On (α, β)-Metrics with Reversible Geodesics

Lihong LIU, Guangzu CHEN*
School of Science, East China JiaoTong University, Jiangxi 330013, P. R. China

Abstract

In this paper, we get necessary and sufficient conditions for a Finsler space endowed with an (α, β)-metric where its geodesic coefficients $G^{i}(x, y)$ and the reverse of geodesic coefficients $G^{i}(x,-y)$ have the same Douglas curvature. They are the conditions such that (α, β)-metrics have reversible geodesics.

Keywords (α, β)-metric; geodesic coefficient; reversible geodesic; Douglas curvature
MR(2010) Subject Classification 53B40; 53C60

1. Introduction

In Finsler geometry, a Finsler metric is said to be reversible if $F(x, y)=F(x,-y)$ for any $y \in$ $T_{x} M \backslash\{0\}$. In general, the Finsler metrics might not be reversible, such as: when $\phi(s) \neq \phi(-s)$, an (α, β)-metric $F=\alpha \phi(s), s=\beta / \alpha$ is not reversible, where α is a Riemannian metric and β is a 1-form. In special, when $\phi(s)=1+s, F=\alpha+\beta$ is a Randers metric. If $\beta \neq 0$, the Randers metric is not reversible. This leads to the irreversibility of geodesics. Let $G^{i}(x, y)$ be geodesic coefficient of a Finsler metric F. We call F has reversible geodesics, if for an oriented geodesic curve the same path traversed in the opposite sense is also a geodesic. In other words, its geodesic coefficients $G^{i}(x, y)$ are projectively related to $G^{i}(x,-y)$, i.e., $G^{i}(x, y)=G^{i}(x,-y)+P y^{i}$, where $P:=P(x, y)$ is a scalar function on $T M \backslash\{0\}$ with $P(x, \lambda y)=\lambda P(x, y), \lambda>0$. If $P=0, F$ is said to have strictly reversible geodesics. Bryant [1] showed that a Finsler metric on S^{2} of constant flag curvature $K=1$ with reversible geodesics is Riemannian. Crampin [2] showed that a Randers metric $F=\alpha+\beta$ has reversible geodesics if and only if β is parallel to α. Later, Masca-Sabau-Shimada gave the necessary and sufficient conditions for (α, β)-metrics to have reversible geodesics and strictly reversible geodesics, respectively [3].

Let

$$
\begin{equation*}
D_{j}{ }^{i}{ }_{k l}:=\frac{\partial^{3}}{\partial y^{j} \partial y^{k} \partial y^{l}}\left(G^{i}-\frac{1}{n+1} \frac{\partial G^{m}}{\partial y^{m}} y^{i}\right) \tag{1.1}
\end{equation*}
$$

The tensor $\mathbf{D}:=D_{j}{ }^{i} k l \frac{\partial}{\partial x^{i}} \otimes \mathrm{~d} x^{j} \otimes \mathrm{~d} x^{k} \otimes \mathrm{~d} x^{l}$ is called the Douglas tensor of F. A Finsler metric is called Douglas metric if the Douglas tensor vanishes. One can check easily that the Douglas tensor is a projectively invariant. Thus if F has reversible geodesics, its geodesic coefficients

[^0]$G^{i}(x, y)$ and the reverse of geodesic coefficient $G^{i}(x,-y)$ have the same Douglas curvature. In fact, let G_{1}^{i} and G_{2}^{i} be the geodesic coefficients of Finsler metrics F_{1} and F_{2}, respectively. It is well-known that G_{1}^{i} is projectively related to G_{2}^{i} (i.e., $G_{3}^{i}:=G_{1}^{i}-G_{2}^{i}$ is projectively flat) if and only if G_{1}^{i} and G_{2}^{i} have the same Douglas curvature and the Weyl curvature (definition see section 2) of G_{3}^{i} vanishes [4]. In this paper, we study (α, β)-metrics whose geodesic coefficients $G^{i}(x, y)$ and the reverse of geodesic coefficients $G^{i}(x,-y)$ have the same Douglas curvature. The condition under which the geodesic coefficients $G^{i}(x, y)$ and the reverse of geodesic coefficients $G^{i}(x,-y)$ have the same Douglas curvature is weaker than the condition under which F has reversible geodesics. The following theorem can be regarded as a generalization of the main theorem in [3].

Theorem 1.1 Let $F=\alpha \phi(s)$, $s=\beta / \alpha$ be a irreversible (α, β)-metric on a manifold M of dimension $n \geq 3$. Then its geodesic coefficients $G^{i}(x, y)$ and the reverse of geodesic coefficients $G^{i}(x,-y)$ have the same Douglas curvature if and only if the following situations hold
(1) $\phi(s)=k_{1} \phi(-s)+k_{2} s$, where $k_{1}(\neq 0), k_{2}$ are constants and β is closed, but β is not parallel to α,
(2) β is not parallel with respect to α, in this case, F is a Berwald metric.

It is a surprise that the two situations in Theorem 1.1 are just the necessary and sufficient conditions for an (α, β)-metric to have reversible geodesics [3]. Further, we have

Corollary 1.2 Let $F=\alpha \phi(s), s=\beta / \alpha$ be a irreversible (α, β)-metric on a manifold M of dimension $n \geq 3$. Then F has reversible geodesics if and only if its geodesic coefficient $G^{i}(x, y)$ and the reverse of geodesic coefficient $G^{i}(x,-y)$ have the same Douglas curvature.

2. Preliminaries

For a given Finsler metric $F=F(x, y)$, the geodesics of F are characterized locally by a system of 2nd ODEs as follows [5]

$$
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} t^{2}}+2 G^{i}\left(x, \frac{\mathrm{~d} x}{\mathrm{~d} t}\right)=0
$$

where

$$
G^{i}=\frac{1}{4} g^{i l}\left\{\left[F^{2}\right]_{x^{m} y^{l}} y^{m}-\left[F^{2}\right]_{x^{l}}\right\}
$$

and $\left(g^{i j}\right):=\left(g_{i j}\right)^{-1}, g_{i j}:=\frac{1}{2} \frac{\partial^{2}[F]^{2}}{\partial y^{2} \partial y^{j}} . G^{i}$ are called geodesic coefficients of F.
The Riemann curvature is introduced via geodesics. Let

$$
\begin{equation*}
R_{k}^{i}=2 \frac{\partial G^{i}}{\partial x^{k}}-\frac{\partial^{2} G^{i}}{\partial x^{m} \partial y^{k}} y^{m}+2 G^{m} \frac{\partial^{2} G^{i}}{\partial y^{m} \partial y^{k}}-\frac{\partial G^{i}}{\partial y^{m}} \frac{\partial G^{m}}{\partial y^{k}} . \tag{2.1}
\end{equation*}
$$

Define Riemann curvature $\mathbf{R}_{y}=R^{i}{ }_{k} \frac{\partial}{\partial x^{i}} \otimes \mathrm{~d} x^{k} . \mathbf{R}_{y}$ is well-defined satisfying $\mathbf{R}_{y}(y)=0$ (see [4]). Ricci curvature Ric $=(n-1) R(y)$ is the trace of the Riemann curvature expressed by

$$
\begin{equation*}
R(y):=\frac{1}{n-1} R_{m}^{m} . \tag{2.2}
\end{equation*}
$$

For a vector $y \in T_{x} M \backslash\{0\}$, define $\mathbf{W}_{y}=W^{i}{ }_{k} \frac{\partial}{\partial x^{i}} \otimes \mathrm{~d} x^{k}$ by [4]

$$
\begin{equation*}
W_{k}^{i}:=A_{k}^{i}-\frac{1}{n+1} \frac{\partial A_{k}^{m}}{\partial y^{m}} y^{i}, \tag{2.3}
\end{equation*}
$$

where $A^{i}{ }_{k}:=R^{i}{ }_{k}-R \delta^{i}{ }_{k}$. We call \mathbf{W}_{y} Weyl curvature. It is easy to check the Weyl curvature is projectively invariant. Weyl curvature is a Riemannian quantity.

The Douglas metrics can be also characterized by the following equations [6]

$$
\begin{equation*}
G^{i} y^{j}-G^{j} y^{i}=\frac{1}{2}\left(\Gamma_{k l}^{i} y^{j}-\Gamma_{k l}^{j} y^{i}\right) y^{k} y^{l} \tag{2.4}
\end{equation*}
$$

where $\Gamma_{k l}^{i}:=\Gamma_{k l}^{i}(x)$ are scalar functons on M.
By definition, an (α, β)-metric is a Finsler metric expressed in the following form

$$
F=\alpha \phi(s), \quad s=\frac{\beta}{\alpha}
$$

where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1-form with $\left\|\beta_{x}\right\|_{\alpha}<b_{0}, x \in$ M. It was proved [5] that $F=\alpha \phi(\beta / \alpha)$ is a positive definite Finsler metric if and only if the function $\phi=\phi(s)$ is a C^{∞} positive function on an open interval $\left(-b_{0}, b_{0}\right)$ satisfying

$$
\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)>0, \quad|s| \leq b<b_{0} .
$$

Let G^{i} and G_{α}^{i} denote the geodesic coefficients of F and α, respectively. Denote

$$
\begin{aligned}
r_{i j} & :=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}:=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), \\
b^{i} & :=a^{i l} b_{l}, s_{j}^{i}:=a^{i l} s_{l j}, \quad s_{i}:=b^{j} s_{j i},
\end{aligned}
$$

where $\left(a^{i j}\right):=\left(a_{i j}\right)^{-1}$ and $b_{i \mid j}$ denote the covariant derivative of β with respect to α. Then we have

Lemma 2.1 ([5]) Let $b:=\|\beta\|_{\alpha}$ denote the norm of β with respect to α. The geodesic coefficients of G^{i} are related to G_{α}^{i} by

$$
\begin{equation*}
G^{i}=G_{\alpha}^{i}+\alpha Q s^{i}{ }_{0}+\left\{-2 Q \alpha s_{0}+r_{00}\right\}\left\{\Psi b^{i}+\Theta \alpha^{-1} y^{i}\right\}, \tag{2.5}
\end{equation*}
$$

where

$$
Q:=\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \Theta:=\frac{\phi \phi^{\prime}-s\left(\phi \phi^{\prime \prime}+\phi^{\prime} \phi^{\prime}\right)}{2 \phi\left[\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right]}, \Psi:=\frac{\phi^{\prime \prime}}{2\left[\left(\phi-s \phi^{\prime}\right)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}\right]}
$$

and $s^{i}{ }_{0}:=s^{i}{ }_{j} y^{j}, s_{0}:=s_{i} y^{i}, r_{00}:=r_{i j} y^{i} y^{j}$, etc.

3. β is closed

In this section, we will show that β is closed for irreversible (α, β)-metrics whose geodesic coefficients $G^{i}(x, y)$ and the reverse of geodesic coefficients $G^{i}(x,-y)$ have the same Douglas curvature.

Let $F=\alpha \phi(s), s=\beta / \alpha$ be an irreversible (α, β)-metric on a manifold M of dimension $n \geq 3$ whose geodesic coefficients $G^{i}(x, y)$ and the reverse of geodesic coefficients $G^{i}(x,-y)$ have the same Douglas curvature. Denote $\bar{G}^{i}(x, y):=G^{i}(x, y)-G^{i}(x,-y)$. Noting that Douglas
curvature is linear with respect to $G^{i}(x, y)$, then $\bar{G}^{i}(x, y)$ have vanishing Douglas curvature. By (2.4), we have

$$
\begin{equation*}
\bar{G}^{i} y^{j}-\bar{G}^{j} y^{i}=\frac{1}{2}\left(\Gamma_{k l}^{i} y^{j}-\Gamma_{k l}^{j} y^{i}\right) y^{k} y^{l}, \tag{3.1}
\end{equation*}
$$

By Lemma 2.1, we obtain

$$
\begin{align*}
\bar{G}^{i}(x, y)= & G^{i}(x, y)-G^{i}(x,-y) \\
= & \alpha[Q(s)+Q(-s)] s^{i}{ }_{0}+\left\{[\Psi(s)-\Psi(-s)] r_{00}-2 \alpha[Q(s) \Psi(s)+\right. \\
& \left.Q(-s) \Psi(-s)] s_{0}\right\} b^{i}+\left\{-2 \alpha s_{0}[\Theta(s) Q(s)-\Theta(-s) Q(-s)]+\right. \\
& \left.r_{00}[\Theta(s)+\Theta(-s)]\right\} \alpha^{-1} y^{i} . \tag{3.2}
\end{align*}
$$

Plugging it into (3.1) yields

$$
\begin{align*}
\alpha & {[Q(s)+Q(-s)]\left(s^{i}{ }_{0} y^{j}-s^{j}{ }_{0} y^{i}\right)+\left\{[\Psi(s)-\Psi(-s)] r_{00}-\right.} \\
& \left.2 \alpha[Q(s) \Psi(s)+Q(-s) \Psi(-s)] s_{0}\right\}\left(b^{i} y^{j}-b^{j} y^{i}\right) \\
= & \frac{1}{2}\left(\Gamma_{k l}^{i} y^{j}-\Gamma_{k l}^{j} y^{i}\right) y^{k} y^{l} . \tag{3.3}
\end{align*}
$$

To simplify the computations, we take an orthonormal basis at x with respect to α such that

$$
\alpha=\sqrt{\sum_{i=1}^{n}\left(y^{i}\right)^{2}}, \quad \beta=b y^{1}
$$

and take the following coordinate transformation [7] in $T_{x} M, \psi:\left(s, u^{A}\right) \rightarrow\left(y^{i}\right): y^{1}=\frac{s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}$, $y^{A}=u^{A}$, where $\bar{\alpha}=\sqrt{\sum_{i=2}^{n}\left(u^{A}\right)^{2}}$. Here, our index conventions are

$$
1 \leq i, j, k, \cdots \leq n, \quad 2 \leq A, B, C, \cdots \leq n
$$

We have $\alpha=\frac{b}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}, \beta=\frac{b s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}$. Further

$$
\begin{gathered}
s_{1}=b s_{1}^{1}=0, s_{0}=\bar{s}_{0}, s^{1}{ }_{0}=\bar{s}_{0}^{1}, s_{0}^{A}=\frac{s \bar{\alpha}}{\sqrt{b^{2}-s^{2}}} s_{0}^{A}+\bar{s}_{0}^{A} \\
r_{00}=\frac{s^{2} \bar{\alpha}^{2} r_{11}}{b^{2}-s^{2}}+\frac{2 s \bar{\alpha} \bar{r}_{10}}{\sqrt{b^{2}-s^{2}}}+\bar{r}_{00}
\end{gathered}
$$

where

$$
\bar{s}_{0}^{1}:=\sum_{A=2}^{n} s^{1}{ }_{A} y^{A}, \bar{s}^{A}:=\sum_{A=2}^{n} s^{a}{ }_{A} y^{A}, \bar{r}_{00}:=\sum_{A, B=2}^{n} r_{A B} y^{A} y^{B} .
$$

Let

$$
\begin{aligned}
& \bar{\Gamma}_{10}^{1}:=\sum_{A=2}^{n} \Gamma_{1 A}^{1} y^{A}, \bar{\Gamma}_{01}^{1}:=\sum_{A=2}^{n} \Gamma_{A 1}^{1} y^{A}, \bar{\Gamma}_{00}^{1}:=\sum_{A, B=2}^{n} \Gamma_{A B}^{1} y^{A} y^{B} \\
& \bar{\Gamma}_{10}^{B}:=\sum_{A=2}^{n} \Gamma_{1 A}^{B} y^{A}, \bar{\Gamma}_{01}^{B}:=\sum_{A=2}^{n} \Gamma_{A 1}^{B} y^{A}, \bar{\Gamma}_{00}^{C}:=\sum_{A, B=2}^{n} \Gamma_{A B}^{C} y^{A} y^{B} .
\end{aligned}
$$

For $i=1, j=A$, by (3.3), we get

$$
[Q(s)+Q(-s)]\left(\bar{s}_{0}^{1} b y^{A}-s^{A} \frac{b s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}\right)+\left\{2[\Psi(s)-\Psi(-s)] \bar{r}_{10} s-\right.
$$

$$
\begin{align*}
& \left.\quad 2 b[Q(s) \Psi(s)+Q(-s) \Psi(-s)] \bar{s}_{0}\right\} b y^{A} \\
& =-\frac{1}{2} \Gamma_{11}^{A} \frac{s^{3} \bar{\alpha}^{2}}{b^{2}-s^{2}}+\frac{1}{2}\left[\left(\bar{\Gamma}_{10}^{1} y^{A}+\bar{\Gamma}_{01}^{1} y^{A}\right)-\bar{\Gamma}_{00}^{A}\right] s, \tag{3.4}\\
& {[Q(s)+Q(-s)] \bar{s}^{A}{ }_{0} \frac{b s \bar{\alpha}^{2}}{b^{2}-s^{2}}-[\Psi(s)-\Psi(-s)]\left(r_{11} \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}+\bar{r}_{00}\right) b y^{A}} \\
& = \tag{3.5}\\
& \frac{1}{2}\left[\left(\bar{\Gamma}_{10}^{A}+\bar{\Gamma}_{01}^{A}\right)-\Gamma_{11}^{1} y^{A}\right] \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}-\frac{1}{2} \bar{\Gamma}_{00}^{1} y^{A} .
\end{align*}
$$

For $i=A, j=B$, by (3.3), we get

$$
\begin{gather*}
{[Q(s)+Q(-s)]\left(s_{1}^{A} y^{B}-s_{1}^{B} y^{A}\right) \frac{b s \bar{\alpha}^{2}}{b^{2}-s^{2}}=\frac{1}{2}\left[\left(\Gamma_{11}^{A} y^{B}-\Gamma_{11}^{B} y^{A}\right) \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}+\frac{1}{2}\left(\bar{\Gamma}_{00}^{A} y^{B}-\bar{\Gamma}_{00}^{B} y^{A}\right),\right.} \tag{3.6}\\
{[Q(s)+Q(-s)]\left(\bar{s}_{0}^{A} y^{B}-\bar{s}_{0}^{B} y^{A}\right) b=\frac{1}{2}\left[\left(\bar{\Gamma}_{10}^{A}+\bar{\Gamma}_{01}^{A}\right) y^{B}-\left(\bar{\Gamma}_{10}^{B}+\bar{\Gamma}_{01}^{B}\right) y^{A}\right] s .} \tag{3.7}
\end{gather*}
$$

Taking $s=0$ in (3.6), we have $\bar{\Gamma}_{00}^{A} y^{B}-\bar{\Gamma}_{00}^{B} y^{A}=0$. Then (3.6) can be reduced to

$$
\begin{equation*}
[Q(s)+Q(-s)]\left(s_{1}^{A} y^{B}-s_{1}^{B} y^{A}\right) b=\frac{1}{2}\left(\Gamma_{11}^{A} y^{B}-\Gamma_{11}^{B} y^{A}\right) s . \tag{3.8}
\end{equation*}
$$

Replacing s in (3.8) by $-s$ yields

$$
\begin{equation*}
[Q(s)+Q(-s)]\left(s_{1}^{A} y^{B}-s^{B}{ }_{1} y^{A}\right) b=-\frac{1}{2}\left(\Gamma_{11}^{A} y^{B}-\Gamma_{11}^{B} y^{A}\right) s \tag{3.9}
\end{equation*}
$$

$(3.8)+(3.9)$ yields

$$
\begin{equation*}
[Q(s)+Q(-s)]\left(s^{A}{ }_{1} y^{B}-s^{B}{ }_{1} y^{A}\right) b=0 . \tag{3.10}
\end{equation*}
$$

Replacing s in (3.7) by $-s$ yields

$$
\begin{equation*}
[Q(s)+Q(-s)]\left(\bar{s}^{A}{ }_{0} y^{B}-\bar{s}_{0}^{B} y^{A}\right) b=-\frac{1}{2}\left[\left(\bar{\Gamma}_{10}^{A}+\bar{\Gamma}_{01}^{A}\right) y^{B}-\left(\bar{\Gamma}_{10}^{B}+\bar{\Gamma}_{01}^{B}\right) y^{A}\right] s . \tag{3.11}
\end{equation*}
$$

$(3.7)+(3.11)$ yields

$$
\begin{equation*}
[Q(s)+Q(-s)]\left(\bar{s}^{A}{ }_{0}^{A} y^{B}-\bar{s}_{0}^{B} y^{A}\right) b=0 . \tag{3.12}
\end{equation*}
$$

To show that β is closed, we firstly need the following
Lemma 3.1 For an (α, β)-metric $F=\alpha \phi(s), s=\beta / \alpha$ on a manifold M. If $Q(s)+Q(-s)=0$, then F is reversible.

Proof By the formulation of Q, we have

$$
\frac{\phi^{\prime}(s)}{\phi(s)-s \phi^{\prime}(s)}=\frac{-\phi^{\prime}(-s)}{\phi(-s)+s \phi^{\prime}(-s)},
$$

i.e., $\phi^{\prime}(s) \phi(-s)+\phi(s) \phi^{\prime}(-s)=0$, where $\phi^{\prime}(-s):=\left.\frac{\mathrm{d} \phi(t)}{\mathrm{d} t}\right|_{t=-s}=-\frac{\mathrm{d} \phi(-s)}{\mathrm{d} s}$. Then above equation can be written as $\left[\frac{\phi(s)}{\phi(-s)}\right]^{\prime}=0$. It implies that $\phi(s)=k \phi(-s)$, where $k=$ constant. Noting that $\phi(s)>0$, taking $s=0$, we get $k=1$. Then F is reversible.

Putting all these together, we can prove
Proposition 3.2 Let $F=\alpha \phi(s), s=\beta / \alpha$ be an irreversible (α, β)-metric on a manifold M of dimension $n \geq 3$. If its geodesic coefficients $G^{i}(x, y)$ and the reverse of geodesic coefficients $G^{i}(x,-y)$ have the same Douglas curvature, then β is closed.

Proof By Lemma 3.1, (3.10) and (3.12), we have

$$
s_{1}^{A} y^{B}-s^{B}{ }_{1} y^{A}=0, \quad \bar{s}{ }_{0}^{A} y^{B}-\bar{s}^{B}{ }_{0} y^{A}=0 .
$$

Contracting the two equations with $y_{B}:=\delta_{A}^{B} y^{A}$ yields

$$
s_{1}^{A} \bar{\alpha}^{2}=\bar{s}_{01} y^{A}, \quad \bar{s}_{0}^{A} \bar{\alpha}^{2}=0
$$

Because of the manifold M with dimension $n \geq 3$, then $s_{1 A}=s_{A B}=0$. Thus $s_{i j}=0$, i.e., β is closed.

4. Determining $\phi(s)$

Under the assumption in Theorem 1.1, by Proposition 3.2, we know that β is closed. Then (3.4) and (3.5) can be reduced to

$$
\begin{align*}
& 2[\Psi(s)-\Psi(-s)] \bar{r}_{10} b y^{A}=-\frac{1}{2} \Gamma_{11}^{A} \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}+\frac{1}{2}\left[\left(\bar{\Gamma}_{10}^{1} y^{A}+\bar{\Gamma}_{01}^{1} y^{A}\right)-\bar{\Gamma}_{00}^{A}\right] . \tag{4.1}\\
& -[\Psi(s)-\Psi(-s)]\left(r_{11} \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}+\bar{r}_{00}\right) b y^{A}=\frac{1}{2}\left[\left(\bar{\Gamma}_{10}^{A}+\bar{\Gamma}_{01}^{A}\right)-\Gamma_{11}^{1} y^{A}\right] \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}-\frac{1}{2} \bar{\Gamma}_{00}^{1} y^{A} . \tag{4.2}
\end{align*}
$$

Replacing s in (4.1) by $-s$ yields

$$
\begin{equation*}
2[\Psi(s)-\Psi(-s)] \bar{r}_{10} b y^{A}=\frac{1}{2} \Gamma_{11}^{A} \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}-\frac{1}{2}\left[\left(\bar{\Gamma}_{10}^{1} y^{A}+\bar{\Gamma}_{01}^{1} y^{A}\right)-\bar{\Gamma}_{00}^{A}\right] . \tag{4.3}
\end{equation*}
$$

$(4.1)+(4.3)$ yields

$$
\begin{equation*}
[\Psi(s)-\Psi(-s)] \bar{r}_{10} b=0 \tag{4.4}
\end{equation*}
$$

Replacing s in (4.2) by $-s$ yields

$$
\begin{equation*}
[\Psi(s)-\Psi(-s)]\left(r_{11} \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}+\bar{r}_{00}\right) b y^{A}=\frac{1}{2}\left[\left(\bar{\Gamma}_{10}^{A}+\bar{\Gamma}_{01}^{A}\right)-\Gamma_{11}^{1} y^{A}\right] \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}-\frac{1}{2} \bar{\Gamma}_{00}^{1} y^{A} . \tag{4.5}
\end{equation*}
$$

(4.5)-(4.2) yields

$$
\begin{equation*}
[\Psi(s)-\Psi(-s)]\left(r_{11} \frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}}+\bar{r}_{00}\right) b=0 \tag{4.6}
\end{equation*}
$$

Then we have
Proposition 4.1 Let $F=\alpha \phi(s), s=\beta / \alpha$ be an irreversible (α, β)-metric on a manifold M of dimension $n \geq 3$ satisfying that β is not parallel with respect to α. If its geodesic coefficients $G^{i}(x, y)$ and the reverse of geodesic coefficients $G^{i}(x,-y)$ have the same Douglas curvature, then $\phi(s)=k_{1} \phi(-s)+k_{2} s$, where $k_{1}(\neq 0), k_{2}$ are constants.

Proof If $\bar{r}_{10} \neq 0$, by (4.4), we have

$$
\begin{equation*}
\Psi(s)-\Psi(-s)=0 \tag{4.7}
\end{equation*}
$$

If $\bar{r}_{10}=0$, by assumption, β is not parallel with respect to α, we have $\left(\bar{r}_{00}, r_{11}\right) \neq(0,0)$. Then (4.6) implies that (4.7) still holds. Thus whether $\bar{r}_{10}=0$ or not, we always have $\Psi(s)-\Psi(-s)=0$, i.e.,

$$
\frac{\phi^{\prime \prime}(s)}{\phi(s)-s \phi^{\prime}(s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(s)}=\frac{\phi^{\prime \prime}(-s)}{\phi(-s)+s \phi^{\prime}(-s)+\left(b^{2}-s^{2}\right) \phi^{\prime \prime}(-s)},
$$

where $\phi^{\prime \prime}(-s):=\left.\frac{\mathrm{d}^{2} \phi(t)}{\mathrm{d} t^{2}}\right|_{t=-s}=\frac{\mathrm{d}^{2} \phi(-s)}{\mathrm{d} s^{2}}$. Then we have

$$
\begin{equation*}
\frac{\phi^{\prime \prime}(s)}{\phi(s)-s \phi^{\prime}(s)}=\frac{\phi^{\prime \prime}(-s)}{\phi(-s)+s \phi^{\prime}(-s)} \tag{4.8}
\end{equation*}
$$

Denote $P(s):=\phi(s)-s \phi^{\prime}(s)$. (4.8) can be written as $P^{\prime}(s) P(-s)+P^{\prime}(-s) P(s)=0$. It implies $P(s)=k_{1} P(-s)$, where $k_{1}=$ constant. Then we obtain

$$
\phi(s)-k_{1} \phi(-s)=\left[\phi^{\prime}(s)+k_{1} \phi^{\prime}(-s)\right] s=\left[\phi(s)-k_{1} \phi(-s)\right]^{\prime} s .
$$

Thus there is a constant k_{2} such that $\phi(s)-k_{1} \phi(-s)=k_{2} s$.
Acknowledgements We thank the referees for their time and comments.

References

[1] R. BRYANT. Geodesically reversible Finsler 2-spheres on constant curvature. in Inspired by S. S. Chern, ed. Phillip A. Griffiths, Nankai Tracts in Math., 2006, 11: 95-111.
[2] M. CRAMPIN. Randers spaces with reversible geodesics. Publ. Math. Debrecen, 2005, 67(3-4): 401-409.
[3] I. M. MASCA, S. V. SABAU, H. SHIMADA. Reversible geodesics for (α, β)-metrics. Internat. J. Math., 2010, 21(8): 1071-1094.
[4] Zhongmin SHEN. Differential Geometry of Spray and Finsler Spaces. Kluwer Academic Publishers, Dordrecht, 2001.
[5] S. S. CHERN, Zhongmin SHEN. Rieman-Finsler Geometry. Nankai Tracts in Mathematics, Vol. 6, World Scientific, 2005.
[6] S. BACSO, M. MATSUMOTO. On Finsler spaces of Douglas type-a generalization of the notion of Berwald space. Publ. Math. Debrecen, 1997, 51(3-4): 385-406.
[7] Xinyue CHENG, Zhongmin SHEN. A class of Finsler metrics with isotropic S-curvature. Israel J. Math., 2009, 169(1): 317-340.

[^0]: Received October 1, 2015; Accepted January 13, 2016
 Supported by the National Natural Science Foundation of China (Grant No. 11471246) and the Jiangxi Provincial Science and Technology Project (Grant No. 20161BAB211021).

 * Corresponding author

 E-mail address: 304482707@qq.com (Lihong LIU); Guangzu CHEN (chenguangzu1@163.com)

