Recursive Schemes for Scattered Data Interpolation via Bivariate Continued Fractions

Jiang QIAN ${ }^{1, *}$, Fan WANG ${ }^{2}$, Zhuojia FU 3, Yunbiao WU ${ }^{4}$
1. College of Sciences, Hohai University, Jiangsu 211100, P. R. China;
2. College of Engineering, Nanjing Agricultural University, Jiangsu 210031, P. R. China;
3. College of Mechanics and Materials, Hohai University, Jiangsu 211100, P. R. China;
4. Basic Research Department, Hohai University Wentian College, Anhui 243031, P. R. China

Abstract

In the paper, firstly, based on new non-tensor-product-typed partially inverse divided differences algorithms in a recursive form, scattered data interpolating schemes are constructed via bivariate continued fractions with odd and even nodes, respectively. And equivalent identities are also obtained between interpolated functions and bivariate continued fractions. Secondly, by means of three-term recurrence relations for continued fractions, the characterization theorem is presented to study on the degrees of the numerators and denominators of the interpolating continued fractions. Thirdly, some numerical examples show it feasible for the novel recursive schemes. Meanwhile, compared with the degrees of the numerators and denominators of bivariate Thiele-typed interpolating continued fractions, those of the new bivariate interpolating continued fractions are much low, respectively, due to the reduction of redundant interpolating nodes. Finally, the operation count for the rational function interpolation is smaller than that for radial basis function interpolation.

Keywords Scattered data interpolation; bivariate continued fraction; three-term recurrence relation; characterization theorem; radial basis function

MR(2010) Subject Classification 65D05; 41A20

1. Introduction

Scattered data interpolation via bivariate continued fractions belongs to multivariate approximation, which is nowadays an increasingly active research area [1]. The field is both fascinating and intellectually stimulating since a lot of classical univariate theory cannot be straightforwardly generalized to the multivariate one. As a result, new tools have had to be, and must continue to be developed, such as radial basis functions [2], multivariate splines based on the Conformality of Smoothing Cofactor Method [3] that is applied for the construction of spline quasi-interpolation [4-7], rational approximation [8-10], etc.

To be mentioned, besides these new developments are the results on continued fraction interpolation and expansion. Cuyt and Verdonk constructed branched Thiele continued fractions

[^0]rational interpolation in $[11,12]$. By introducing blending differences which look partially like multivariate divided differences and partially like multivariate inverse ones, Tan constructed the schemes for blending rational interpolation in Newton-Thiele type [13] and Thiele-Newton type [14]. Moreover, without the restriction of interpolation over rectangular domain, Wang and Qian have determined three-term recurrence relations for branched continued fractions, and constructed the modified branched continued fractions interpolation over pyramid-typed grids in \mathbf{R}^{3} with the algorithm of partial inverse differences in tensor-product-like manner in [15]. Also, they have presented a novel continued fractions interpolation scheme over arbitrary ortho-triples [16] by using a new symmetrical algorithm of partial inverse differences in \mathbf{R}^{2}.

To the best of our knowledge, however, there are few papers before the present on surveying scattered data interpolation via bivariate continued fractions. Hence, by considering the arbitrary distribution of the interpolating nodes, we are interested in the construction of non-tensor-product-typed bivariate continued fraction interpolating scheme.

A brief outline of this article is as follows. In Section 2, by considering two types of scattered data distribution, we investigate new non-tensor-product-typed partial divided differences algorithms in a recursive form, and construct scattered data interpolation based on bivariate continued fractions with odd and even nodes, respectively. Also we obtain an equivalent identity between the interpolated function and the bivariate continued fraction. Then in Section 3, by the well-known three-term recurrence relations for continued fractions, we investigate the characterization theorem to disclose the degrees of the numerators and denominators of the interpolating continued fractions. Then, in Section 4, we compute the explicit representation of the interpolating continued fractions with some numerical examples, and plot the figures of these rational interpolating functions and the corresponding error functions. Numerical examples show it valid for the recursive scheme. We also compare the degrees of the numerators and denominators of bivariate Thiele-typed interpolating continued fractions with those of the new bivariate interpolating continued fractions, respectively. Finally, section 5 makes an analysis of the complexity of the bivariate continued fraction interpolation and the well-known radial basis function interpolation.

2. Bivariate recursive continued fraction interpolating algorithm

We shall propose a new recursive algorithm for bivariate inverse divided difference in the form of non-tensor product. Based upon the algorithm, we shall work out the interpolating coefficients of continued fractions recursively, and then complete the construction of scattered data interpolating schemes in the case of odd and even nodes, respectively.

Firstly, suppose that the $2 n+1$ distinct points are contained in the node collection $\Pi_{2 n+1}=$ $\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n}, y_{2 n}\right)\right\}$. And we choose the interpolating nodes to guarantee the smooth computation in the paper, for instance, $x_{i} \neq x_{j}, y_{i} \neq y_{j}$, for $i \neq j$, which means that the interpolating nodes do not lie in the horizontal or vertical line. Then we shall consider the
bivariate continued fraction as

$$
\begin{align*}
R_{2 n+1}(x, y)= & c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+\frac{\left(y-y_{0}\right)\left(x-x_{1}\right) \mid}{\mid c_{2}}+\frac{\left(y-y_{1}\right)\left(x-x_{2}\right) \mid}{\mid c_{3}}+ \\
& \ldots \frac{\left(y-y_{2 n-3}\right)\left(x-x_{2 n-2}\right) \mid}{\mid c_{2 n-1}}+\frac{\left(y-y_{2 n-2}\right)\left(x-x_{2 n-1}\right) \mid}{\mid c_{2 n}} \\
\equiv & c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+K_{i=0}^{2 n-2} \frac{\left(y-y_{i}\right)\left(x-x_{i+1}\right) \mid}{\mid c_{i+2}} . \tag{2.1}
\end{align*}
$$

Secondly, we shall define the representation of the bivariate continued fraction $R_{2 n+2}(x, y)$ by comparing with $R_{2 n+1}(x, y)$, where the $2 n+2$ distinct points are contained in the node collection $\Pi_{2 n+2}=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{2 n+1}, y_{2 n+1}\right)\right\}$, where $x_{i} \neq x_{j}, y_{i} \neq y_{j}$, for $i \neq j$.

$$
\begin{equation*}
R_{2 n+2}(x, y)=R_{2 n+1}(x, y)+\frac{\left(y-y_{2 n-1}\right)\left(x-x_{2 n}\right) \mid}{\mid c_{2 n+1}} \tag{2.2}
\end{equation*}
$$

where $R_{2 n+1}(x, y)$ is defined as in (2.1).
Now we shall illustrate that the bivariate polynomials $R_{2 n+1}$ in (2.1) and $R_{2 n+2}$ in (2.2) can be put into application in scattered data interpolation over the node collection $\Pi_{2 n+1}$ and $\Pi_{2 n+2}$, respectively. So we shall make some preparation for it by developing new non-tensor-product-type algorithms of bivariate partially inverse divided differences. To save space, the bivariate partially inverse divided difference $\phi\left[x_{0}, \ldots, x_{k} ; y_{0}, \ldots, y_{k}\right]$, i.e., $\phi_{0 \ldots, k}$ may be used to denote $\phi\left[x_{0}, x_{1}, \ldots, x_{k-1}, x_{k} ; y_{0}, y_{1}, \ldots, y_{k-1}, y_{k}\right]$, and additional letters may be written explicitly only when the subscripts are not consecutive. And we denote the vertical coordinates at the interpolating nodes $P_{i}\left(x_{i}, y_{i}\right)$ by $f\left(x_{i}, y_{i}\right) \equiv f_{i}$ for $i=0,1, \ldots, 2 n, 2 n+1$, where $f(x, y)$ is defined as the interpolated function.

Definition 2.1 For arbitrary node form $\Pi_{2 n+2}$, where $x_{i} \neq x_{j}, y_{i} \neq y_{j}$, for $i \neq j$, we define the following bivariate non-tensor-product-typed partially inverse divided differences.

$$
\begin{gather*}
\phi_{i} \equiv \phi\left[x_{i} ; y_{i}\right]=f_{i}, \quad i=0,1, \ldots, 2 n, 2 n+1 \tag{2.3}\\
\phi_{01} \equiv \phi\left[x_{0}, x_{1} ; \quad y_{0}, y_{1}\right]=\frac{x_{1}-x_{0}}{f_{1}-f_{0}} \tag{2.4}\\
\phi_{012} \equiv \phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]=\frac{\left(y_{2}-y_{0}\right)\left(x_{2}-x_{1}\right)}{\phi\left[x_{0}, x_{2} ; y_{0}, y_{2}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]}, \tag{2.5}
\end{gather*}
$$

where $\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]$ is defined as (2.4), and

$$
\begin{gather*}
\phi_{02} \equiv \phi\left[x_{0}, x_{2} ; y_{0}, y_{2}\right]=\frac{x_{2}-x_{0}}{f_{2}-f_{0}} . \\
\phi_{0 \cdots 3} \equiv \phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]=\frac{\left(y_{3}-y_{1}\right)\left(x_{3}-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x_{3} ; y_{0}, y_{1}, y_{3}\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]}, \tag{2.6}
\end{gather*}
$$

where $\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]$ is defined as (2.5), and

$$
\begin{gathered}
\phi_{013} \equiv \phi\left[x_{0}, x_{1}, x_{3} ; y_{0}, y_{1}, y_{3}\right]=\frac{\left(y_{3}-y_{0}\right)\left(x_{3}-x_{1}\right)}{\phi\left[x_{0}, x_{3} ; y_{0}, y_{3}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]}, \\
\phi_{03} \equiv \phi\left[x_{0}, x_{3} ; y_{0}, y_{3}\right]=\frac{x_{3}-x_{0}}{f_{3}-f_{0}}
\end{gathered}
$$

$$
\begin{align*}
\phi_{0 \cdots 4} & \equiv \phi\left[x_{0}, \ldots, x_{4} ; y_{0}, \ldots, y_{4}\right] \\
& =\frac{\left(y_{4}-y_{2}\right)\left(x_{4}-x_{3}\right)}{\phi\left[x_{0}, x_{1}, x_{2}, x_{4} ; y_{0}, y_{1}, y_{2}, y_{4}\right]-\phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]} \tag{2.7}
\end{align*}
$$

where $\phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]$ is defined as (2.6), and

$$
\begin{gathered}
\phi_{0124} \equiv \phi\left[x_{0}, x_{1}, x_{2}, x_{4} ; y_{0}, y_{1}, y_{2}, y_{4}\right] \\
=\frac{\left(y_{4}-y_{1}\right)\left(x_{4}-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x_{4} ; y_{0}, y_{1}, y_{4}\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]}, \\
\phi_{014} \equiv \phi\left[x_{0}, x_{1}, x_{4} ; y_{0}, y_{1}, y_{4}\right]=\frac{\left(y_{4}-y_{0}\right)\left(x_{4}-x_{1}\right)}{\phi\left[x_{0}, x_{4} ; y_{0}, y_{4}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]}, \\
\phi_{04} \equiv \phi\left[x_{0}, x_{4} ; y_{0}, y_{4}\right]=\frac{x_{4}-x_{0}}{f_{4}-f_{0}}
\end{gathered}
$$

$$
\begin{align*}
\phi_{0 \cdots, 2 n} & \equiv \phi\left[x_{0}, \ldots, x_{2 n} ; y_{0}, \ldots, y_{2 n}\right] \\
& =\frac{\left(y_{2 n}-y_{2 n-2}\right)\left(x_{2 n}-x_{2 n-1}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-2}, x_{2 n} ; y_{0}, \ldots, y_{2 n-2}, y_{2 n}\right]-\phi\left[x_{0}, \ldots, x_{2 n-1} ; y_{0}, \ldots, y_{2 n-1}\right]}, \tag{2.8}
\end{align*}
$$

where

$$
\begin{gathered}
\phi_{0 \cdots, 2 n-2,2 n}^{\equiv \phi} \phi x_{0}, \ldots, x_{2 n-2}, x_{2 n} ; \begin{array}{r}
\left.y_{0}, \ldots, y_{2 n-2}, y_{2 n}\right] \\
\\
=\frac{\left(y_{2 n}-y_{2 n-3}\right)\left(x_{2 n}-x_{2 n-2}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-3}, x_{2 n} ; y_{0}, \ldots, y_{2 n-3}, y_{2 n}\right]-\phi\left[x_{0}, \ldots, x_{2 n-2} ; y_{0}, \ldots, y_{2 n-2}\right]}, \\
\cdots,
\end{array} \\
\begin{array}{c}
\phi_{0 \cdots 4,2 n} \equiv \phi\left[x_{0}, \ldots, x_{4}, x_{2 n} ; y_{0}, \ldots, y_{4}, y_{2 n}\right] \\
\\
=\frac{\left(y_{2 n}-y_{3}\right)\left(x_{2 n}-x_{4}\right)}{\phi\left[x_{0}, \ldots, x_{3}, x_{2 n} ; y_{0}, \ldots, y_{3}, y_{2 n}\right]-\phi\left[x_{0}, \ldots, x_{4} ; y_{0}, \ldots, y_{4}\right]}, \\
\phi_{0 \cdots 3,2 n} \equiv \phi\left[x_{0}, \ldots, x_{3}, x_{2 n} ; y_{0}, \ldots, y_{3}, y_{2 n}\right] \\
\\
=\frac{\left(y_{2 n}-y_{2}\right)\left(x_{2 n}-x_{3}\right)}{\phi\left[x_{0}, x_{1}, x_{2}, x_{2 n} ; y_{0}, y_{1}, y_{2}, y_{2 n}\right]-\phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]}, \\
\phi_{012,2 n} \equiv \phi\left[x_{0}, x_{1}, x_{2}, x_{2 n} ; y_{0}, y_{1}, y_{2}, y_{2 n}\right] \\
\\
=\frac{\left(y_{2 n}-y_{1}\right)\left(x_{2 n}-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x_{2 n} ; y_{0}, y_{1}, y_{2 n}\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]}, \\
\phi_{01,2 n} \equiv \phi\left[x_{0}, x_{1}, x_{2 n} ; y_{0}, y_{1}, y_{2 n}\right]=\frac{\left(y_{2 n}-y_{0}\right)\left(x_{2 n}-x_{1}\right)}{\phi\left[x_{0}, x_{2 n} ; y_{0}, y_{2 n}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]}, \\
\phi_{0,2 n} \equiv \phi\left[x_{0}, x_{2 n} ; y_{0}, y_{2 n}\right]=\frac{x_{2 n}-x_{0}}{f_{2 n}-f_{0}} .
\end{array}
\end{gathered}
$$

Up to

$$
\begin{align*}
\phi_{0 \cdots, 2 n+1} & \equiv \phi\left[x_{0}, \ldots, x_{2 n+1} ; y_{0}, \ldots, y_{2 n+1}\right] \\
& =\frac{\left(y_{2 n+1}-y_{2 n-1}\right)\left(x_{2 n+1}-x_{2 n}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-1}, x_{2 n+1} ; y_{0}, \ldots, y_{2 n-1}, y_{2 n+1}\right]-\phi\left[x_{0}, \ldots, x_{2 n} ; y_{0}, \ldots, y_{2 n}\right]}, \tag{2.9}
\end{align*}
$$

where $\phi\left[x_{0}, \ldots, x_{2 n} ; y_{0}, \ldots, y_{2 n}\right]$ is defined as (2.8), and

$$
\begin{aligned}
& \phi_{0 \cdots, 2 n-1,2 n+1} \equiv \phi\left[x_{0}, \ldots, x_{2 n-1}, x_{2 n+1} ; y_{0}, \ldots, y_{2 n-1}, y_{2 n+1}\right] \\
& =\frac{\left(y_{2 n+1}-y_{2 n-2}\right)\left(x_{2 n+1}-x_{2 n-1}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-2}, x_{2 n+1} ; y_{0}, \ldots, y_{2 n-2}, y_{2 n+1}\right]-\phi\left[x_{0}, \ldots, x_{2 n-1} ; y_{0}, \ldots, y_{2 n-1}\right]}, \\
& \phi_{0 \cdots 4,2 n+1} \equiv \phi\left[x_{0}, \ldots, x_{4}, x_{2 n+1} ; y_{0}, \ldots, y_{4}, y_{2 n+1}\right] \\
& =\frac{\left(y_{2 n+1}-y_{3}\right)\left(x_{2 n+1}-x_{4}\right)}{\phi\left[x_{0}, \ldots, x_{3}, x_{2 n+1} ; y_{0}, \ldots, y_{3}, y_{2 n+1}\right]-\phi\left[x_{0}, \ldots, x_{4} ; y_{0}, \ldots, y_{4}\right]}, \\
& \phi_{0 \cdots 3,2 n+1} \equiv \phi\left[x_{0}, \ldots, x_{3}, x_{2 n+1} ; y_{0}, \ldots, y_{3}, y_{2 n+1}\right] \\
& =\frac{\left(y_{2 n+1}-y_{2}\right)\left(x_{2 n+1}-x_{3}\right)}{\phi\left[x_{0}, x_{1}, x_{2}, x_{2 n+1} ; y_{0}, y_{1}, y_{2}, y_{2 n+1}\right]-\phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]}, \\
& \phi_{012,2 n+1} \equiv \phi\left[x_{0}, x_{1}, x_{2}, x_{2 n+1} ; y_{0}, y_{1}, y_{2}, y_{2 n+1}\right] \\
& =\frac{\left(y_{2 n+1}-y_{1}\right)\left(x_{2 n+1}-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x_{2 n+1} ; y_{0}, y_{1}, y_{2 n+1}\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]}, \\
& \phi_{01,2 n+1} \equiv \phi\left[x_{0}, x_{1}, x_{2 n+1} ; y_{0}, y_{1}, y_{2 n+1}\right] \\
& =\frac{\left(y_{2 n+1}-y_{0}\right)\left(x_{2 n+1}-x_{1}\right)}{\phi\left[x_{0}, x_{2 n+1} ; y_{0}, y_{2 n+1}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]} \text {, } \\
& \phi_{0,2 n+1} \equiv \phi\left[x_{0}, x_{2 n+1} ; y_{0}, y_{2 n+1}\right]=\frac{x_{2 n+1}-x_{0}}{f_{2 n+1}-f_{0}} \text {. }
\end{aligned}
$$

Let us summarize the results in Definition 2.1 into the corresponding algorithms for the computation of the partially inverse divided differences with odd and even interpolating nodes, respectively, which are also shown in Table 1.

Algorithm 2.1

1. Initialization: $\phi_{i}=f\left(x_{i}, y_{i}\right)$, where $i=0,1, \ldots, 2 n$.
2. Recursive case: By means of Definition 2.1, calculate

$$
\begin{aligned}
\phi_{0, i}(i=1,2, \ldots, 2 n) & \rightarrow \phi_{01, i}(i=2, \ldots, 2 n) \rightarrow \phi_{012, i}(i=3, \ldots, 2 n) \\
& \rightarrow \phi_{0123, i}(i=4, \ldots, 2 n) \rightarrow \cdots \rightarrow \phi_{0 \cdots, 2 n-2, i}(i=2 n-1,2 n)
\end{aligned}
$$

3. Result: $\phi_{0} \cdots, 2 n$

Algorithm 2.2

1. Initialization: $\phi_{i}=f\left(x_{i}, y_{i}\right)$, where $i=0,1, \ldots, 2 n+1$.
2. Recursive case: By means of Definition 2.1, calculate

$$
\begin{aligned}
\phi_{0, i}(i=1,2, \ldots, 2 n+1) & \rightarrow \phi_{01, i}(i=2, \ldots, 2 n+1) \rightarrow \phi_{012, i}(i=3, \ldots, 2 n+1) \\
& \rightarrow \phi_{0123, i}(i=4, \ldots, 2 n+1) \rightarrow \cdots \rightarrow \phi_{0 \cdots, 2 n-1, i}(i=2 n, 2 n+1)
\end{aligned}
$$

3. Result: $\phi_{0 \cdots, 2 n+1}$

ϕ_{0}	ϕ_{1}	ϕ_{2}	ϕ_{3}	ϕ_{4}	ϕ_{5}	\cdots	$\phi_{2 n}$	$\phi_{2 n+1}$
	ϕ_{01}	ϕ_{02}	ϕ_{03}	ϕ_{04}	ϕ_{05}	\cdots	$\phi_{0,2 n}$	$\phi_{0,2 n+1}$
		ϕ_{012}	ϕ_{013}	ϕ_{014}	ϕ_{015}	\cdots	$\phi_{01,2 n}$	$\phi_{01,2 n+1}$
			ϕ_{0123}	ϕ_{0124}	ϕ_{0125}	\cdots	$\phi_{012,2 n}$	$\phi_{012,2 n+1}$
				$\phi_{01 \cdots 4}$	ϕ_{01235}	\cdots	$\phi_{0123,2 n}$	$\phi_{0123,2 n+1}$
					$\phi_{0 \cdots 5}$	\cdots	$\phi_{0 \cdots 4,2 n}$	$\phi_{0 \cdots 4,2 n+1}$
						\ddots	\vdots	\vdots
							$\phi_{0 \cdots, 2 n}$	$\phi_{0 \cdots, 2 n-1,2 n+1}$
								$\phi_{0 \cdots, 2 n+1}$

Table 1 Recursive computation of bivariate non-tensor-product-typed partially inverse divided differences

Remark 2.2 In the case of threes of the interpolating nodes lying in the horizontal or vertical lines, the bivariate interpolating continued fractions have been considered over the orthor-triples in [16].

Now we shall establish bivariate continued fraction interpolation over the node collection $\Pi_{2 n+1}$ and $\Pi_{2 n+2}$, respectively, and computation of the interpolating coefficients of them is based upon Algorithms 2.1 and 2.2.

Theorem 2.3 (i) For each $\left(x_{i}, y_{i}\right) \in \Pi_{2 n+1}$, the bivariate interpolating continued fraction $R_{2 n+1}(x, y)$ defined in (2.1) satisfies

$$
\begin{equation*}
R_{2 n+1}\left(x_{i}, y_{i}\right)=f\left(x_{i}, y_{i}\right)=f_{i}, \quad i=0,1, \ldots, 2 n \tag{2.10}
\end{equation*}
$$

where the interpolating coefficients

$$
\begin{equation*}
c_{i}=\phi\left[x_{0}, \ldots, x_{i} ; y_{0}, \ldots, y_{i}\right], \quad i=0,1, \ldots, 2 n \tag{2.11}
\end{equation*}
$$

(ii) The bivariate interpolating continued fraction $R_{2 n+2}(x, y)$ in the form of (2.2) interpolates over scattered data $\Pi_{2 n+2}$, that is, for $i=0,1, \ldots, 2 n+1$,

$$
\begin{equation*}
R_{2 n+2}\left(x_{i}, y_{i}\right)=f\left(x_{i}, y_{i}\right)=f_{i} \tag{2.12}
\end{equation*}
$$

where the interpolating coefficients

$$
\begin{equation*}
c_{i}=\phi\left[x_{0}, \ldots, x_{i} ; y_{0}, \ldots, y_{i}\right], \quad i=0,1, \ldots, 2 n+1 . \tag{2.13}
\end{equation*}
$$

Proof We shall perform the proof of Theorem 2.3 for n by induction.
For $n=1, \Pi_{2}=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right)\right\}, R_{2}(x, y)=c_{0}+\frac{x-x_{0}}{c_{1}}$, which satisfies $R_{2}\left(x_{i}, y_{i}\right)=f_{i}$, $i=0,1$. Thus, it follows that

$$
c_{0}=f_{0}, \quad c_{1}=\frac{x_{1}-x_{0}}{f_{1}-f_{0}} \equiv \phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right] .
$$

Moreover, for $n=2, \Pi_{3}=\left\{\left(x_{i}, y_{i}\right), i=0,1,2\right\}$,

$$
R_{3}(x, y)=c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+\frac{\left(y-y_{0}\right)\left(x-x_{1}\right) \mid}{\mid c_{2}} .
$$

By considering the interpolation at the node $\left(x_{2}, y_{2}\right)$, we can obtain from the above formula $R_{3}(x, y)$,

$$
\begin{aligned}
& c_{1}+\frac{\left(y_{2}-y_{0}\right)\left(x_{2}-x_{1}\right)}{c_{2}}=\frac{x_{2}-x_{0}}{f_{2}-f_{0}} \equiv \phi\left[x_{0}, x_{2} ; y_{0}, y_{2}\right], \\
& \Rightarrow c_{2}=\frac{\left(y_{2}-y_{0}\right)\left(x_{2}-x_{1}\right)}{\phi\left[x_{0}, x_{2} ; y_{0}, y_{2}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]} \equiv \phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right] \text {. }
\end{aligned}
$$

For $n=3, \Pi_{4}=\left\{\left(x_{i}, y_{i}\right), i=0,1,2,3\right\}$,

$$
R_{4}(x, y)=c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+\frac{\left(y-y_{0}\right)\left(x-x_{1}\right) \mid}{\mid c_{2}}+\frac{\left(y-y_{1}\right)\left(x-x_{2}\right) \mid}{\mid c_{3}}
$$

By substituting the interpolating node $\left(x_{3}, y_{3}\right)$ into $R_{4}(x, y)$, we have

$$
\begin{aligned}
c_{1} & +\frac{\left(y_{3}-y_{0}\right)\left(x_{3}-x_{1}\right) \mid}{\mid c_{2}}+\frac{\left(y_{3}-y_{1}\right)\left(x_{3}-x_{2}\right) \mid}{\mid c_{3}}=\frac{x_{3}-x_{0}}{f_{3}-f_{0}} \equiv \phi\left[x_{0}, x_{3} ; y_{0}, y_{3}\right] \\
\Rightarrow c_{2} & +\frac{\left(y_{3}-y_{1}\right)\left(x_{3}-x_{2}\right)}{c_{3}}=\frac{\left(y_{3}-y_{0}\right)\left(x_{3}-x_{1}\right)}{\phi\left[x_{0}, x_{3} ; y_{0}, y_{3}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]} \\
& \equiv \phi\left[x_{0}, x_{1}, x_{3} ; y_{0}, y_{1}, y_{3}\right] \\
\Rightarrow c_{3} & =\frac{\left(y_{3}-y_{1}\right)\left(x_{3}-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x_{3} ; y_{0}, y_{1}, y_{3}\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]} \\
& \equiv \phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]
\end{aligned}
$$

For $n=4, \Pi_{5}=\left\{\left(x_{i}, y_{i}\right), i=0, \ldots, 4\right\}$,

$$
R_{5}(x, y)=R_{4}(x, y)+\frac{\left(y-y_{2}\right)\left(x-x_{3}\right) \mid}{\mid c_{4}} .
$$

By substituting the interpolating node $\left(x_{4}, y_{4}\right)$ into $R_{5}(x, y)$, we have

$$
\begin{aligned}
c_{1} & +\frac{\left(y_{4}-y_{0}\right)\left(x_{4}-x_{1}\right) \mid}{c_{2}}+\frac{\left(y_{4}-y_{1}\right)\left(x_{4}-x_{2}\right) \mid}{c_{3}}+\frac{\left(y_{4}-y_{2}\right)\left(x_{4}-x_{3}\right) \mid}{c_{4}} \\
& =\frac{x_{4}-x_{0}}{f_{4}-f_{0}} \equiv \phi\left[x_{0}, x_{4} ; y_{0}, y_{4}\right], \\
\Rightarrow c_{2} & +\frac{\left(y_{4}-y_{1}\right)\left(x_{4}-x_{2}\right) \mid}{\mid c_{3}}+\frac{\left(y_{4}-y_{2}\right)\left(x_{4}-x_{3}\right) \mid}{c_{4}} \\
& =\frac{\left(y_{4}-y_{0}\right)\left(x_{4}-x_{1}\right)}{\phi\left[x_{0}, x_{4} ; y_{0}, y_{4}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]} \equiv \phi\left[x_{0}, x_{1}, x_{4} ; y_{0}, y_{1}, y_{4}\right] \\
\Rightarrow c_{3} & +\frac{\left(y_{4}-y_{2}\right)\left(x_{4}-x_{3}\right)}{c_{4}}=\frac{\left(y_{4}-y_{1}\right)\left(x_{4}-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x_{4} ; y_{0}, y_{1}, y_{4}\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]} \\
& \equiv \phi\left[x_{0}, x_{1}, x_{2}, x_{4} ; y_{0}, y_{1}, y_{2}, y_{4}\right] \\
\Rightarrow c_{4} & =\frac{\left(y_{4}-y_{2}\right)\left(x_{4}-x_{3}\right)}{\phi\left[x_{0}, x_{1}, x_{2}, x_{4} ; y_{0}, y_{1}, y_{2}, y_{4}\right]-\phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]} \\
& \equiv \phi\left[x_{0}, \ldots, x_{4} ; y_{0}, \ldots, y_{4}\right] .
\end{aligned}
$$

Hence, we show it valid for the case of $n=1,2,3,4,5$ in Theorem 2.3.
Furthermore, we assume the results hold for $\Pi_{i}, i=1, \ldots, 2 n$. To be more precise, we denote the corresponding interpolating coefficients by $c_{i}^{\prime} \mathrm{s}$ in Algorithm 2.1 and 2.2. Then on the
one hand, it follows in the case of $i=2 n+1$,

$$
R_{2 n+1}(x, y)=c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+K_{i=0}^{2 n-2} \frac{\left(y-y_{i}\right)\left(x-x_{i+1}\right) \mid}{\mid c_{i+2}}
$$

By considering the interpolation at the node $\left(x_{2 n}, y_{2 n}\right)$, we have from $R_{2 n+1}(x, y)$

$$
\begin{aligned}
& c_{1}+\frac{\left(y_{2 n}-y_{0}\right)\left(x_{2 n}-x_{1}\right) \mid}{\mid c_{2}}+\cdots+\frac{\left(y_{2 n}-y_{2 n-2}\right)\left(x_{2 n}-x_{2 n-1}\right) \mid}{c_{2 n}} \\
& \quad \frac{x_{2 n}-x_{0}}{f_{2 n}-f_{0}} \equiv \phi\left[x_{0}, x_{2 n} ; y_{0}, y_{2 n}\right] \\
& \Rightarrow c_{2}+\frac{\left(y_{2 n}-y_{1}\right)\left(x_{2 n}-x_{2}\right) \mid}{\mid c_{3}}+\cdots+\frac{\left(y_{2 n}-y_{2 n-2}\right)\left(x_{2 n}-x_{2 n-1}\right) \mid}{\mid c_{2 n}} \\
&=\frac{\left(y_{2 n}-y_{0}\right)\left(x_{2 n}-x_{1}\right)}{\phi\left[x_{0}, x_{2 n} ; y_{0}, y_{2 n}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]} \equiv \phi\left[x_{0}, x_{1}, x_{2 n} ; y_{0}, y_{1}, y_{2 n}\right] \\
& \Rightarrow c_{3}+\frac{\left(y_{2 n}-y_{2}\right)\left(x_{2 n}-x_{3}\right) \mid}{c_{4}}+\cdots+\frac{\left(y_{2 n}-y_{2 n-2}\right)\left(x_{2 n}-x_{2 n-1}\right) \mid}{c_{2 n}} \\
&=\frac{\left(y_{2 n}-y_{1}\right)\left(x_{2 n}-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x_{2 n} ; y_{0}, y_{1}, y_{2 n}\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]} \\
& \equiv \phi\left[x_{0}, x_{1}, x_{2}, x_{2 n} ; y_{0}, y_{1}, y_{2}, y_{2 n}\right] \\
& \Rightarrow+\frac{\left(y_{2 n}-y_{3}\right)\left(x_{2 n}-x_{4}\right) \mid}{c_{5}}+\cdots+\frac{\left(y_{2 n}-y_{2 n-2}\right)\left(x_{2 n}-x_{2 n-1}\right) \mid}{c_{2 n}} \\
&=\frac{\left(y_{2 n}-y_{2}\right)\left(x_{2 n}-x_{3}\right)}{\phi\left[x_{0}, x_{1}, x_{2}, x_{2 n} ; y_{0}, y_{1}, y_{2}, y_{2 n}\right]-\phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]} \\
& \equiv \phi\left[x_{0}, \ldots, x_{3}, x_{2 n} ; y_{0}, \ldots, y_{3}, y_{2 n}\right] \\
& \Rightarrow \cdots \\
& \Rightarrow c_{2 n-1}+\frac{\left(y_{2 n}-y_{2 n-2}\right)\left(x_{2 n}-x_{2 n-1}\right) \mid}{c_{2 n}} \\
& \quad=\frac{\left(y_{2 n}-y_{2 n-3}\right)\left(x_{2 n}-x_{2 n-2}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-3}, x_{2 n} ; y_{0}, \ldots, y_{2 n-3}, y_{2 n}\right]-\phi\left[x_{0}, \ldots, x_{2 n-2} ; y_{0}, \ldots, y_{2 n-2}\right]} \\
& \quad \equiv \phi\left[x_{0}, \ldots, x_{2 n-2}, x_{2 n} ; y_{0}, \ldots, y_{2 n-2}, y_{2 n}\right] \\
& \Rightarrow c_{2 n} \\
&=\frac{\phi\left[x_{0}, \ldots, x_{2 n-2}, x_{2 n} ; y_{0}, \ldots, y_{2 n-2}, y_{2 n}\right]-\phi\left[x_{0}, \ldots, x_{2 n-1} ; y_{0}, \ldots, y_{2 n-1}\right]}{} \\
& \quad \equiv \phi\left[x_{0}, \ldots, x_{2 n} ; y_{0}, \ldots, y_{2 n}\right] .
\end{aligned}
$$

On the other hand, we deduce for $i=2 n+2$ similarly that

$$
R_{2 n+2}(x, y)=c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+K_{i=0}^{2 n-1} \frac{\left(y-y_{i}\right)\left(x-x_{i+1}\right) \mid}{\mid c_{i+2}}
$$

By considering the interpolation at the node $\left(x_{2 n+1}, y_{2 n+}\right)$, we obtain from $R_{2 n+2}(x, y)$

$$
\begin{aligned}
c_{1} & +\frac{\left(y_{2 n+1}-y_{0}\right)\left(x_{2 n+1}-x_{1}\right) \mid}{\mid c_{2}}+\cdots+\frac{\left(y_{2 n+1}-y_{2 n-1}\right)\left(x_{2 n+1}-x_{2 n}\right) \mid}{\mid c_{2 n+1}} \\
& =\frac{x_{2 n+1}-x_{0}}{f_{2 n+1}-f_{0}} \equiv \phi\left[x_{0}, x_{2 n+1} ; y_{0}, y_{2 n+1}\right] \\
\Rightarrow c_{2} & +\frac{\left(y_{2 n+1}-y_{1}\right)\left(x_{2 n+1}-x_{2}\right) \mid}{\mid c_{3}}+\cdots+\frac{\left(y_{2 n+1}-y_{2 n-1}\right)\left(x_{2 n+1}-x_{2 n}\right) \mid}{\mid c_{2 n+1}}
\end{aligned}
$$

$$
\begin{aligned}
&=\frac{\left(y_{2 n+1}-y_{0}\right)\left(x_{2 n+1}-x_{1}\right)}{\phi\left[x_{0}, x_{2 n+1} ; y_{0}, y_{2 n+1}\right]-\phi\left[x_{0}, x_{1} ; y_{0}, y_{1}\right]} \equiv \phi\left[x_{0}, x_{1}, x_{2 n+1} ; y_{0}, y_{1}, y_{2 n+1}\right] \\
& \Rightarrow c_{3}+\frac{\left(y_{2 n+1}-y_{2}\right)\left(x_{2 n+1}-x_{3}\right) \mid}{\mid c_{4}}+\cdots+\frac{\left(y_{2 n+1}-y_{2 n-1}\right)\left(x_{2 n+1}-x_{2 n}\right) \mid}{\mid c_{2 n+1}} \\
&=\frac{\left(y_{2 n+1}-y_{1}\right)\left(x_{2 n+1}-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x_{2 n+1} ; y_{0}, y_{1}, y_{2 n+1}\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]} \\
& \equiv \phi\left[x_{0}, x_{1}, x_{2}, x_{2 n+1} ; y_{0}, y_{1}, y_{2}, y_{2 n+1}\right] \\
& \Rightarrow c_{4}+\frac{\left(y_{2 n+1}-y_{3}\right)\left(x_{2 n+1}-x_{4}\right) \mid}{\mid c_{5}}+\cdots+\frac{\left(y_{2 n+1}-y_{2 n-1}\right)\left(x_{2 n+1}-x_{2 n}\right) \mid}{\mid c_{2 n+1}} \\
&=\frac{\left(y_{2 n+1}-y_{2}\right)\left(x_{2 n+1}-x_{3}\right)}{\phi\left[x_{0}, x_{1}, x_{2}, x_{2 n+1} ; y_{0}, y_{1}, y_{2}, y_{2 n+1}\right]-\phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]} \\
& \equiv \phi\left[x_{0}, \ldots, x_{3}, x_{2 n} ; y_{0}, \ldots, y_{3}, y_{2 n}\right] \\
& \Rightarrow \cdots \\
& \Rightarrow c_{2 n}+\frac{\left(y_{2 n+1}-y_{2 n-1}\right)\left(x_{2 n+1}-x_{2 n}\right) \mid}{c_{2 n+1}} \\
&=\frac{\left(y_{2 n+1}-y_{2 n-2}\right)\left(x_{2 n+1}-x_{2 n-1}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-2}, x_{2 n+1} ; y_{0}, \ldots, y_{2 n-2}, y_{2 n+1}\right]-\phi\left[x_{0}, \ldots, x_{2 n-1} ; y_{0}, \ldots, y_{2 n-1}\right]} \\
& \equiv \phi\left[x_{0}, \ldots, x_{2 n-1}, x_{2 n+1} ; y_{0}, \ldots, y_{2 n-1}, y_{2 n+1}\right] \\
& \Rightarrow c_{2 n+1} \\
&=\frac{\left(y_{2 n+1}-y_{2 n-1}\right)\left(x_{2 n+1}-x_{2 n}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-1}, x_{2 n+1} ; y_{0}, \ldots, y_{2 n-1}, y_{2 n+1}\right]-\phi\left[x_{0}, \ldots, x_{2 n} ; y_{0}, \ldots, y_{2 n}\right]} \\
& \equiv \phi\left[x_{0}, \ldots, x_{2 n+1} ; y_{0}, \ldots, y_{2 n+1}\right] .
\end{aligned}
$$

As a result, we show it valid for (2.10) up to (2.13) by induction.
Since we establish the bivariate continued fraction interpolation, we shall make a further study on the equivalent identities between the interpolated functions and the interpolating continued fractions. Before dealing with it, we shall define some bivariate non-tensor-product-typed inverse divided differences with respect to x and y by means of Definition 2.1.

Definition 2.4 For arbitrary node form $\Pi_{2 n+2}$, where $x_{i} \neq x_{j}, y_{i} \neq y_{j}$, for $i \neq j$, and $x \neq x_{i}$, $y \neq y_{i}$, we define some bivariate non-tensor-product-typed inverse divided differences with respect to x and y.

$$
\begin{equation*}
\phi\left[x_{0}, x_{1}, x_{2}, x ; y_{0}, y_{1}, y_{2}, y\right]=\frac{\left(y-y_{1}\right)\left(x-x_{2}\right)}{\phi\left[x_{0}, x_{1}, x ; y_{0}, y_{1}, y\right]-\phi\left[x_{0}, x_{1}, x_{2} ; y_{0}, y_{1}, y_{2}\right]} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\phi\left[x_{0}, \ldots, x_{3}, x ; y_{0}, \ldots, y_{3}, y\right] \tag{4}
\end{equation*}
$$

$$
=\frac{\left(y-y_{2}\right)\left(x-x_{3}\right)}{\phi\left[x_{0}, x_{1}, x_{2}, x ; y_{0}, y_{1}, y_{2}, y\right]-\phi\left[x_{0}, \ldots, x_{3} ; y_{0}, \ldots, y_{3}\right]}
$$

(5)

$$
\begin{aligned}
& \phi\left[x_{0}, \ldots, x_{4}, x ; y_{0}, \ldots, y_{4}, y\right] \\
& \quad=\frac{\left(y-y_{3}\right)\left(x-x_{4}\right)}{\phi\left[x_{0}, \ldots, x_{3}, x ; y_{0}, \ldots, y_{3}, y\right]-\phi\left[x_{0}, \ldots, x_{4} ; y_{0}, \ldots, y_{4}\right]}
\end{aligned}
$$

(2n)

$$
\begin{aligned}
& \phi\left[x_{0}, \ldots, x_{2 n-1}, x ; y_{0}, \ldots, y_{2 n-1}, y\right] \\
& \quad=\frac{\left(y-y_{2 n-2}\right)\left(x-x_{2 n-1}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-2}, x ; y_{0}, \ldots, y_{2 n-2}, y\right]-\phi\left[x_{0}, \ldots, x_{2 n-1} ; y_{0}, \ldots, y_{2 n-1}\right]}
\end{aligned}
$$

$(2 n+1)$

$$
\begin{aligned}
& \phi\left[x_{0}, \ldots, x_{2 n}, x ; y_{0}, \ldots, y_{2 n}, y\right] \\
& \quad=\frac{\left(y-y_{2 n-1}\right)\left(x-x_{2 n}\right)}{\phi\left[x_{0}, \ldots, x_{2 n-1}, x ; y_{0}, \ldots, y_{2 n-1}, y\right]-\phi\left[x_{0}, \ldots, x_{2 n} ; y_{0}, \ldots, y_{2 n}\right]}
\end{aligned}
$$

Up to $(2 n+2)$

$$
\begin{aligned}
& \phi\left[x_{0}, \ldots, x_{2 n+1}, x ; y_{0}, \ldots, y_{2 n+1}, y\right] \\
& \quad=\frac{\left(y-y_{2 n}\right)\left(x-x_{2 n+1}\right)}{\phi\left[x_{0}, \ldots, x_{2 n}, x ; y_{0}, \ldots, y_{2 n}, y\right]-\phi\left[x_{0}, \ldots, x_{2 n+1} ; y_{0}, \ldots, y_{2 n+1}\right]}
\end{aligned}
$$

Theorem 2.5 By letting the interpolating nodes $\left(x_{i}, y_{i}\right), i=0,1,2, \ldots, 2 n$, and using Definition 2.4, we have the equivalent identity

$$
\begin{equation*}
f(x, y)=c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+K_{i=0}^{2 n-2} \frac{\left(y-y_{i}\right)\left(x-x_{i+1}\right) \mid}{\mid c_{i+2}}+\frac{\left(y-y_{2 n-1}\right)\left(x-x_{2 n}\right) \mid}{\mid c_{2 n+1}(x, y)} \tag{2.14}
\end{equation*}
$$

where the interpolating coefficients satisfy

$$
c_{i}=\phi\left[x_{0}, \ldots, x_{i} ; y_{0}, \ldots, y_{i}\right], \quad i=0,1, \ldots, 2 n
$$

And we calculate the function $c_{2 n+1}(x, y)$ in the last term

$$
\begin{equation*}
c_{2 n+1}(x, y)=\phi\left[x_{0}, \ldots, x_{2 n}, x ; \quad y_{0}, \ldots, y_{2 n}, y\right] \tag{2.15}
\end{equation*}
$$

Theorem 2.6 Given the interpolating nodes $\left(x_{i}, y_{i}\right), i=0,1,2, \ldots, 2 n$, we obtain the equivalent identity by means of Definition 2.4

$$
\begin{equation*}
f(x, y)=c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+K_{i=0}^{2 n-1} \frac{\left(y-y_{i}\right)\left(x-x_{i+1}\right) \mid}{\mid c_{i+2}}+\frac{\left(y-y_{2 n}\right)\left(x-x_{2 n+1}\right) \mid}{\mid c_{2 n+2}(x, y)} \tag{2.16}
\end{equation*}
$$

where the interpolating coefficients satisfy

$$
c_{i}=\phi\left[x_{0}, \ldots, x_{i} ; y_{0}, \ldots, y_{i}\right], \quad i=0,1, \ldots, 2 n+1,
$$

and the function $c_{2 n+2}(x, y)$ in the last term satisfies

$$
\begin{equation*}
c_{2 n+2}(x, y)=\phi\left[x_{0}, \ldots, x_{2 n+1}, x ; y_{0}, \ldots, y_{2 n+1}, y\right] \tag{2.17}
\end{equation*}
$$

3. Characterization theorem

In this section, one may see that the three-term recurrence relations for the bivariate continued fraction $R_{2 n+1}(x, y)$ and $R_{2 n+2}(x, y)$ play a vital role on determining the degrees of the numerator and the denominator, respectively. This will be done with sufficient preparation for them.

Denote by $P_{2 n+1}(x, y)$ and $Q_{2 n+1}(x, y)$ the numerator and the denominator of $R_{2 n+1}(x, y)$ as defined in (2.1), respectively, the degrees of which are denoted by $\operatorname{deg} P_{2 n+1}$ and $\operatorname{deg} Q_{2 n+1}$, respectively. And we say the rational function $R_{2 n+1}(x, y)$ is of type $\left(\operatorname{deg} P_{2 n+1}\right) /\left(\operatorname{deg} Q_{2 n+1}\right)$. Similarly, we denote by $P_{2 n+2}(x, y)$ and $Q_{2 n+2}(x, y)$ the numerator and the denominator of $R_{2 n+2}(x, y)$ as defined in (2.2), respectively, with degrees being denoted by $\operatorname{deg} P_{2 n+2}$ and $\operatorname{deg} Q_{2 n+2}$, respectively. And we say the rational function $R_{2 n+2}(x, y)$ is of type $\left(\operatorname{deg} P_{2 n+2}\right) /\left(\operatorname{deg} Q_{2 n+2}\right)$.

Lemma 3.1 ([9]) For the continued fraction

$$
\begin{equation*}
b_{0}+\frac{a_{1} \mid}{\mid b_{1}}+\frac{a_{2} \mid}{\mid b_{2}}+\cdots=b_{0}+K_{i=1}^{\infty} \frac{a_{i}}{b_{i}} \tag{3.1}
\end{equation*}
$$

and its nth convergent

$$
\begin{equation*}
R_{n}=b_{0}+K_{i=1}^{n} \frac{a_{i}}{b_{i}} \equiv \frac{P_{n}}{Q_{n}} \tag{3.2}
\end{equation*}
$$

the three-term recurrence relations for the continued fraction are valid, i.e.,

$$
\begin{equation*}
P_{n}=b_{n} P_{n-1}+a_{n} P_{n-2}, Q_{n}=b_{n} Q_{n-1}+a_{n} Q_{n-2} \tag{3.3}
\end{equation*}
$$

where $P_{-1}=1, P_{0}=b_{0}, Q_{-1}=0, Q_{0}=1, n=1,2, \ldots$.
Lemma 3.2 ([9]) Let

$$
R_{n}(x)=b_{0}(x)+K_{i=1}^{n} \frac{x-x_{i-1}}{b_{i}}=\frac{P_{n}(x)}{Q_{n}(x)}
$$

Then $\operatorname{deg} P_{n}(x)=[(n+1) / 2], \operatorname{deg} Q_{n}(x)=[n / 2]$. In other words, the continued fraction $R_{n}(x)$ is of type $[(n+1) / 2] /[n / 2]$, where $[n / 2]$ means the entire part of $n / 2$.

Besides these, throughout the paper we let $\mathbb{P}_{n, n}(x, y)$ and $\mathbb{P}_{n+1, n}(x, y)$ denote the bivariate tensor-product-type polynomial spaces

$$
\begin{aligned}
& \mathbb{P}_{n, n}=\operatorname{span}\left\{1, x, \ldots, x^{n}\right\} \bigotimes\left\{1, y, \ldots, y^{n}\right\} \\
& \mathbb{P}_{n+1, n}=\operatorname{span}\left\{1, x, \ldots, x^{n+1}\right\} \bigotimes\left\{1, y, \ldots, y^{n}\right\}
\end{aligned}
$$

respectively.
Now by directly calculating, we can obtain the three-term recurrence relations for the bivariate continued fraction $R_{2 n+1}(x, y)$ and $R_{2 n+2}(x, y)$, respectively. And then we establish the corresponding algorithms for computing them.

Theorem 3.3 By letting

$$
\begin{equation*}
R_{2 n+1}(x, y) \equiv \frac{P_{2 n+1}(x, y)}{Q_{2 n+1}(x, y)} \tag{3.4}
\end{equation*}
$$

as defined in (2.1), we obtain the three-term recurrence relations

$$
P_{2 n+1}(x, y)=c_{2 n} P_{2 n}(x, y)+\left(y-y_{2 n-2}\right)\left(x-x_{2 n-1}\right) P_{2 n-1}(x, y)
$$

$$
\begin{equation*}
Q_{2 n+1}(x, y)=c_{2 n} Q_{2 n}(x, y)+\left(y-y_{2 n-2}\right)\left(x-x_{2 n-1}\right) Q_{2 n-1}(x, y) \tag{3.5}
\end{equation*}
$$

where $n=1,2, \ldots$, and

$$
\begin{equation*}
P_{1}=c_{0}, \quad Q_{1}=1, \quad P_{2}=c_{0} c_{1}+x-x_{0}, \quad Q_{2}=c_{1} . \tag{3.6}
\end{equation*}
$$

Theorem 3.4 Suppose

$$
\begin{equation*}
R_{2 n+2}(x, y) \equiv \frac{P_{2 n+2}(x, y)}{Q_{2 n+2}(x, y)} \tag{3.7}
\end{equation*}
$$

as defined in (2.2), then for $n=0,1,2, \ldots$, the three-term recurrence relations

$$
\begin{align*}
& P_{2 n+2}(x, y)=c_{2 n+1} P_{2 n+1}(x, y)+\left(y-y_{2 n-1}\right)\left(x-x_{2 n}\right) P_{2 n}(x, y) \\
& Q_{2 n+2}(x, y)=c_{2 n+1} Q_{2 n+1}(x, y)+\left(y-y_{2 n-1}\right)\left(x-x_{2 n}\right) Q_{2 n}(x, y) \tag{3.8}
\end{align*}
$$

where

$$
\begin{equation*}
P_{0}=1, \quad P_{1}=c_{0}, \quad Q_{0}=0, \quad Q_{1}=1, \quad y-y_{-1}=1 \tag{3.9}
\end{equation*}
$$

Algorithm 3.1 Let $2 n+1$ interpolating nodes $\left(x_{i}, y_{i}\right)$ and the corresponding vertical coordinate $f_{i}(i-0,1, \ldots, 2 n)$ be given.

1. Initialization: For $i=0,1, \ldots, 2 n$, calculate the interpolating coefficients

$$
c_{i}=\phi\left[x_{0}, \ldots, x_{i} ; y_{0}, \ldots, y_{i}\right] .
$$

2. Recursive case:

For $k=1,2, \ldots, n$

$$
\begin{aligned}
& P_{0}=1 ; \quad Q_{0}=0 \\
& P_{1}=c_{0} ; \quad Q_{1}=1 ; \\
& P_{2 k}=c_{2 k-1} P_{2 k-1}+\left(y-y_{2 k-3}\right)\left(x-x_{2 k-2}\right) P_{2 k-2} ; \\
& Q_{2 k}=c_{2 k-1} Q_{2 k-1}+\left(y-y_{2 k-3}\right)\left(x-x_{2 k-2}\right) Q_{2 k-2} ; \\
& P_{2 k+1}=c_{2 k} P_{2 k}+\left(y-y_{2 k-2}\right)\left(x-x_{2 k-1}\right) P_{2 k-1} ; \\
& Q_{2 k+1}=c_{2 k} Q_{2 k}+\left(y-y_{2 k-2}\right)\left(x-x_{2 k-1}\right) Q_{2 k-1} ;
\end{aligned}
$$

end
3. Result: $P_{2 n+1}(x, y), Q_{2 n+1}(x, y) \rightarrow R_{2 n+1}(x, y)=\frac{P_{2 n+1}(x, y)}{Q_{2 n+1}(x, y)}$.

Algorithm 3.2 Let $2 n+2$ interpolating nodes $\left(x_{i}, y_{i}\right)$ and the corresponding vertical coordinate $f_{i}(i=0,1, \ldots, 2 n+1)$ be given.

1. Initialization: For $i=0,1, \ldots, 2 n+1$, calculate the interpolating coefficients

$$
c_{i}=\phi\left[x_{0}, \ldots, x_{i} ; y_{0}, \ldots, y_{i}\right] .
$$

2. Recursive case:

For $k=1,2, \ldots, n$

$$
P_{1}=c_{0} ; \quad Q_{1}=1
$$

$$
\begin{aligned}
& P_{2}=c_{0} c_{1}+x-x_{0} ; \quad Q_{2}=c_{1} ; \\
& P_{2 k+1}=c_{2 k} P_{2 k}+\left(y-y_{2 k-2}\right)\left(x-x_{2 k-1}\right) P_{2 k-1} ; \\
& Q_{2 k+1}=c_{2 k} Q_{2 k}+\left(y-y_{2 k-2}\right)\left(x-x_{2 k-1}\right) Q_{2 k-1} ; \\
& P_{2 k+2}=c_{2 k+1} P_{2 k+1}+\left(y-y_{2 k-1}\right)\left(x-x_{2 k}\right) P_{2 k} ; \\
& Q_{2 k+2}=c_{2 k+1} Q_{2 k+1}+\left(y-y_{2 k-1}\right)\left(x-x_{2 k}\right) Q_{2 k} ;
\end{aligned}
$$

end
3. Result: $P_{2 n+2}(x, y), \quad Q_{2 n+2}(x, y) \rightarrow R_{2 n+2}(x, y)=\frac{P_{2 n+2}(x, y)}{Q_{2 n+2}(x, y)}$.

Based upon the three-term recurrence relations for the bivariate continued fraction $R_{2 n+1}(x, y)$ in Theorem 3.3 and $R_{2 n+2}(x, y)$ in Theorem 3.4, respectively, the degrees of the numerators $P_{2 n+1}(x, y), P_{2 n+2}(x, y)$ and the denominators $Q_{2 n+1}(x, y), Q_{2 n+2}(x, y)$ can be determined, which is called the characterization theorem.

Theorem 3.5 (i) The bivariate continued fraction $R_{2 n+1}(x, y)$ is of type $(2 n) /(2 n)$, and

$$
P_{2 n+1}(x, y) \in \mathbb{P}_{n, n}, Q_{2 n+1}(x, y) \in \mathbb{P}_{n, n}, \quad n=0,1,2, \ldots .
$$

(ii) The bivariate continued fraction $R_{2 n+2}(x, y)$ is of type $(2 n+1) /(2 n)$, and

$$
P_{2 n+2}(x, y) \in \mathbb{P}_{n+1, n}, Q_{2 n+2}(x, y) \in \mathbb{P}_{n, n}, \quad n=0,1,2, \ldots
$$

Proof The proof of Theorem 3.5 is performed for n by induction.
For $n=0$, with direct calculation, the continued fraction $R_{2}(x, y)$ over two interpolating nodes is of type $1 / 0$, and

$$
P_{2}(x, y) \in \operatorname{span}\{1, x\} \bigotimes\{1\} \equiv \mathbb{P}_{1,0}, \quad Q_{2}(x, y) \in \operatorname{span}\{1\} \bigotimes\{1\} \equiv \mathbb{P}_{0,0} .
$$

Moreover, for $n=1$, the continued fraction $R_{3}(x, y)$ over three interpolating nodes is of type $2 / 2$, and

$$
P_{3}(x, y) \in \operatorname{span}\{1, x\} \bigotimes\{1, y\} \equiv \mathbb{P}_{1,1}, \quad Q_{3}(x, y) \in \operatorname{span}\{1, x\} \bigotimes\{1, y\} \equiv \mathbb{P}_{1,1} .
$$

For $n=2$, the continued fraction $R_{4}(x, y)$ over four interpolating nodes is of type $3 / 2$, and

$$
P_{4}(x, y) \in \operatorname{span}\left\{1, x, x^{2}\right\} \bigotimes\{1, y\} \equiv \mathbb{P}_{2,1}, \quad Q_{4}(x, y) \in \operatorname{span}\{1, x\} \bigotimes\{1, y\} \equiv \mathbb{P}_{1,1} .
$$

Furthermore, by assuming that the conclusion holds for the interpolating continued fraction $R_{2 n-1}(x, y)$ over $\Pi_{2 n-1}$ and $R_{2 n}(x, y)$ over $\Pi_{2 n}$, respectively, we shall show it valid for $R_{2 n+1}(x, y)$ over $\Pi_{2 n+1}$.

$$
\begin{aligned}
\operatorname{deg} P_{2 n+1}(x, y) & =\max \left\{c_{2 n} P_{2 n}(x, y),\left(y-y_{2 n-2}\right)\left(x-x_{2 n-1}\right) P_{2 n-1}(x, y)\right\} \\
& =\max \{2 n-1,2 n-2+2\}=2 n, \\
\operatorname{deg} Q_{2 n+1}(x, y) & =\max \left\{c_{2 n} Q_{2 n}(x, y),\left(y-y_{2 n-2}\right)\left(x-x_{2 n-1}\right) Q_{2 n-1}(x, y)\right\} \\
& =\max \{2 n-2,2 n-2+2\}=2 n,
\end{aligned}
$$

and

$$
P_{2 n-1}(x, y) \in \mathbb{P}_{n-1, n-1}, \quad P_{2 n}(x, y) \in \mathbb{P}_{n, n} \Rightarrow \quad P_{2 n+1}(x, y) \in \mathbb{P}_{n, n},
$$

$$
Q_{2 n-1}(x, y) \in \mathbb{P}_{n-1, n-1}, \quad Q_{2 n}(x, y) \in \mathbb{P}_{n-1, n-1} \Rightarrow \quad Q_{2 n+1}(x, y) \in \mathbb{P}_{n, n}
$$

Meanwhile, by using the above conclusion, we also prove the result for $R_{2 n+2}(x, y)$ over $\Pi_{2 n+2}$.

$$
\begin{aligned}
\operatorname{deg} P_{2 n+2}(x, y) & =\max \left\{c_{2 n+1} P_{2 n+1}(x, y), \quad\left(y-y_{2 n-1}\right)\left(x-x_{2 n}\right) P_{2 n}(x, y)\right\} \\
& =\max \{2 n, 2 n-1+2\}=2 n+1, \\
\operatorname{deg} Q_{2 n+2}(x, y) & =\max \left\{c_{2 n+1} Q_{2 n+1}(x, y), \quad\left(y-y_{2 n-1}\right)\left(x-x_{2 n}\right) Q_{2 n}(x, y)\right\} \\
& =\max \{2 n, 2 n-2+2\}=2 n,
\end{aligned}
$$

and

$$
\begin{aligned}
& P_{2 n+1}(x, y) \in \mathbb{P}_{n, n}, \quad P_{2 n}(x, y) \in \mathbb{P}_{n, n-1} \Rightarrow \quad P_{2 n+2}(x, y) \in \mathbb{P}_{n+1, n} \\
& Q_{2 n+1}(x, y) \in \mathbb{P}_{n, n}, \quad Q_{2 n}(x, y) \in \mathbb{P}_{n-1, n-1} \Rightarrow \quad Q_{2 n+2}(x, y) \in \mathbb{P}_{n, n}
\end{aligned}
$$

Thus, the proof of Theorem 3.5 is completed.
Remark 3.6 For the sake of illustration, we list the number of the interpolating nodes, the type of the bivariate continued fractions, the bivariate polynomial spaces which the numerators and the denominators are contained in. All the results are shown in Table 2.

Scattered data Π_{n}	Type of $R_{n}(x, y)$	Polynomial Space for P_{n}	Space for Q_{n}
Π_{2}	$1 / 0$	$\mathbb{P}_{1,0}$	$\mathbb{P}_{0,0}$
Π_{3}	$2 / 2$	$\mathbb{P}_{1,1}$	$\mathbb{P}_{1,1}$
Π_{4}	$3 / 2$	$\mathbb{P}_{2,1}$	$\mathbb{P}_{1,1}$
Π_{5}	$4 / 4$	$\mathbb{P}_{2,2}$	$\mathbb{P}_{2,2}$
Π_{6}	$5 / 4$	$\mathbb{P}_{3,2}$	$\mathbb{P}_{2,2}$
\ldots	\cdots	\cdots	\cdots
$\Pi_{2 n-1}$	$(2 n-2) /(2 n-2)$	$\mathbb{P}_{n-1, n-1}$	$\mathbb{P}_{n-1, n-1}$
$\Pi_{2 n}$	$(2 n-1) /(2 n-2)$	$\mathbb{P}_{n, n-1}$	$\mathbb{P}_{n-1, n-1}$
$\Pi_{2 n+1}$	$(2 n) /(2 n)$	$\mathbb{P}_{n, n}$	$\mathbb{P}_{n, n}$
$\Pi_{2 n+2}$	$(2 n+1) /(2 n)$	$\mathbb{P}_{n+1, n}$	$\mathbb{P}_{n, n}$

Table 2 The characterization of bivariate interpolating continued fractions over Π_{i} 's
Remark 3.7 Bivariate Thiele-typed continued fraction interpolating scheme $\tilde{R}_{2 n+1}(x, y) \equiv$ $\frac{\tilde{P}_{2 n+1}(x, y)}{\tilde{Q}_{2 n+1}(x, y)}$ shall be constructed over the tensor-product-typed mesh $\tilde{\Pi}_{2 n+1}=\left\{\left(x_{i}, y_{j}\right), i, j=\right.$ $0, \ldots, 2 n\}$, where $x_{i} \neq x_{j}, y_{i} \neq y_{j}$, for $i \neq j$. Based upon Lemma 3.2, it follows that

$$
\tilde{P}_{2 n+1}(x, y) \in \mathbb{P}_{n+1, n+1}, \tilde{Q}_{2 n+1}(x, y) \in \mathbb{P}_{n, n}, \quad n=0,1,2, \ldots
$$

Obviously, the degree of $\tilde{P}_{2 n+1}(x, y)$ is higher than that of $P_{2 n+1}(x, y)$ in Theorem 3.5 (i).
Remark 3.8 One can also construct the bivariate Thiele-typed interpolating continued fraction

$$
\begin{aligned}
\tilde{R}_{2 n+2}(x, y) \equiv & \frac{\tilde{P}_{2 n+2}(x, y)}{\tilde{Q}_{2 n+2}(x, y)} \text { over } \tilde{\Pi}_{2 n+2}=\left\{\left(x_{i}, y_{j}\right), i, j=0, \ldots, 2 n+1\right\}, \text { where } \\
& \tilde{P}_{2 n+2}(x, y) \in \mathbb{P}_{n+1, n+1}, \tilde{Q}_{2 n+2}(x, y) \in \mathbb{P}_{n+1, n+1}, \quad n=0,1,2, \ldots
\end{aligned}
$$

Consequently, the degrees of $\tilde{P}_{2 n+2}(x, y)$ and $\tilde{Q}_{2 n+2}(x, y)$ are higher than those of $P_{2 n+2}(x, y)$ and $Q_{2 n+2}(x, y)$ in Theorem 3.5 (ii), respectively.

4. Numerical examples

By means of Algorithms 2.1, 2.2, 3.1 and 3.2, some bivariate continued fraction interpolations are determined over scattered data with some numerical examples in the section. On the one hand, we work out the representation of the numerators and the denominators. On the other hand, we will plot the figures of continued fractions and the corresponding error functions.

For the sake of illustration, we make some preparation with some denotations for the numerical examples. Denote the scattered data collection by $\Pi_{k+1}=\left\{\left(x_{0}, y_{0}\right),\left(x_{1}, y_{1}\right), \ldots,\left(x_{k}, y_{k}\right)\right\}$, where $k=2,3,4,5$, and $x_{i} \neq x_{j}, y_{i} \neq y_{j}$, for $i \neq j$. Then by (2.1) and (2.2), we obtain the explicit representation of the interpolating continued fractions as follows

$$
\begin{align*}
R_{3}(x, y) \equiv & \frac{P_{3}(x, y)}{Q_{3}(x, y)}=c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+\frac{\left(y-y_{0}\right)\left(x-x_{1}\right) \mid}{\mid c_{2}}, \tag{4.1}\\
R_{4}(x, y) \equiv & \frac{P_{4}(x, y)}{Q_{4}(x, y)} \\
= & c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+\frac{\left(y-y_{0}\right)\left(x-x_{1}\right) \mid}{\mid c_{2}}+\frac{\left(y-y_{1}\right)\left(x-x_{2}\right) \mid}{\mid c_{3}}, \tag{4.2}\\
R_{5}(x, y) \equiv & \frac{P_{5}(x, y)}{Q_{5}(x, y)} \\
= & c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+\frac{\left(y-y_{0}\right)\left(x-x_{1}\right) \mid}{\mid c_{2}}+\frac{\left(y-y_{1}\right)\left(x-x_{2}\right) \mid}{\mid c_{3}}+ \\
& \frac{\left(y-y_{2}\right)\left(x-x_{3}\right) \mid}{\mid c_{4}}, \tag{4.3}\\
R_{6}(x, y) \equiv & \frac{P_{6}(x, y)}{Q_{6}(x, y)} \\
= & c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+\frac{\left(y-y_{0}\right)\left(x-x_{1}\right) \mid}{\mid c_{2}}+\frac{\left(y-y_{1}\right)\left(x-x_{2}\right) \mid}{\mid c_{3}}+ \\
& \frac{\left(y-y_{2}\right)\left(x-x_{3}\right) \mid}{\mid}+\frac{\left(y-y_{3}\right)\left(x-x_{4}\right) \mid}{c_{4}} \tag{4.4}
\end{align*}
$$

Example 4.1 Suppose interpolating nodes $P_{0}(-7,-9.5), P_{1}(-5,-4), P_{2}(-3,-2), P_{3}(0.2,-1)$, $P_{4}(4,2), P_{5}(7.8,8)$, and the corresponding node collection $\Pi_{k+1}, k=2,3,4,5$ are given as shown in Figure 1.1. We also give the corresponding vertical coordinates, i.e., VCs, f_{i} at $P_{i}\left(x_{i}, y_{i}\right)$, $i=0, \ldots, 5$ in Table 3 . Then we calculate the six interpolating coefficients c_{i} 's in Table 4 by using Algorithms 2.1 and 2.2. Moreover, we determine the explicit representation of the interpolating continued fractions over $\Pi_{k+1}, k=2,3,4,5$ as the following, respectively. Actually, we obtain $R_{3}(x, y)$ and $R_{5}(x, y)$ by using Algorithm 3.1 , and $R_{4}(x, y)$ and $R_{6}(x, y)$ by means
of Algorithm 3.2. Finally, we plot the figures of the interpolating rational functions $R_{i}(x, y)$, $i=3,4,5,6$ in Figure 1.2 to 1.5 , respectively. To be mentioned, we provide the programming procedure of calculating the interpolating coefficients, and testing the interpolating property of the rational function $R_{6}(x, y)$ at the interpolating nodes, and plotting Figure 1.5 in the appendix.

VCs	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
Values	-0.058745	0.018686	-0.124112	0.835460	-0.217184	-0.088092

Table 3 The vertical coordinates (VCs) f_{i} 's in Example 4.1

c_{0}	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
-0.058745	25.829193	-0.172369	-4.148767	-0.363684	158.478514

Table 4 The coefficients of $R_{i}(x, y), i=2,3,4,5$, in Example 4.1

Figure 1.1 Scattered data Π_{6}

$$
\begin{aligned}
P_{3}(x, y)= & -0.730450 x-0.293727 y-0.058745 x y-3.735443 \\
Q_{3}(x, y)= & x y+5.0 y+9.5 x+43.047846 \\
R_{3}(x, y)= & \frac{P_{3}(x, y)}{Q_{3}(x, y)}, \\
P_{4}(x, y)= & 36.961088 x+17.666570 y+8.726376 x y+x^{2} y+4.0 x^{2}+81.289351, \\
Q_{4}(x, y)= & 63.903487 x+56.743745 y+21.680426 x y+131.354841, \\
R_{4}(x, y)= & \frac{P_{4}(x, y)}{Q_{4}(x, y)}, \\
P_{5}(x, y)= & -0.058745 x^{2} y^{2}-1.211624 x^{2} y-2.915635 x^{2}-0.281978 x y^{2}- \\
& 7.326952 x y-20.620862 x+0.058745 y^{2}-5.560469 y-28.069457, \\
Q_{5}(x, y)= & x^{2} y^{2}+11.5 x^{2} y+19.0 x^{2}+4.8 x y^{2}+42.863022 x y+59.055017 x- \\
& 1.0 y^{2}-31.246360 y-64.990789, \\
R_{5}(x, y)= & \frac{P_{5}(x, y)}{Q_{5}(x, y)},
\end{aligned}
$$

$$
\begin{aligned}
P_{6}(x, y)= & 3.155002 x^{3} y^{2}+15.775009 x^{3} y+12.620007 x^{3}-14.460938 x^{2} y^{2}- \\
& 524.7681670 x^{2} y-1391.685375 x^{2}-195.377658 x y^{2}-3927.845914 x y- \\
& 10520.412261 x-193.579579 y^{2}-4029.058999 y-15060.600628, \\
Q_{6}(x, y)= & 568.401784 x^{2} y^{2}+6020.017403 x^{2} y+9701.615619 x^{2}+ \\
& 2305.419482 x y^{2}+20944.892838 x y+29135.470886 x-1216.106476 y^{2}- \\
& 17996.985482 y-34153.093667, \\
R_{6}(x, y)== & \frac{P_{6}(x, y)}{Q_{6}(x, y)} .
\end{aligned}
$$

Figure 1.2 Part of the interpolating continued fraction $R_{3}(x, y)$ over Π_{3} $R_{5}(x, y),[2,4] \times[-6,-2]$

Figure 1.4 Part of the interpolating continued fraction $R_{5}(x, y)$ over Π_{5}

Figure 1.3 Part of the interpolating continued fraction $R_{4}(x, y)$ over Π_{4}

Figure 1.5 Part of the interpolating continued fraction $R_{6}(x, y)$ over Π_{6}

Example 4.2 Considering the scattered data $P_{0}(-0.9,0.2), P_{1}(-0.4,0.6), P_{2}(0.2,0.8), P_{3}(0.8$, $0.4), P_{4}(0.6,-0.4), P_{5}(-0.6,-0.8)$, we denote by $\Pi_{k+1}, k=2,3,4,5$ the corresponding node collection as shown in Figure 2.1. By means of the given vertical coordinates z_{i} 's at P_{i} 's in Table 5 , we calculate the six interpolating coefficients c_{i} 's in Table 6 . Consequently, we work out the representation of the bivariate interpolating continued fractions $R_{i}(x, y)$'s as the following. In fact, we compute $R_{3}(x, y)$ and $R_{5}(x, y)$ by Algorithm 3.1, and $R_{4}(x, y)$ and $R_{6}(x, y)$ by means of Algorithm 3.2. And then we plot the corresponding figures in Figure 2.2 to 2.5, respectively.

VCs	f_{0}	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}
Values	1.576055	1.311592	1.432173	1.531926	1.311592	1.718282

Table 5 The vertical coordinates (VCs) f_{i} 's in Example 4.2

c_{0}	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}
1.576055	-1.890620	-0.062559	-2.142556	0.717394	-2.705955

Table 6 The coefficients of $R_{i}(x, y)$'s in Example 4.2

Figure 2.1 Scattered data Π_{6}

$$
\begin{aligned}
P_{3}(x, y)= & 0.630442 y-0.377770 x+1.576055 x y+0.004022, \\
Q_{3}(x, y)= & x y+0.4 y-0.2 x+0.038276, \\
R_{3}(x, y)= & \frac{P_{3}(x, y)}{Q_{3}(x, y)}, \\
P_{4}(x, y)= & 2.177227 x-0.934770 y-5.656508 x y+x^{2} y-0.600000 x^{2}-0.258183, \\
Q_{4}(x, y)= & 1.562883 x-0.478898 y-4.033176 x y-0.308883, \\
R_{4}(x, y)= & \frac{P_{4}(x, y)}{Q_{4}(x, y)}, \\
P_{5}(x, y)= & 1.576055 x^{2} y^{2}-0.921220 x^{2} y-0.128220 x^{2}-0.630422 x y^{2}- \\
& 3.247370 x y+1.316940 x-0.504338 y^{2}-0.270346 y-0.182645, \\
Q_{5}(x, y)= & x^{2} y^{2}-1.0 x^{2} y+0.16 x^{2}-0.400000 x y^{2}-2.375101 x y+0.962582 x- \\
& 0.320000 y^{2}-0.118180 y-0.197094, \\
R_{5}(x, y)= & \frac{P_{5}(x, y)}{Q_{5}(x, y)}, \\
P_{6}(x, y)= & 2.309720 x^{3} y^{2}-2.309720 x^{3} y+0.554333 x^{3}-24.301130 x^{2} y^{2}+ \\
& 17.398228 x^{2} y-1.542739 x^{2}+9.620051 x y^{2}+14.410494 x y- \\
& 6.785431 x+4.447545 y^{2}+1.529287 y+0.998413, \\
Q_{6}(x, y)= & -15.565510 x^{2} y^{2}+13.586028 x^{2} y-2.443929 x^{2}+6.983185 x y^{2}+ \\
& 10.171779 x y-4.864409 x+2.663673 y^{2}+0.901214 y+1.060614,
\end{aligned}
$$

$$
R_{6}(x, y)=\frac{P_{6}(x, y)}{Q_{6}(x, y)}
$$

Figure 2.2 Part of the interpolating continued fraction $R_{3}(x, y)$ over Π_{3}

Figure 2.4 Part of the interpolating continued fraction $R_{4}(x, y)$ over Π_{5}

Figure 2.3 Part of the interpolating continued fraction $R_{3}(x, y)$ over Π_{4}

Figure 2.5 Part of the interpolating continued fraction $R_{3}(x, y)$ over Π_{6}

Example 4.3 Consider 33 points $\left(x_{i}, y_{i}, z_{i}\right), i=0,1, \ldots, 32$, where

$$
x_{i}=-10+\frac{20}{33}(i+1), y_{i}=\sin (i+1) \cdot x_{i}, z_{i}=y_{i}+\sin \sqrt{x_{i}^{2}+y_{i}^{2}} \quad i=0,1, \ldots, 32
$$

Then we plot these interpolating nodes in Figure 3.1, and obtain the representation of the rational interpolating function as

$$
\begin{aligned}
R_{2 n+1}(x, y)= & c_{0}+\frac{x-x_{0} \mid}{\mid c_{1}}+\frac{\left(y-y_{0}\right)\left(x-x_{1}\right) \mid}{\mid c_{2}}+\frac{\left(y-y_{1}\right)\left(x-x_{2}\right) \mid}{\mid c_{3}}+\cdots+ \\
& \frac{\left(y-y_{29}\right)\left(x-x_{30}\right) \mid}{\mid c_{31}}+\frac{\left(y-y_{30}\right)\left(x-x_{31}\right) \mid}{\mid c_{32}} .
\end{aligned}
$$

Figure 3.1 Scattered data Π_{33}
For the sake of illustration and convenience, we list the coordinates of the 33 interpolating nodes in Tables 7, 8 and 9 , respectively.

x_{0}	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
-9.3939	-8.7879	-8.1818	-7.5758	-6.9697	-6.3636	-5.7576
x_{7}	x_{8}	x_{9}	x_{10}	x_{11}	x_{12}	x_{13}
-5.1515	-4.5455	-3.9394	-3.3333	-2.7273	-2.1212	-1.5152
x_{14}	x_{15}	x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
-0.9091	-0.3030	0.3030	0.9091	1.5152	2.1212	2.7273
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}	x_{26}	x_{27}
3.3333	3.9394	4.5455	5.1515	5.7576	6.3636	6.9697
x_{28}	x_{29}	x_{30}	x_{31}	x_{32}		
7.5758	8.1818	8.7879	9.3939	10.0000		

Table 7 The $33 x_{i}$'s in Example 4.3

y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
-7.9047	-7.9908	-1.1546	5.7334	6.6834	1.7781	-3.7827
y_{7}	y_{8}	y_{9}	y_{10}	y_{11}	y_{12}	y_{13}
-5.0967	-1.8733	2.1431	3.3333	1.4634	-0.8913	-1.5009
y_{14}	y_{15}	y_{16}	y_{17}	y_{18}	y_{19}	y_{20}
-0.5912	0.0872	-0.2913	-0.6827	0.2271	1.9366	2.2818
y_{21}	y_{22}	y_{23}	y_{24}	y_{25}	y_{26}	y_{27}
-0.0295	-3.3336	-4.1163	-0.6818	4.3905	6.0860	1.8881
y_{28}	y_{29}	y_{30}	y_{31}	y_{32}		
-5.0275	-8.0839	-3.5506	5.1801	9.9991		

Table 8 The $33 y_{i}$'s in Example 4.3

z_{0}	z_{1}	z_{2}	z_{3}	z_{4}	z_{5}	z_{6}
-8.1898	-8.6263	-0.2371	5.6575	6.4539	2.0966	-3.2132
z_{7}	z_{8}	z_{9}	z_{10}	z_{11}	z_{12}	z_{13}
-4.2755	-2.8525	1.1689	2.3333	1.5099	-0.1461	-0.6547
z_{14}	z_{15}	z_{16}	z_{17}	z_{18}	z_{19}	z_{20}
0.2929	0.3974	0.1168	0.2246	1.2263	2.2027	1.8792
z_{21}	z_{22}	z_{23}	z_{24}	z_{25}	z_{26}	z_{27}
-0.2202	-4.2348	-4.2666	-1.5669	5.2082	6.6665	2.6944
z_{28}	z_{29}	z_{30}	z_{31}	z_{32}		
-4.7011	-8.9585	-3.6039	4.2158	10.9991		

Table 9 The $33 z_{i}$'s in Example 4.3
And we also list the 33 interpolating coefficients in Table 10, which are calculated by means of Algorithm 2.1.

c_{0}	c_{1}	c_{2}	c_{3}	c_{4}	c_{5}	c_{6}
-8.1898	0.0625	16.7667	-0.4023	24.1140	0.3717	-52.5315
c_{7}	c_{8}	c_{9}	c_{10}	c_{11}	c_{12}	c_{13}
-0.8585	13.8632	5.3770	-3.2423	-1.7277	7.0914	4.8380
c_{14}	c_{15}	c_{16}	c_{17}	c_{18}	c_{19}	c_{20}
-0.1681	-6.8490	-0.4013	-3.3552	0.2729	4.4127	-23.0042
c_{21}	c_{22}	c_{23}	c_{24}	c_{25}	c_{26}	c_{27}
-0.1554	26.3680	321.7954	-0.0150	-360.5940	0.4162	8.5241
c_{28}	c_{29}	c_{30}	c_{31}	c_{32}		
-0.4977	168.3309	0.0034	-151.2422	4.4141		

Table 10 The 33 interpolating coefficients in Example 4.3

5. Complexity of the bivariate rational function interpolation

Now that we have learned the "how" of the bivariate non-tensor-product-typed continued fraction interpolation, here are a few words about "why." Since classic method for scattered data interpolation involves radial basis functions, we shall make analysis of the complexity of the rational interpolation and that of radial basis function interpolation.

As we know, every natural cubic spline $s(x)$ has a representation of the form [17]

$$
\begin{equation*}
s(x)=\sum_{j=1}^{N} \alpha_{j} \phi\left(\left|x-x_{j}\right|\right)+p(x), \quad x \in \mathbb{R}, \tag{5.1}
\end{equation*}
$$

where $\phi(r)=r^{3}, r \geq 0$, and $p(x) \in \mathbb{P}_{1}(\mathbb{R})$, i.e., a univariate polynomial with degree one.
From the first result on radial basis functions, the resulting interpolation is up to a lowdegree polynomial a linear combination of shifts of a radial function $\Phi=\phi(|\cdot|)$. Consequently,
experts have generalized the idea to construct scattered data interpolation of the form over the interpolating nodes $\Pi=\left\{\mathbf{x}_{0}, \ldots, \mathbf{x}_{N}\right\} \subset \mathbb{R}^{2}$

$$
\begin{equation*}
s(\mathbf{x})=\sum_{j=0}^{N} \alpha_{j} \phi\left(\left\|\mathbf{x}-\mathbf{x}_{j}\right\|_{2}\right)+p(x), \quad \mathbf{x}=(x, y), \mathbf{x}_{j}=\left(x_{j}, y_{j}\right) \in \mathbb{R}^{2} \tag{5.2}
\end{equation*}
$$

where $\phi:[0,+\infty] \rightarrow \mathbb{R}$ is a univariate fixed function and $p(\mathbf{x}) \in \mathbb{P}_{m-1}\left(\mathbb{R}^{2}\right)$, i.e., a bivariate polynomial with degree $m-1$. And the additional conditions on the coefficients satisfy

$$
\begin{equation*}
\sum_{j=0}^{N} \alpha_{j} q\left(\mathbf{x}_{j}\right)=0, \quad \forall q(\mathbf{x}) \in \mathbb{P}_{m-1}\left(\mathbb{R}^{2}\right) \tag{5.3}
\end{equation*}
$$

In the particular case, one only considers the interpolation problems without the additional conditions (5.3), which boils down to the question whether the matrix $A_{\phi, \Pi}=\left(\phi\left(\| \mathbf{x}_{k}-\right.\right.$ $\left.\left.\mathbf{x}_{j} \|_{2}\right)\right)_{0 \leq k, j \leq N}$ is nonsingular. Astonishingly, there exist nonsingular matrix $A_{\phi, \Pi}$ in the case of the Gaussians $\phi(r)=e^{-\alpha r^{2}}(\alpha>0)$, the inverse multiquadric $\phi(r)=1 / \sqrt{c^{2}+r^{2}}$, and the multiquadric $\phi(r)=\sqrt{c^{2}+r^{2}}(c>0)$.

Hence, we can obtain the α_{i} 's by solving the system of the linear equations.

$$
\begin{equation*}
s\left(\mathbf{x}_{k}\right)=\sum_{j=0}^{N} \alpha_{j} \phi\left(\left\|\mathbf{x}_{k}-\mathbf{x}_{j}\right\|_{2}\right), \quad k=0,1, \ldots, N \tag{5.4}
\end{equation*}
$$

One can make a total count of operations for the elimination step of Gaussian elimination [18]. The elimination of each entry in the matrix $A_{\phi, \Pi}$ requires the operations of addition$\mathrm{s} /$ substractions, multiplications, and divisions, which are $\frac{2}{3}(N+1)^{3}+\frac{1}{2}(N+1)^{2}-\frac{7}{6}(N+1)$, i.e., $O\left(N^{3}\right)$. Then, because of the triangular shape of the nonzero coefficients of the equations, one can start at the bottom and work your way up to the top equation. Counting operations of solving the system of the linear equations (5.4) yields $(N+1)^{2}$.

To be mentioned, however, the approximate number of operations with the rational interpolation presented in the paper is $O\left(N^{2}\right)$, which is smaller than that with radial basis function interpolation. Actually, we shall make an analysis of the operation count from two aspects.

On the one hand, based on $\Pi_{N+1}=\left\{\mathbf{x}_{0}, \ldots, \mathbf{x}_{N}\right\}$, the computation of the bivariate non-tensor-product-typed partially inverse divided difference $\phi_{0 \cdots, N}$ will require $\frac{5}{2} N^{2}+\frac{1}{2} N(N \geq 1)$ operations, including additions/substractions, multiplications, and divisions.

In fact, we can prove it by induction. By Definition 2.1, Algorithms 2.1 and 2.2, for ϕ_{01}, the numbers of the operations of additions/substractions, multiplications, and divisions are $2,0,1$, respectively. Then for ϕ_{012}, the numbers of them are $2 \times 2+3,1,2+1$, respectively. Moreover, for ϕ_{0123}, the numbers of them are $2 \times 3+3 \times 2+3,2+1,3+2+1$, respectively. Furthermore, for $\phi_{0 \cdots 4}$, they are $2 \times 4+3 \times 3+3 \times 2+3,3+2+1,4+3+2+1$, respectively. Hence, by induction, for $\phi_{0 \cdots, N}$, they are

$$
\begin{aligned}
& 2 N+3(N-1)+3(N-2)+\cdots+3 \times 2+3 \times 1=\frac{3}{2} N^{2}+\frac{1}{2} N \\
& (N-1)+(N-2)+\cdots+2+1=\frac{1}{2} N(N-1)
\end{aligned}
$$

$$
N+(N-1)+\cdots+2+1=\frac{1}{2} N(N+1)
$$

respectively, which is totaled up as $\frac{5}{2} N^{2}+\frac{1}{2} N(N \geq 1)$.
On the other hand, similarly, for the rational interpolating function $R_{N+1}(x, y)$ over $\Pi_{N+1}=$ $\left\{\mathbf{x}_{0}, \ldots, \mathbf{x}_{N}\right\}$, the numbers of operations of calculating $P_{N+1}(x, y)$ and $Q_{N+1}(x, y)$ are $3(N-1)+2$ and $3(N-1)+1$ based on Algorithms 3.1 and 3.2, respectively.

Consequently, we approximate a total count of operations for the computation of $R_{N+1}(x, y)$ as $O\left(N^{2}\right)$, which is smaller than that of radial basis function interpolation as $O\left(N^{3}\right)$.

Appendix: Programming procedure of calculating the results in Table 3, 4 and plotting Figure 1.5

clc
(i) To give the vertical coordinates f_{i} 's in Table 3
$\mathrm{x}=[-7,-5,-3,0.2,4,7.8]$;
$\mathrm{y}=[-9.5,-4,-2,-1,2,8] ;$
for $i=1: 6$

$$
\mathrm{f}(\mathrm{i})=\sin (\operatorname{sqrt}(\mathrm{x}(\mathrm{i}) \wedge 2+\mathrm{y}(\mathrm{i}) \wedge 2)) / \operatorname{sqrt}(\mathrm{x}(\mathrm{i}) \wedge 2+\mathrm{y}(\mathrm{i}) \wedge 2) ;
$$

end
$\mathrm{f}=\mathrm{vpa}(\mathrm{f})$
(ii) To calculate the coefficients in Table 4
for $\mathrm{i}=1: 5$
phi1 $(\mathrm{i})=(\mathrm{x}(\mathrm{i}+1)-\mathrm{x}(1)) /(\mathrm{f}(\mathrm{i}+1)-\mathrm{f}(1)) ;$
end
phi1;
for $\mathrm{i}=1: 4$
$\operatorname{phi} 2(\mathrm{i})=(\mathrm{y}(\mathrm{i}+2)-\mathrm{y}(1))^{*}(\mathrm{x}(\mathrm{i}+2)-\mathrm{x}(2)) /(\operatorname{phi} 1(\mathrm{i}+1)-\mathrm{phi} 1(1)) ;$
end
phi2;
for $\mathrm{i}=1: 3$
$\operatorname{phi} 3(\mathrm{i})=(\mathrm{y}(\mathrm{i}+3)-\mathrm{y}(2))^{*}(\mathrm{x}(\mathrm{i}+3)-\mathrm{x}(3)) /(\mathrm{phi} 2(\mathrm{i}+1)-\mathrm{phi} 2(1)) ;$
end
phi3;
for $\mathrm{i}=1: 2$
$\operatorname{phi} 4(\mathrm{i})=(\mathrm{y}(\mathrm{i}+4)-\mathrm{y}(3))^{*}(\mathrm{x}(\mathrm{i}+4)-\mathrm{x}(4)) /(\mathrm{phi} 3(\mathrm{i}+1)-\mathrm{phi} 3(1)) ;$
end
phi4;
phi5 $=(\mathrm{y}(6)-\mathrm{y}(4))^{*}(\mathrm{x}(6)-\mathrm{x}(5)) /(\operatorname{phi} 4(2)-\mathrm{phi} 4(1))$;
$\mathrm{c}=[\mathrm{f}(1), \operatorname{phi} 1(1), \operatorname{phi} 2(1)$, phi3(1), phi4(1),phi5];
$\mathrm{c}=\mathrm{vpa}(\mathrm{c})$
(iii) To Simplify the representation of the bivariate interpolating continued fraction $R_{6}(x, y)$
syms u v

$$
\begin{aligned}
& \mathrm{ff} 5=\mathrm{c}(5)+(\mathrm{v}-\mathrm{y}(4))^{*}(\mathrm{u}-\mathrm{x}(5)) / \mathrm{c}(6) ; \\
& \mathrm{ff} 4=\mathrm{c}(4)+(\mathrm{v}-\mathrm{y}(3))^{*}(\mathrm{u}-\mathrm{x}(4)) / \mathrm{ff} 5 ; \\
& \mathrm{ff} 3=\mathrm{c}(3)+(\mathrm{v}-\mathrm{y}(2))^{*}(\mathrm{u}-\mathrm{x}(3)) / \mathrm{ff} 4 ; \\
& \mathrm{ff} 2=\mathrm{c}(2)+(\mathrm{v}-\mathrm{y}(1))^{*}(\mathrm{u}-\mathrm{x}(2)) / \mathrm{ff} 3 ; \\
& \mathrm{ff} 1=\mathrm{c}(1)+(\mathrm{u}-\mathrm{x}(1)) / \mathrm{ff} 2 ; \\
& \text { simplify}(\mathrm{ff} 1) ;
\end{aligned}
$$

(iv) To test the interpolating property of the rational function $R_{6}(x, y)$ at the interpolating nodes
for $\mathrm{i}=1: 6$

```
P6(i)=3.155002*x(i)^3*y(i)^2+15.775009*x(i)^\mp@subsup{3}{}{*}y(i)+12.620007*x(i)\wedge3-14.460938*x(i)^2*y(i)^2-
```

$$
524.7681670^{*} \mathrm{x}(\mathrm{i}) \wedge 2^{*} \mathrm{y}(\mathrm{i})-1391.685375^{*} \mathrm{x}(\mathrm{i}) \wedge 2-195.377658^{*} \mathrm{x}(\mathrm{i}){ }^{*} \mathrm{y}(\mathrm{i}) \wedge 2-3927.845914^{*} \mathrm{x}(\mathrm{i})^{*} \mathrm{y}(\mathrm{i})-
$$

$10520.412261 * x(\mathrm{i})-193.579579 * y(\mathrm{i}) \wedge 2-4029.058999 * y(\mathrm{i})-15060.600628 ;$
$\mathrm{Q} 6(\mathrm{i})=568.401784^{*} \mathrm{x}(\mathrm{i}) \wedge 2^{*} \mathrm{y}(\mathrm{i}) \wedge 2+6020.017403^{*} \mathrm{x}(\mathrm{i}) \wedge 2^{*} \mathrm{y}(\mathrm{i})+9701.615619^{*} \mathrm{x}(\mathrm{i}) \wedge 2+\ldots$
$2305.419482^{*} x(\mathrm{i}) * y(\mathrm{i}) \wedge 2+20944.892838^{*} \mathrm{x}(\mathrm{i}) * \mathrm{y}(\mathrm{i})+29135.470886^{*} \mathrm{x}(\mathrm{i})-1216.106476{ }^{*} \mathrm{y}(\mathrm{i}) \wedge 2-$
$17996.985482^{*} \mathrm{y}(\mathrm{i})-34153.093667$;
R6(i)=P6(i)/Q6(i);
error6(i) $=\mathrm{f}(\mathrm{i})-\mathrm{R} 6(\mathrm{i})$;
end
$\mathrm{R} 6=\mathrm{vpa}(\mathrm{R} 6)$
error6
(v) To plot the figure of $R_{6}(x, y), \quad[2,8] \times[-1,8]$ as shown in Fig. 1.5
$[\mathrm{s}, \mathrm{t}]=\operatorname{meshgrid}(2: 0.2: 8,-1: 0.2: 8)$;
polynomialP $6=3.155002^{*} \mathrm{~s} . \wedge 3 .{ }^{*} \mathrm{t} . \wedge 2+15.775009^{*} \mathrm{~s} . \wedge 3 .{ }^{*} \mathrm{t}+12.620007^{*} \mathrm{~s} . \wedge 3-14.460938^{*} \mathrm{~s} . \wedge 2 .{ }^{*} \mathrm{t} . \wedge 2-$

```
524.7681670*s.^2.*t-1391.685375*s.^2-195.377658*s.*t.^2-3927.845914*s.*t-...
10520.412261*s-193.579579*t.^2-4029.058999*t-15060.600628;
    polynomialQ6=568.401784*s.}\wedge2.*\textrm{t}.\wedge2+6020.017403*s.^2.*t+9701.615619*s. ^2+...
        2305.419482*s.*t.^2+20944.892838*s.*t+29135.470886*s-1216.106476*t.^2-...
    17996.985482*t-34153.093667;
    CFR6=polynomialP6./polynomialQ6;
    mesh(s,t,CFR6)
    title('}\mp@subsup{}{}{\prime}\mp@subsup{R}{6}{}(x,y),[2,8]\times[-1,8\mp@subsup{]}{}{\prime}
hold on
axis([2,8,-1,8])
xlabel('X')
ylabel('Y')
```

zlabel('Z')
Acknowledgements The authors would like to thank the editors and reviewers for their valuable suggestions to improve the quality and readability of the paper.

References

[1] N. DYN, D. LEVIATAN, D. LEVIN, et al. Approximation and Applications. Cambridge University Press, 2001.
[2] M. D. BUHMANN. Radial Basis Functions: Theory and Implementations. Cambridge University Press, 2001.
[3] Renhong WANG, Xiquan SHI, Zhongxuan LUO, et al. Multivariate Spline Functions and Their Applications. Science Press/Kluwer Academic Publishers, Beijing, New York, Dordrecht, Boston, London, 2001.
[4] Jiang QIAN, Fan WANG. On the approximation of the derivatives of spline quasi-interpolation in cubic spline space $S_{3}^{1,2}\left(\Delta_{m n}^{(2)}\right)$. Numer. Math. Theor. Meth. Appl., 2014, 7(1): 1-22.
[5] Jiang QIAN, Renhong WANG, Chongjun LI. The bases of the non-uniform cubic spline space $S_{3}^{1,2}\left(\Delta_{m n}^{(2)}\right)$. Numer. Math. Theor. Meth. Appl., 2014, 5(4): 635-652.
[6] Jiang QIAN, Renhong WANG, Chungang ZHU, et al. On spline quasi-interpolation in cubic spline space $S_{3}^{1,2}\left(\Delta_{m n}^{(2)}\right)$. Sci. Sin. Math., 2014, 44 (7): 769-778. (in Chinese)
[7] Renhong WANG, Chongjun LI. Bivariate quartic spline spaces and quasi-interpolation operators. J. Comput. Appl. Math., 2006, 190: 325-338.
[8] L. LORENTZEN, H. WAADELAND. Continued Fraction with Application. Elsevier Science Publishers, B. V., 1992.
[9] Renhong WANG, Gongqin ZHU. Rational Approximation and Its Applications. Science Press, Beijing, 2004.
[10] Jieqing TAN. Continued Fractions Theory and Applications. Science Press, Beijing, 2008.
[11] A. CUYT, B. VERDONK. Multivariate Reciprocal differnces for branched Thiele continued fraction expressions. J. Comput. Appl. Math., 1988, 21: 145-160.
[12] A. CUYT, B. VERDONK. A review of branched continued fraction thoery for the construction of multivariate rational approximation. Appl. Numer. Math., 1988, 4: 263-271.
[13] Jieqing TAN, Yi FANG. Newton-Thiele's rational interpolants. Numer. Algor., 2000, 24(1-2): 141-157.
[14] Jieqing TAN, Shuo TANG. Composite schemes for multivariate blending rational interpolation. J. Comput. Appl. Math., 2002, 144(1-2): 263-275.
[15] Renhong WANG, Jiang QIAN. On branched continued fractions rational interpolation over pyramid-typed grids. Numer. Algorithms, 2010, 54(1): 47-72.
[16] Renhong WANG, Jiang QIAN. Bivariate polynomial and continued fraction interpolation over ortho-triples. Appl. Math. Comput., 2011, 217(19): 7620-7635.
[17] H. WENDLAND. Scattered Data Approximation. Cambridge University Press, 2005.
[18] T. SAUER. Numerical Analysis (Second Edition). China Machine Press, 2012.

[^0]: Received January 10, 2016; Accepted March 18, 2016
 Supported by the Special Funds Tianyuan for the National Natural Science Foundation of China (Grant No. 11426086), the Fundamental Research Funds for the Central Universities (Grant No. 2016B08714) and the Natural Science Foundation of Jiangsu Province for the Youth (Grant No. BK20160853).

 * Corresponding author

 E-mail address: qianjianghhu@sina.com (Jiang QIAN)

