)
+

n∑
i=1

(R0 − 1)viIi

<0, if R0 < 1. (9)

WhenR0 < 1, L′ = 0 implies that Ii = 0, then from (5) and (6) we can obtain that Ei = 0, Ri = 0,

and Si = S0
i for all 1 ≤ i ≤ n and t ≥ 0. So the largest invariant set in M is the singleton {P0}.

Next we prove that P0 is locally stable. For φ ∈ X1, define

a(|φ(0)|) =
n∑
i=1

vili

(
Ei +

n∑
j=1

βijϕi(Si)

∫ 0

−τji
ψj(φi(θ))dθ

)
+

n∑
i=1

vimiIi. (10)

Then

a(|φ(0)|) ≤ L(φ),

and a(r) → ∞ as r → ∞. Define

b(|φ(0)|) =
n∑
i=1

vili

n∑
j=1

βijϕi(S
0
i )Ij(ψ

′
j(0)−

ϕi(Si)ψj(Ij)

ϕi(S0
i )Ij

).

Obviously, b(r) is non-negative and

L′ =
n∑
i=1

vili

n∑
j=1

βijϕi(S
0
i )Ij

(ϕi(Si)ψj(Ij)
ϕi(S0

i )Ij
− ψ′

j(0)
)
+

n∑
i=1

(R0 − 1)viIi

≤ −b(|φ(0)|).

Applying the Corollary 5.3.1 in Hale [9], we obtain that P0 is globally asymptotically stable when

R0 < 1.

(ii) Choose −L as a Lyapunov functional, where L was given in Eq. (8), with the same proof

as [9, Theorem 5.3.3] and [10, Theorem 3.1], we know that P0 is unstable when R0 > 1. Set

X = X1 and E = Γ1. Then, similarly as in Li et al. [11] and Shu et al. [12], the largest invariant

set N on the boundary of ∂Γ2 is the singleton {P0}. Therefore, the conditions of Theorem 4.3

in Freedman et al. [13] hold, and hence system (2) is uniformly persistent.

(iii) The instability of P0, uniform persistence of system system (2) when R0 > 1, together

with the uniform boundedness of the solutions imply that (2) admits at least one endemic equi-
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librium in Γ1 (see [14]). Let P ∗ = (S∗
k , E

∗
k , I

∗
k , R

∗
k) be an endemic equilibrium, whose components

satisfy

Λi −
n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )− dSi S

∗
i = 0,

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )− (dEi + ϵi)E

∗
i = 0,

ϵiE
∗
i − (dIi + ri + αi)I

∗
i + ηiR

∗
i = 0,

riI
∗
i − dRi R

∗
i − ηiR

∗
i = 0, i, j = 1, 2, . . . , n. (11)

Let

Di =

∫ Si

S∗
i

ϕi(z)− ϕi(S
∗
i )

ϕi(z)
dz + Ei − E∗

i − E∗
i ln

Ei
E∗
i

+

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )

∫ 0

−τji
(
φj(θ)

I∗j
− ln

φj(θ)

I∗j
)dθ,

Dn+i = φi(θ)− I∗i − I∗i ln
φi(θ)

I∗i
,

D2n+i = Ri −R∗
i −R∗

i ln
Ri
R∗
i

, i = 1, 2, . . . , n. (12)

For i = 1, 2, . . . , n, differenting Di, Dn+i and D2n+i along the solutions of model (2), we obtain

D′
i =

(
1− ϕi(S

∗
i )

ϕi(Si)

)[ n∑
j=1

βij
(
ϕi(S

∗
i )ψj(I

∗
j )− ϕi(Si(t))ψj(Ij(t− τji))

)
−

dSi (Si − S∗
i )
]
+
(
1− E∗

i

Ei

)
[βkjϕi(Si(t))ψj(Ij(t− τji))− (dEi + ϵi)Ei]+

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
( Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j

)
≤

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
(
1− ϕi(S

∗
i )

ϕi(Si)

)(
1− ϕi(Si)ψj(Ij(t− τji))

ϕi(S∗
i )ψj(I

∗
j )

)
+

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
(ϕi(Si)ψj(Ij(t− τji))

ϕi(S∗
i )ψj(I

∗
j )

− Ei
E∗
i

)(
1− E∗

i

Ei

)
+

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
( Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j

)
=

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
(
2− Ei

E∗
i

− ϕi(Si)ψj(Ij(t− τji))E
∗
i

ϕi(S∗
i )ψj(I

∗
j )Ei

+

ψj(Ij(t− τji))

ψj(I∗j )
− ϕi(S

∗
i )

ϕi(Si)

)
+

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
( Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j

)
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≤
n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
(
ln

ψj(I
∗
j )

ψj(Ij(t− τji))
+ ln

Ei
E∗
i

− Ei
E∗
i

+
ψj(Ij(t− τji))

ψj(I∗j )

)
+

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
( Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j

)
≤

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
[(
1−

ψj(I
∗
j )Ij(t− τji)

ψj(Ij(t− τji))I∗j

)(ψj(Ij(t− τji))

ψj(I∗j )
− 1

)
+

Ij(t− τji)

I∗j
− ln

Ij(t− τji)

I∗j
− Ei
E∗
i

+ ln
Ei
E∗
i

]
+

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
( Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j

)
≤

n∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )
( Ij
I∗j

− ln
Ij
I∗j

− Ei
E∗
i

+ ln
Ei
E∗
i

)
=:

n∑
j=1

ai,n+jGi,n+j , (13)

D′
n+i =(1− I∗i

Ii
){ϵiEi − (dIk + ri + αi)Ii + ηiRi}

=ϵiE
∗
i (
Ei
E∗
i

− Ii
I∗i

)(1− I∗i
Ii
) + ηiR

∗
i (
Ri
R∗
i

− Ii
I∗i

)(1− I∗i
Ii
)

≤ϵiE∗
i (
Ei
E∗
i

− Ii
I∗i

− ln
Ei
E∗
i

+ ln
Ii
I∗i

)+

ηiR
∗
i (
Ri
R∗
i

− Ii
I∗i

− ln
Ri
R∗
i

+ ln
Ii
I∗i

)

=:an+i,iGn+i,i + an+i,2n+iGn+i,2n+i,

D′
2n+i =(1− R∗

i

Ri
){riIi − dRi Ri − ηkRi}

=riI
∗
i (
Ii
I∗i

− Ri
R∗
i

)(1− R∗
i

Ri
)

≤riI∗i (
Ii
I∗i

− Ri
R∗
i

− ln
Ii
I∗i

+ ln
Ri
R∗
i

)

=:a2n+i,n+iG2n+i,n+i.

Define a weighted digraph (G, A) here with A = [ai,j ], and let ci be the cofactor of the i-th

diagonal element of the Laplacian matrix of A. The out-degree d+(i) is the number of arcs whose

initial vertex is i. Since d+(2n+ i) = 1 and d+(i) = 1 hold for each i, by [15, Theorem 3.3], we

obtain:

cn+ian+i,2n+i = c2n+ia2n+i,n+i, cn+ian+i,i =
n∑
j=1

ciai,n+j .

Thus

D =
n∑
i=1

ciDi +
n∑
i=1

cn+iDn+i +
n∑
i=1

cn+ian+i,2n+i
D2n+i

a2n+i,n+i
. (14)
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Since Gn+i,2n+i +G2n+i,n+i = 0 and

Gi,n+j +Gn+i,i =
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i
, (15)

it follows that

D′ ≤
n∑
i=1

n∑
j=1

ciai,n+jGi,n+j +

n∑
i=1

cn+i(an+i,iGn+i,i + an+i,2n+iGn+i,2n+i)+

n∑
i=1

cn+ian+i,2n+i
D2n+i

a2n+i,n+i

≤
n∑
i=1

n∑
j=1

ciai,n+jGi,n+j +

n∑
i=1

cn+ian+i,iGn+i,i+

cn+ian+i,2n+iGn+i,2n+i +
n∑
i=1

cn+ian+i,2n+iG2n+i,n+i

=
n∑
i=1

n∑
j=1

ciai,n+jGi,n+j +
n∑
i=1

n∑
j=1

ciai,n+jGn+i,i

=
n∑
i=1

n∑
j=1

ciai,n+j(
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i

). (16)

Let c̃i, i = 1, 2, . . . , n, be given as in [10, Proposition 2.1] with (G, Ã), where the entry of the

n× n matrix Ã = [ãij ] is defined as ãij = ai,n+j . Let

c̃n+i =
n∑
j=1

c̃i
ai,n+j
an+i,j

, c̃2n+i = c̃n+i
an+i,2n+i
a2n+i,n+i

.

Now, we claim that

D̃ =

n∑
i=1

c̃iDi +

n∑
i=1

c̃n+iDn+i +

n∑
i=1

c̃2n+iD2n+i,

is a Lyapunov function for system (2). In fact, replacing all ci by c̃n+i in the calculation of

Eq. (14) yields

D̃′ ≤
n∑
i=1

n∑
j=1

c̃iãi,n+j(
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i

).

Furthermore, by [15, Theorem 3.2], we can obtain that

n∑
i=1

n∑
j=1

c̃iãi,n+j(
Ii
I∗i

− ln
Ii
I∗i

) =
n∑
i=1

n∑
j=1

c̃iãi,n+j(
Ij
I∗j

− ln
Ij
I∗j

). (17)

Then

D̃′ ≤
n∑
i=1

n∑
j=1

c̃iãi,n+j(
Ij
I∗j

− ln
Ij
I∗j

− Ii
I∗i

+ ln
Ii
I∗i

)

=

n∑
i=1

n∑
j=1

c̃iãi,n+j(
Ii
I∗i

− ln
Ii
I∗i

)−
n∑
i=1

n∑
j=1

c̃iãi,n+j(
Ij
I∗j

− ln
Ij
I∗j

) = 0. (18)
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Additionally, Eq. (13) implies that D̃′ = 0 if and only if P = P ∗. Hence P ∗ is globally attractive.

Next we prove P0 is locally stable. For φ ∈ X1, define

a(|φ(0)|) =
n∑
i=1

c̃iDi +
n∑
i=1

c̃n+iDn+i.

Then a(|φ(0)|) ≤ L(ϕ), and a(r) → ∞ as r → ∞. Define b(|ϕ(0)|) = 0. It is obvious that b(r) is

non-negative and

D′ ≤ −b(|ϕ(0)|).

From Hale [9], P ∗ is globally asymptotically stable in
◦
Γ1. �

4. Global stability under non-strong connectivity

In the previous section, we have investigated the global stability of system (2) when the

interaction network is strongly connected. In this section, we will study system (2) when the

underlying network is not strongly connected through the method given by Du and Li in [16].

We first introduce some useful definitions and theorems given in [16].

4.1. Preliminary

Du and Li [16] described two concepts: strongly connected components and the condensed

graph, which play an important role in the global dynamics of coupled systems. The following

Figure 1 is a sketch map given in [16] to help understanding the above two concepts.

(a) Connected components Hi (b) The condensed digraph H

Figure 1 Connected components Hi and the condensed digraph H of a digraph G

Du [16] also defined a partial order relation as follows. Let V (G) := {1, 2, . . . , n} be the

vertex set of digraph G, and define a partial order ≼ between two elements in V (G): for i and j,
i ≼ j if there exists an oriented path from i to j and i ∼ j if i ≼ j and j ≼ i. They claimed that

the relation ∼ is an equivalence relation. Theory of discrete mathematics shows that equivalence

relation ∼ on the set V (G) determines a partition of V (G), that is the quotient set V (G)/ ∼ whose

elements denoted by Hi (i = 1, 2, . . . , l) consisting of ni elements of V (G), where
∑l
i=1 ni = n

and each Hi is a strongly connected component of G. For example in Figure 1 (a), the strongly



556 Bowen REN, Ke CHEN and Dejun FAN

connected components of digraph G are H1, H2,H3,H4. Define H as the condensed graph of G
by collapsing each Hi as a single vertex, thus V (H) = {Hi : i = 1, 2, . . . , l}. Define a canonical

partial order ≺ between two elements in V (H): for Hi and Hj , Hi ≺ Hj if there exists i′ ∈ Hi

and j′ ∈ Hj , such that i′ ≼ j′. Du and Li [16] also showed that ≺ is a strict partial order, and

there exist minimal and maximal elements in V (H) with respect to the strict partial order ≺.

For example in Figure 1 (b), the minimal elements are H1 and H2, and the maximal element is

H4. For any G ⊆ V (G), define the subsystems of system (2) as follows:

(i) The G-subsystem:

S′
i(t) = Λi −

∑
j∈V (G)

βijϕi(Si(t))ψj(Ij(t− τji))− dSi Si,

E′
i(t) =

∑
j∈V (G)

βjiϕi(Si(t))ψj(Ij(t− τji))− (dEi + ϵi)Ei(t),

I ′i(t) = ϵiEi(t)− (dIi + ri + αi)Ii(t) + ηiRi,

R′
i(t) = riIi(t)− dRi Ri(t)− ηiRi, i ∈ G.

(ii) The reduced G-subsystem:

S′
i(t) = Λi −

∑
j∈G

βijϕk(Si)ψj(Ij(t− τji))− dSi Si,

E′
i(t) =

∑
j∈G

βijϕi(Si(t))ψj(Ij(t− τji))− (dEi + ϵi)Ei,

I ′i(t) = ϵiEi − (dIi + ri + αi)Ii + ηiRi,

R′
i(t) = riIi − dRi Ri − ηiRi, i ∈ G. (19)

(iii) The restricted system on H at c:

S′
i(t) =Λi −

∑
j∈H

βijϕi(Si)ψj(Ij(t− τji))− dSi Si −
∑

k∈V (G)\H

βikϕi(Si(t))ψk(ck),

E′
i(t) =

∑
j∈H

βijϕi(Si)ψj(Ij(t− τji)) +
∑

k∈V (G)\H

βikϕi(Si(t))ψk(ck)− (dEi + ϵi)Ei(t),

I ′i(t) =ϵiEi − (dIi + ri + αi)Ii + ηiRi,

R′
i(t) =rkIi − dRi Ri − ηiRi, i ∈ G. (20)

For H ∈ V (H) is a strongly connected component and c = (c1, c2, . . . , cn) ≥ 0, where ci ∈ R4
+,

1 ≤ i ≤ n.

Du and Li [16] made five additional assumptions (A1–A5) on the couple system, and here

we list some of them which will be used in the following:

(A3) For H ∈ V (H) and c ≥ 0, the restricted system (20) on H at c has a nonnegative

equilibrium that attracts all positive solutions.

(A4) For 1 ≤ i ≤ n, the vertex system has at most one boundary equilibrium.

(A5) For H ∈ V (H), if the reduced H-subsystem (19) has a positive equilibrium, then

system (19) is uniformly persistent.
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Du and Li [16] also made assumptions (F1–F6) on the incidence function fij(Si, Ij). In our

model (2), fij(Si, Ij) = ϕi(Si)ψj(Ij(t − τji)), it is easy to verify that assumptions (F1–F6) are

satisfied.

Let P be the set of all equilibria and define a mapping π : P → (0, 1)|V (H)|

π : u∗ → ũ∗ = (ũ∗H)H∈V (H),

and

ũ∗H =

{
0, if Pu∗i = 0, for i ∈ H,

1, if Pu∗i > 0, for i ∈ H,

for any u∗ ∈ P, where |V (H)| is the order of set V (H). For the map π, Du and Li [16] presented

three propositions (Propositions 2.6-2.8 in [16]), we rewrite them in the following for further

application.

Corollary 4.1 For u∗ ∈ P, if H ≺ H ′, then ũ∗H < ũ∗H′ .

Corollary 4.2 An equilibrium u∗ ∈ P is positive if and only if ũ∗H = 1 at all minimal elements

H ∈ V (H).

Corollary 4.3 Suppose that (A3) and (A4) are satisfied. Then the following holds.

(a) For H ∈ V (H) and c ≥ 0, the positive or boundary equilibrium of (19) on H at c is

unique.

(b) The map π is one-to-one.

Du and Li [16] also defined an evaluation function E : P → R+

E(u∗) =
∑

H∈V (H)

π(u∗)H ,

and Theorem 2.9 in [16] was used to identify the global attracting equilibrium, we rewrite it here.

Lemma 4.4 Suppose that (A3) and (A5) are satisfied. Then

(a) All positive solutions of system (2) converge to a maximizer of function E.

(b) If in addition (A4) is satisfied, then the maximizer of function E is unique.

Du and Li [16] showed the structure of the set of equilibrium without the strong connectivity

assumption on G. On each strongly connected component Hi, the solutions of system (2) tend to

synchronize. Applying the evaluation function E and Theorem 2.9 in [16], they showed that the

unique maximizer P ∗ of E corresponds to a unique equilibrium of (2), either positive or mixed,

that attracts all positive solutions.

4.2. Global stability of system (2)

This subsection uses the same notations as in Section 4.1. Without loss of generality, we

assume that the digraph G of n vertices generated by (2) is connected but not strongly connected.

Suppose that there are m(≤ n) vertexes in strongly connected component H and renumber
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its elements Si, Ei, Ii, Ri from 1 to m. Let qk =
∑
i∈V (G)\H βkiψi(ci) and rewrite (19) as

S′
k(t) = Λk −

∑
j∈H

βkjϕk(Sk(t))ψj(Ij(t− τkj))− dSkSk − qkϕk(Sk(t)),

E′
k(t) =

∑
j∈H

βkjϕk(Sk(t))ψj(Ij(t− τjk)) + qkϕk(Sk(t))− (dEk + ϵk)Ek(t),

I ′k(t) = ϵkEk(t)− (dIk + rk + αk)Ik(t) + ηkRk,

R′
k(t) = rkIk(t)− dRk Rk(t)− ηkRk, (21)

where k = 1, 2, . . . ,m. The phase space of system (21) is chosen as

X2 =
m∏
k=1

(R2
+ × C+

k × R+),

where C+
k is defined in Section 2, and the invariant region of (20) is

Γ2 =
{
(S1, E1, φ1(θ), R1, S2, E2, φ2(θ), R2, . . . , Sm, Em, φm(θ), Rm) ∈ X2 :

0 ≤ Sk + Ek + ∥φk∥+Rk ≤ Λk
dk
, k = 1, 2, . . . ,m

}
.

The basic reproductive number for each Hi is

R0,Hi = ρ
(
[βijϕi(S

0
i )ψ

′
j(0)lj ]

)
i,j∈V (Hi)

,

where

lj =
ϵj(d

R
j + ηj)

[(dRj + ηj)(dIj + αj) + dRj Rj ][d
E
j + ϵj ]

, (22)

and [16] shows that the basic reproductive number for the whole network (2) is

R0 = max{R0,H : H ∈ V (H)}. (23)

For our model, (A4) and (A5) hold obviously, in the following we only need to prove that

(A3) holds. In fact, a stronger conclusion can be obtained as follows.

Theorem 4.5 Suppose that B = (βkj) is irreducible. Then system (21) has a unique endemic

equilibrium which is globally asymptotically stable with respect to
◦
Γ2.

Proof Let P ∗ = (S∗
1 , E

∗
1 , I

∗
1 , R

∗
1, S

∗
2 , E

∗
2 , I

∗
2 , R

∗
2, . . . , S

∗
m, E

∗
m, I

∗
m, R

∗
m) be an equilibrium of system

(21). Consider a Lyapunov functional V : X2 → R

L =

m∑
i=1

ciDi +

m∑
i=1

cm+iDm+i +

m∑
i=1

cm+iam+i,2m+i
D2m+i

a2m+i,m+i
. (24)

Let

Di =

∫ Si

S∗
i

ϕi(z)− ϕi(S
∗
i )

ϕi(z)
dz + Ei − E∗

i − E∗
i ln

Ei
E∗
i

+

m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )

∫ 0

−τji
(
Ij(t+ θ)

I∗j
− ln

Ij(t+ θ)

I∗j
)dθ,



Global stability of a multi-group delayed epidemic model 559

Dm+i =Ii − I∗i − I∗i ln
Ii
I∗i
,

D2m+i =Ri −R∗
i −R∗

i ln
Ri
R∗
i

, i = 1, 2, . . . ,m. (25)

Then

D′
i =(1− ϕi(S

∗
i )

ϕi(Si)
)
[ m∑
j=1

βij
(
ϕi(S

∗
i )ψj(I

∗
j )− ϕi(Si)ψj(Ij(t− τji))

)
−

dSi (Si − S∗
i )− qi (ϕi(Si(t))− ϕi(S

∗
i ))

]
+

(1− E∗
i

Ei
)
[
βijϕi(Si)ψj(Ij(t− τji)) + qiϕi(Si(t))− (dEi + ϵi)Ei

]
+

m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(

Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j
)

≤
m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(1−

ϕi(S
∗
i )

ϕi(Si)
)(1− ϕi(Si)ψj(Ij(t− τji))

ϕi(S∗
i )ψj(I

∗
j )

)+

m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(

ϕi(Si)ψj(Ij(t− τji))

ϕi(S∗
i )ψj(I

∗
j )

− Ei
E∗
i

)(1− E∗
i

Ei
)+

m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(

Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j
)+

qiϕi(S
∗
i )(3−

ϕi(S
∗
i )

ϕi(Si)
− E∗

i ϕi(Si)

Eiϕi(S∗
i )

− Ei
E∗
i

)

≤
m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(2−

Ei
E∗
i

− ϕi(Si)ψj(Ij(t− τji))E
∗
i

ϕi(S∗
i )ψj(I

∗
j )Ei

+
ψj(Ij(t− τij))

ψj(I∗j )
−

ϕi(S
∗
i )

ϕi(Si)
) +

m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(

Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j
)

≤
m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(ln

ψj(I
∗
j )

ψj(Ij(t− τji))
+ ln

Ei
E∗
i

− Ei
E∗
i

+
ψj(Ij(t− τji))

ψj(I∗j )
)+

m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(

Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j
)

≤
m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )[(1−

ψj(I
∗
j )Ij(t− τji)

ψj(Ij(t− τji))I∗j
)(
ψj(Ij(t− τji))

ψj(I∗j )
− 1) +

Ij
I∗j

−

ln
Ij(t− τji)

I∗j
− Ei
E∗
i

+ ln
Ei
E∗
i

]+

m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(

Ij
I∗j

− ln
Ij
I∗j

− Ij(t− τji)

I∗j
+ ln

Ij(t− τji)

I∗j
)

≤
m∑
j=1

βijϕi(S
∗
i )ψj(I

∗
j )(

Ij
I∗j

− ln
Ij
I∗j

− Ei
E∗
i

+ ln
Ei
E∗
i

)
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=:

m∑
j=1

ai,m+jGi,m+j . (26)

Similarly, as in the calculation in Section 3, we can obtain that L′ ≤ 0, and equality holds if and

only if P = P ∗. Then we complete the proof of assumption (A3). As in Section 3, suitable a(r)

and b(r) can be found to prove the local stability. Hence P ∗ is globally asymptotically stable in
◦
Γ2. �

According to Lemma 4.4, we obtain the following results:

Theorem 4.6 All positive solutions of system (2) converge to the unique maximizer P ∗ of

function E.

Theorem 4.7 Let P ∗ be the nonnegative globally asymptotically stable equilibrium of system

(2). Then P ∗ is a positive equilibrium if and only if R0,H > 1 for all minimal elements H ∈ V (H).

Theorem 4.8 A positive equilibrium P ∗ exists if and only if R0,H > 1 for all minimal elements

H ∈ V (H). In this case, P ∗ is unique and attracts all positive solutions.
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