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Abstract Let G be a graph with n(G) vertices and m(G) be its matching number. The

nullity of G, denoted by η(G), is the multiplicity of the eigenvalue zero of adjacency matrix of

G. It is well known that if G is a tree, then η(G) = n(G)− 2m(G). Guo et al. [Jiming GUO,

Weigen YAN, Yeongnan YEH. On the nullity and the matching number of unicyclic graphs.

Linear Alg. Appl., 2009, 431: 1293–1301] proved that if G is a unicyclic graph, then η(G)

equals n(G)−2m(G)−1, n(G)−2m(G), or n(G)−2m(G)+2. In this paper, we prove that if

G is a bicyclic graph, then η(G) equals n(G)− 2m(G), n(G)− 2m(G)± 1, n(G)− 2m(G)± 2

or n(G) − 2m(G) + 4. We also give a characterization of these six types of bicyclic graphs

corresponding to each nullity.
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1. Introduction

Let G = (V (G), E(G)) be a simple graph on n vertices with vertex set V (G) and edge set

E(G). A matching in G is a set of pairwise nonadjacent edges. If M is a matching, each vertex

incident with an edge of M is said to be covered by M . A perfect matching is the one which

covers every vertex of G, and a maximum matching is the one which covers as many vertices as

possible. We denote by m(G) the matching number of G, i.e., the number of edges in a maximum

matching of G. The adjacency matrix of G, denoted by A(G) = (aij)n×n, is the n × n matrix

such that aij = 1 if vertices vi and vj are adjacent and 0 otherwise, i, j = 1, . . . , n. Clearly,

A(G) is a real symmetric matrix and all the eigenvalues of A(G) are real. The multiplicity of

the eigenvalue zero of A(G) is called the nullity of G, which is denoted by η(G). The graph G

is called singular (or nonsingular) if η(G) > 0 (or η(G = 0). Let Gn be the set of all graphs of

order n, and let [0, n] = {0, 1, 2, . . . , n}. A subset N of [0, n] is said to be the nullity set of Gn

provided that for any k ∈ N , there exists at least one graph G ∈ Gn such that η(G) = k.
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Collatz and Sinogowitz [1] first posed the problem of characterizing all singular or non-

singular graphs. But, this problem has not been completely solved so far. At present, only

some particular cases are known. On the other hand, this problem has very strong chemical

background. Longuet-Higgins [2] pointed out that the occurrence of a zero eigenvalue of a bipar-

tite graph (corresponding to an alternate hydrocarbon) indicates the chemical instability of the

molecule which such a graph represents. The problem is also of interest in mathematics itself,

as it is closely related to the minimum rank problem of symmetric matrices whose patterns are

described by graphs. The topics on the nullity of graphs include the computing nullity, the nullity

distribution, bounds on nullity, characterization of a graph with special nullity, graph structure

features reflected in nullity, and so on [3–19]. Among them, the study of the relationship between

the nullity with other parameters of graphs, such as the number of vertices, size, matching num-

ber and maximum degree, is also an interesting problem. The following result gives a concise

formula for the nullity of a tree T in terms of the matching number of T :

Theorem 1.1 ([3]) Suppose T is a tree with n vertices and m(T ) is the matching number of T .

Then η(T ) = n− 2m(T ).

The cycle and the path with n vertices are denoted by Cn and Pn, respectively. A unicyclic

graph is a simple connected graph with equal number of vertices and edges. Guo et al. [4]

investigated the nullity of the unicyclic graphs in terms of their matching number and proved

the following interesting results:

Theorem 1.2 ([4]) Suppose G is a unicyclic graph with n vertices and the unique cycle in G

is Cl. Let E1 be the set of edges of G between Cl and G− Cl and E2 the set of matchings of G

with m(G) edges. Then

(1) η(G) = n− 2m(G)− 1 if m(G) = l−1
2 +m(G− Cl);

(2) η(G) = n− 2m(G) + 2 if G satisfies properties: m(G) = l
2 +m(G− Cl), l = 0 (mod 4)

and E1

∩
M = ∅ for all M ∈ E2;

(3) η(G) = n− 2m(G) otherwise.

For convenience, hereafter in this paper we denote a unicyclic graph with nullity n−2m(G)−
1, n − 2m(G), n − 2m(G) + 2 by U1, U2, U3-unicyclic graph, respectively. Motivated by above

results on the nullity of graphs, in this paper, we prove that if G is a bicyclic graph, then η(G)

equals n(G)− 2m(G), n(G)− 2m(G)± 1, n(G)− 2m(G)± 2 or n(G)− 2m(G) + 4. We also give

a characterization of these six types of bicyclic graphs corresponding to each nullity.

2. Preliminaries

The following results are often cited in works related to nullity of graphs, and also play

important roles in this paper.

Lemma 2.1 ([3]) Let G = G1

∪
G2 · · ·

∪
Gt, where G1, G2, . . . , Gt are connected components
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of G. Then

η(G) =
t∑

i=1

η(Gi).

Lemma 2.2 ([3]) Let G be a graph containing a pendant vertex, and let H be the induced

subgraph of G obtained by deleting the pendant vertex together with the vertex adjacent to it.

Then η(G) = η(H).

Lemma 2.3 ([3]) A path with four vertices of degree 2 in a graph G can be replaced by an edge

(see Figure 1) without changing the nullity of G.

Figure 1 A path xv1v2v3v4y is replaced by an edge xy

For a tree T on at least two vertices, a vertex v ∈ V (T ) is called mismatched vertex in T if

there exists a maximum matching M of T that does not cover v; otherwise, v is called matched

vertex in T . If a tree consists of only one vertex, then this vertex is considered mismatched

vertex. T (u)⊙k G is a graph obtained from T
∪
G by joining u and arbitrary k vertices of G. In

[5], the nullity of T (u)⊙k G was studied, as follows.

Lemma 2.4 ([5]) Let T be a tree with a matched vertex u and let G be a graph of order n.

Then for each integer k (1 ≤ k ≤ n),

η(T (u)⊙k G) = η(T ) + η(G).

Lemma 2.5 ([5]) Let T be a tree with a mismatched vertex u and let G be a graph of order n.

Then for each integer k (1 ≤ k ≤ n),

η(T (u)⊙k G) = η(T − u) + η(G+ u),

where G+ u is the subgraph of T (u)⊙k G induced by V (G) and u.

For the matching number of T (u)⊙k G, we have similar results, as follows.

Lemma 2.6 Let T be a tree with a matched vertex u and let G be a graph of order n. Then

for each integer k (1 ≤ k ≤ n),

m(T (u)⊙k G) = m(T ) +m(G).

Proof Let M be a maximum matching in T (u)⊙kG. Then |M | = |M
∩
E(T )|+|M

∩
E(G+u)|.

Clearly, |M | ≥ m(T ) +m(G).

If M contains no edge which joins u and one of the vertices of G. Then we have |M | =
m(T ) +m(G).
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Now suppose that M contains an edge which joins u and one of the vertices of G. Since u

is a matched vertex in T , m(T − u) = m(T )− 1. Moreover, we have |M
∩
E(T )| ≤ m(T − u) =

m(T )− 1. Therefore,

|M | = |M
∩

E(T )|+ |M
∩

E(G+ u)| ≤ m(T )− 1 +m(G+ u) ≤ m(T ) +m(G),

where the last inequality follows from m(G+ u) ≤ m(G) + 1. Then |M | = m(T ) +m(G). �

Lemma 2.7 Let T be a tree with a mismatched vertex u and let G be a graph of order n.

Then for each integer k (1 ≤ k ≤ n), m(T (u)⊙k G) = m(T − u) +m(G+ u).

Proof Since u is a mismatched vertex in T , then for its any neighbor v in T , v is a matched

vertex in T , and it is also a matched vertex in the component of T −u that contains v. For each

neighbor v of u in T , we put it into Lemma 2.6, then complete the proof. �
A bicyclic graph is a simple connected graph in which the number of edges equals the

number of its vertices plus one. Let Cl and Ck be two vertex-disjoint cycles. Suppose that v1 is

a vertex of Cl and vx is a vertex of Ck. Joining v1 and vx by a path v1v2 · · · vx of length x− 1,

where x ≥ 1 and x = 1 means identifying v1 with vx; the resulting graph is shown in Figure 2,

denoted by B(l, x, k). Let Pl+1, Px+1 and Pk+1 be three vertex-disjoint paths, where l, x, k ≥ 1

and at most one of them is 1. Identifying the three initial vertices and terminal vertices of them,

respectively, the resulting graph is shown in Figure 2, denoted by θ(l, x, k). All bicyclic graphs

consists of two shapes of graphs: first shape is B-shape bicyclic graphs each of which contains

B(l, x, k) as its vertex induced subgraph; second shape is θ-shape bicyclic graphs each of which

contains θ(l, x, k) as its vertex induced subgraph.

Figure 2 B(l, x, k) and θ(l, x, k)

To investigate the relation between nullity of bicyclic graph and its matching number, we

first compute the nullity of B(l, x, k) and θ(l, x, k) with respect to their matching number.

Lemma 2.8 (1) η(B(l, x, k)) = n(B(l, x, k))− 2m(B(l, x, k))− 1 if one of l, k is 2 (mod 4), the

other one is odd, x is even or l, x, k ≡ 1 (mod 2), l ≡ k (mod 4);

(2) η(B(l, x, k)) = n(B(l, x, k))− 2m(B(l, x, k))+1 if one of l, k is 0 (mod 4), the other one

is odd, x is odd;

(3) η(B(l, x, k)) = n(B(l, x, k))− 2m(B(l, x, k))+2 if one of l, k is 0 (mod 4), the other one

is 2 (mod 4), x is even or l, k ≡ 0 (mod 4);

(4) η(B(l, x, k)) = n(B(l, x, k))− 2m(B(l, x, k)) otherwise.

Proof Denote B(l, x, k) by B for short. Without loss of generality, we assume l ≤ k in B. By
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Lemma 2.3, it does not change the nullity of B if we replace a path with four vertices of degree 2

in B by an edge. By repeating the operation as many as possible, after a finite number of steps,

we finally obtain a graph B′(l, x, k) which is denoted by B′, where l, k = 3, 4, 5, 6, x = 1, 2, 3, 4, 5.

Clearly, the number of such graph B′(l, x, k) is 50.

Then we can calculate the nullity of B′ by distinguishing the five cases in terms of x. When

x = 1, the nullity of B′(l, 1, k) shown in Table 1. can be calculated directly and represented by

the formula η(B′(l, 1, k)) = n(B′(l, 1, k))− 2m(B′(l, 1, k)) + a, where a is a constant.

η(B′(l, 1, k)) k = 3 k = 4 k = 5 k = 6

l = 3 0 = 5− 2× 2− 1 1 = 6− 2× 3 + 1 1 = 7− 2× 3 + 0 0 = 8− 2× 4 + 0

l = 4 3 = 7− 2× 3 + 2 1 = 8− 2× 4 + 1 1 = 9− 2× 4 + 0

l = 5 0 = 9− 2× 4− 1 0 = 10− 2× 5 + 0

l = 6 1 = 11− 2× 5 + 0

Table 1 Nullity of B′(l, 1, k) represented by η(B′(l, 1, k)) = n(B′(l, 1, k))− 2m(B′(l, 1, k)) + a

When x = 2, 3, 4 or 5, we also can calculate the nullity of B′(l, x, k) and represent in formula

η(B′(l, x, k)) = n(B′(l, x, k))− 2m(B′(l, x, k)) + a, in a similar way. From above representation

of the nullity of B′, we can find that the constant a is always −1, 0, 1 or 2. Therefore, 50 graphs

of such B′ shown in Table 2 can be divided into the following four groups corresponding to the

value of a.

Formula of nullity Graphs B′ corresponding to the formula

η(B′) = n(B′)− 2m(B′)− 1 B′(3, 1, 3), B′(3, 3, 3), B′(3, 5, 3), B′(3, 2, 6), B′(3, 4, 6)

B′(5, 1, 5), B′(5, 3, 5), B′(5, 5, 5), B′(5, 2, 6), B′(5, 4, 6)

η(B′) = n(B′)− 2m(B′) + 1 B′(3, 1, 4), B′(3, 3, 4), B′(3, 5, 4)

B′(4, 1, 5), B′(4, 3, 5), B′(4, 5, 5)

η(B′) = n(B′)− 2m(B′) + 2 B′(4, 1, 4), B′(4, 3, 4), B′(4, 5, 4), B′(4, 2, 4), B′(4, 4, 4)

B′(4, 2, 6), B′(4, 4, 6)

η(B′) = n(B′)− 2m(B′) B′(3, 1, 5), B′(3, 3, 5), B′(3, 5, 5), B′(3, 2, 3), B′(3, 4, 3)

B′(3, 1, 6), B′(3, 3, 6), B′(3, 5, 6), B′(3, 2, 4), B′(3, 4, 4)

B′(4, 1, 6), B′(4, 3, 6), B′(4, 5, 6), B′(3, 2, 5), B′(3, 4, 5)

B′(5, 1, 6), B′(5, 3, 6), B′(5, 5, 6), B′(4, 2, 5), B′(4, 4, 5)

B′(6, 1, 6), B′(6, 3, 6), B′(6, 5, 6), B′(5, 2, 5), B′(5, 4, 5)

B′(6, 2, 6), B′(6, 4, 6)

Table 2 Formula of nullity of B′ and the corresponding graphs
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Next, we show that if B′ is obtained from B by replacing a path with four vertices of

degree 2 in B by an edge and η(B′) = n(B′) − 2m(B′) + a, then η(B) = n(B) − 2m(B) + a,

where a = −1, 0, 1, 2. In fact, suppose that B′ is obtained from B by removing v1, v2, v3, v4 of

a path P = xv1v2v3v4y and then adding an edge xy, where vi on P is the vertex of degree 2,

i = 1, 2, 3, 4. Denote B′ by B − {v1, v2, v3, v4} + xy. Then, we have n(B) = n(B′) + 4 and

m(B) = m(B′) + 2. The first one is obvious. As for the second one, it is easy to see that any

maximum matching of B contains two or three nonadjacent edges in P . Let M be a maximum

matching of B. If M contains two nonadjacent edges of P , then one of x and y must be covered

by M in B − {v1, v2, v3, v4}. Thus xy ∈ E(B′) is not in any maximum matching of B′. If M

contains three nonadjacent edges of P , i.e., {xv1, v2v3, v4y} ⊂ M . Then both x and y are not

covered by M in B − {v1, v2, v3, v4}. Hence, xy ∈ E(B′) is in every maximum matching of B′.

Therefore, η(B′) = n(B′) − 2m(B′) + a = [n(B) − 4] − 2[m(B) − 2] + a = n(B) − 2m(B) + a.

By Lemma 2.3, we know that η(B′) = η(B). Thus the result follows immediately from above.

Combining with above classification of the nullity (Table 2), the lemma thus follows. �

Lemma 2.9 (1) η(θ(l, x, k)) = n(θ(l, x, k))− 2m(θ(l, x, k))− 1 if two of l, x, k are odd and they

congruence with modulus 4;

(2) η(θ(l, x, k)) = n(θ(l, x, k))−2m(θ(l, x, k))+1 if two of l, x, k are even and they congruence

with modulus 4;

(3) η(θ(l, x, k)) = n(θ(l, x, k))− 2m(θ(l, x, k)) + 2 if l, x, k ≡ 0 (mod 2), l ≡ x ≡ k (mod 4);

(4) η(θ(l, x, k)) = n(θ(l, x, k))− 2m(θ(l, x, k)) otherwise.

Proof Denote θ(l, x, k) by θ for short. Without loss of generality, we assume l ≤ x ≤ k in θ.

Similar to the proof in Lemma 2.8, we finally obtain a graph θ′(l, x, k) denoted by θ′ from θ,

after as many steps as possible replacing a path with four vertices of degree 2 in θ by an edge,

where l, x, k = 1, 2, 3, 4. We have the formula of nullity of θ′ shown in Table 3 and divide these

16 graphs of such θ′ into the following four groups.

Formula of nullity Graphs θ′ corresponding to the formula

η(θ′) = n(θ′)− 2m(θ′)− 1 θ′(2, 3, 3), θ′(3, 3, 4)

η(θ′) = n(θ′)− 2m(θ′) + 1 θ′(1, 2, 2), θ′(2, 2, 3), θ′(3, 4, 4)

θ′(1, 4, 4)

η(θ′) = n(θ′)− 2m(θ′) + 2 θ′(2, 2, 2), θ′(4, 4, 4)

η(θ′) = n(θ′)− 2m(θ′) θ′(1, 2, 3), θ′(2, 2, 4), θ′(3, 3, 3)

θ′(1, 2, 4), θ′(2, 3, 4)

θ′(1, 3, 3), θ′(2, 4, 4)

θ′(1, 3, 4)

Table 3 Formula of nullity of θ′ and the corresponding graphs
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Similarly to the proof in Lemma 2.8, since the formula of nullity of θ keeps unchanged in

each step, according to classification of the nullity (Table 3), the lemma thus follows. �

3. Main results

In what follows we first introduce a classification of bicyclic graphs and then provide our

main results with their complete proofs. A bicyclic graph can be regarded as the graph which

is obtained from B(l, x, k) (or θ(l, x, k)) by attaching some trees to some vertices of B(l, x, k)

(or θ(l, x, k)). For v ∈ V (B(l, x, k)) (or v ∈ V (θ(l, x, k))), GB{v} (or Gθ{v}) denote an induced

connected subgraph of G with maximum possible of vertices, which contains the vertex v and

contains no other vertices of B(l, x, k) (or θ(l, x, k)). We say that GB{v} (or Gθ{v}) is a tree

attached on v. Now according to whether v is a matched vertex in GB{v} (or Gθ{v}) or not, we
divide all bicyclic graphs of order n into three types:

Type I, denote by B1
n (or θ1n) the set of those graphs each of which is B-shape bicyclic

graph (or θ-shape bicyclic graph) and there exists a vertex v on B(l, x, k) (or θ(l, x, k)) which is

a matched vertex in GB{v} (or Gθ{v}) and v ∈ V (Cl)
∪
V (Ck) (or v is one endpoint of Pl+1,

Px+1 and Pk+1).

Type II, denote by B2
n (or θ2n) the set of those graphs each of which is B-shape bicyclic

graph (or θ-shape bicyclic graph) and there exists a vertex on B(l, x, k) (or θ(l, x, k)) which is a

matched vertex in GB{v} (or Gθ{v}) but v /∈ V (Cl)
∪
V (Ck) (or v is not endpoint of Pl+1, Px+1

and Pk+1).

Type III, denote by B3
n (or θ3n) the set of those B-shape bicyclic graphs (or θ-shape bicyclic

graphs) each of which belongs to neither Type I nor Type II.

Theorem 3.1 Let G be a B-shape bicyclic graph and B(l, x, k) as its induced subgraph. Then

(1) η(G) = n(G)−2m(G)−2 if G ∈ B2
n and G−GB{v} is disjoint union of two U1-unicyclic

graphs.

(2) η(G) = n(G)− 2m(G)− 1 if G satisfies one of following conditions:

(i) G ∈ B1
n and x ̸= 1 and G−GB{v} is disjoint union of a tree and U1-unicyclic graph;

(ii) G ∈ B2
n and G−GB{v} is disjoint union of U1-unicyclic graph and U2-unicyclic graph;

(iii) G ∈ B3
n and η(B(l, x, k)) = n(B(l, x, k))− 2m(B(l, x, k))− 1.

(3) η(G) = n(G)− 2m(G) if G satisfies one of following conditions:

(i) G ∈ B1
n and x = 1;

(ii) G ∈ B1
n x ̸= 1 and G−GB{v} is disjoint union of a tree and U2-unicyclic graph;

(iii) G ∈ B2
n and G−GB{v} is disjoint union of two U2-unicyclic graphs;

(iv) G ∈ B3
n and η(B(l, x, k)) = n(B(l, x, k))− 2m(B(l, x, k)).

(4) η(G) = n(G)− 2m(G) + 1 if G satisfies one of following conditions:

(i) G ∈ B2
n and G−GB{v} is disjoint union of U1-unicyclic graph and U3-unicyclic graph;

(ii) G ∈ B3
n and η(B(l, x, k)) = n(B(l, x, k))− 2m(B(l, x, k)) + 1.

(5) η(G) = n(G)− 2m(G) + 2 if G satisfies one of following conditions:

(i) G ∈ B1
n and x ̸= 1 and G−GB{v} is disjoint union of a tree and U3-unicyclic graph;
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(ii) G ∈ B2
n and G−GB{v} is disjoint union of U2-unicyclic graph and U3-unicyclic graph;

(iii) G ∈ B3
n and η(B(l, x, k)) = n(B(l, x, k))− 2m(B(l, x, k)) + 2.

(6) η(G) = n(G)−2m(G)+4 if G ∈ B2
n and G−GB{v} is disjoint union of two U3-unicyclic

graphs.

Proof If G belongs to Type I, then there exists a vertex v ∈ V (Cl)
∪

V (Ck) on B(l, x, k) such

that v is a matched vertex in GB{v}. Let n(GB{v}) = n1, m(GB{v}) = m1.

Case 1 v ∈ V (Cl) \ v1 or v ∈ V (Ck) \ vx.
Then G − GB{v} is a unicyclic graph. Clearly, G = GB{v}(v) ⊙2 (G − GB{v}). Assume

that G−GB{v} is of order n2 and its matching number is m2. By Lemma 2.4, we have η(G) =

η(GB{v}) + η(G−GB{v}). It follows from Lemmas 1.1, 1.2 and 2.6, we have

η(G) = η(GB{v}) + η(G−GB{v})

= n1 − 2m1 +


n2 − 2m2 − 1, G−GB{v} is U1-unicyclic graph;

n2 − 2m2, G−GB{v} is U2-unicyclic graph;

n2 − 2m2 + 2, G−GB{v} is U3-unicyclic graph,

=


n(G)− 2m(G)− 1;

n(G)− 2m(G);

n(G)− 2m(G) + 2.

Case 2 v = v1 or vx.

If v1 ̸= vx, then G−GB{v} has two components a tree and a unicyclic graph, say G2 and G3,

respectively. Let n(Gi) = ni and m(Gi) = mi, i = 1, 2. Clearly, G = GB{v}(v)⊙3 (G−GB{v}).
Similar to Case 1, we have

η(G) = η(GB{v}) + η(G−GB{v})

= n1 − 2m1 + n2 − 2m2 +


n3 − 2m3 − 1, G3 is U1-unicyclic graph;

n3 − 2m3, G3 is U2-unicyclic graph;

n3 − 2m3 + 2, G3 is U3-unicyclic graph,

=


n(G)− 2m(G)− 1;

n(G)− 2m(G);

n(G)− 2m(G) + 2.

If v1 = vx, then G−GB{v} has two components which both are trees. Let n2, n3 be their

vertex numbers, respectively, and m2,m3 be their corresponding matching numbers, respectively.

Clearly, G = GB{v}(v)⊙4 (G−GB{v}). Similarly to Case 1, we have

η(G) = η(GB{v}) + η(G−GB{v}) = n1 − 2m1 + n2 − 2m2 + n3 − 2m3 = n(G)− 2m(G).

If G belongs to Type II, then there exists a vertex v /∈ V (Cl)
∪
V (Ck) on B(l, x, k) such

that v is a matched vertex in GB{v}. Then v ∈ V (Px) \ {v1, vx}, where Px = v1v2 · · · vx. Thus,
G−GB{v} has two components, say G2 and G3, which both are unicyclic graphs. Let n(Gi) = ni
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and m(Gi) = mi, i = 1, 2. Clearly, G = GB{v}(v)⊙2 (G−GB{v}). By Lemmas 1.1 and 1.2, we

have

η(GB{v}) = n1 − 2m1,

η(G1) =


n2 − 2m2 − 1, G2 is U1-unicyclic graph;

n2 − 2m2, G2 is U2-unicyclic graph;

n2 − 2m2 + 2, G2 is U3-unicyclic graph,

η(G2) =


n3 − 2m3 − 1, G3 is U1-unicyclic graph;

n3 − 2m3, G3 is U2-unicyclic graph;

n3 − 2m3 + 2, G3 is U3-unicyclic graph.

Moreover,

η(G−GB{v}) = η(G1) + η(G2)

=



(n2 + n3)− 2(m2 +m3)− 2, both G2 and G3 are U1-unicyclic graphs;

(n2 + n3)− 2(m2 +m3)− 1, one of G2, G3 is U1-unicyclic graph

the other is U2-unicyclic graph;

(n2 + n3)− 2(m2 +m3), both G2 and G3 are U2-unicyclic graph;

(n2 + n3)− 2(m2 +m3) + 1, one of G2, G3 is U1-unicyclic graph

the other is U3-unicyclic graph;

(n2 + n3)− 2(m2 +m3) + 2, one of G2, G3 is U2-unicyclic graph

the other is U3-unicyclic graph;

(n2 + n3)− 2(m2 +m3) + 4, both G2 and G3 are U3-unicyclic graph.

And then by Lemmas 2.4 and 2.6, we have

η(G) = η(GB{v}) + η(G−GB{v}) =



n(G)− 2m(G)− 2;

n(G)− 2m(G)− 1;

n(G)− 2m(G);

n(G)− 2m(G) + 1;

n(G)− 2m(G) + 2;

n(G)− 2m(G) + 4.

If G belongs to Type III, by Lemma 2.5, we have η(G) = η(G − B(l, x, k)) + η(B(l, x, k)).

Let n(B(l, x, k)) = n1, m(B(l, x, k)) = m1, n(G − B(l, x, k)) = n2, m(G − B(l, x, k)) = m2. By

Lemmas 1.1 and 2.8, we have

η(G) = η(G−B(l, x, k)) + η(B(l, x, k)) = n2 − 2m2 + η(B(l, x, k))

= n2 − 2m2 +


n1 − 2m1 − 1;

n1 − 2m1;

n1 − 2m1 + 1;

n1 − 2m1 + 2.

=


n(G)− 2m(G)− 1;

n(G)− 2m(G);

n(G)− 2m(G) + 1;

n(G)− 2m(G) + 2.

By above discussion, the proof of Theorem 3.1 is completed. �
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Theorem 3.2 Let G be a θ-shape bicyclic graph and θ(l, x, k) as its an induced subgraph.

Then

(1) η(G) = n(G)− 2m(G)− 1 if G satisfies one of following conditions:

(i) G ∈ θ2n and G−Gθ{v} is U1-unicyclic graph;

(ii) G ∈ θ3n and η(θ(l, x, k)) = n(θ(l, x, k))− 2m(θ(l, x, k))− 1.

(2) η(G) = n(G)− 2m(G) if G satisfies one of following conditions:

(i) G ∈ θ1n;

(ii) G ∈ θ2n and G−Gθ{v} is U2-unicyclic graph;

(iii) G ∈ θ3n and η(θ(l, x, k)) = n(θ(l, x, k))− 2m(θ(l, x, k)).

(3) η(G) = n(G)− 2m(G) + 1 if G ∈ θ3n and η(θ(l, x, k)) = n(θ(l, x, k))− 2m(θ(l, x, k)) + 1.

(4) η(G) = n(G)− 2m(G) + 2 if G satisfies one of following conditions:

(i) G ∈ θ2n and G−Gθ{v} is U3-unicyclic graph;

(ii) G ∈ θ3n and η(θ(l, x, k)) = n(θ(l, x, k))− 2m(θ(l, x, k)) + 2.

Proof If G belongs to Type I, then there exists a vertex v on θ(l, x, k) which is one endpoint of

Pl+1, Px+1 and Pk+1 such that v is a matched vertex in Gθ{v}. Let n(Gθ{v}) = n1, m(Gθ{v}) =
m1. Then G − Gθ{v} is a tree. Assume that the order of G − Gθ{v} is n2 and its matching

number is m2. Clearly, G = Gθ{v}(v) ⊙3 (G − Gθ{v}). Similarly to the proof in Theorem 3.1,

we have

η(G) = η(Gθ{v}) + η(G−Gθ{v}) = n1 − 2m1 + n2 − 2m2 = n(G)− 2m(G).

If G belongs to Type II, then there exists a vertex v on θ(l, x, k) which is not endpoint of

Pl+1, Px+1 and Pk+1 such that v is a matched vertex in Gθ{v}. Then v is internal vertex of Pl+1,

Px+1 or Pk+1. Therefore, G−Gθ{v} is a unicyclic graph. Clearly, G = Gθ{v}(v)⊙2 (G−Gθ{v}).
Assume that order of G−Gθ{v} is n2 and its matching number is m2. Similarly, we have

η(G) = η(Gθ{v}) + η(G−Gθ{v})

= n1 − 2m1 +


n2 − 2m2 − 1; G−GB{v} is U1-unicyclic graph;

n2 − 2m2; G−GB{v} is U2-unicyclic graph;

n2 − 2m2 + 2; G−GB{v} is U3-unicyclic graph,

=


n(G)− 2m(G)− 1;

n(G)− 2m(G);

n(G)− 2m(G) + 2.

If G belongs to Type III, by Lemma 2.5, we have η(G) = η(G−θ(l, x, k))+η(θ(l, x, k)). Let

n(θ(l, x, k)) = n1, m(θ(l, x, k)) = m1, n(G − θ(l, x, k)) = n2, m(G − θ(l, x, k)) = m2. It follows

from Lemmas 1.1, 2.7 and 2.9, we have

η(G) = η(G− θ(l, x, k)) + η(θ(l, x, k)) = n2 − 2m2 + η(θ(l, x, k))
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= n2 − 2m2 +


n1 − 2m1 − 1;

n1 − 2m1;

n1 − 2m1 + 1;

n1 − 2m1 + 2.

=


n(G)− 2m(G)− 1;

n(G)− 2m(G);

n(G)− 2m(G) + 1;

n(G)− 2m(G) + 2.

By above discussion, the proof of Theorem 3.2 is completed. �

Remark 3.3 From Theorems 3.1 and 3.2, we immediately have that the nullity set of bicyclic

graphs with order n is [0, n − 4]. In fact, when we want to characterize a bicyclic graph with

certain nullity, it suffices to determine its matching number. Moreover, a bicyclic graph with

extreme nullity can be given by Theorems 3.1 and 3.2.

Corollary 3.4 ([6]) The nullity set of bicyclic graphs with order n (n ≥ 6) is [0, n− 4].

Wang and Wong [7] have proved that for every graph G, |V (G)| − 2m(G)− c(G) ≤ η(G) ≤
|V (G)| − 2m(G) + 2c(G), where c(G) = |E(G)| − |V (G)| + ω(G), ω(G) is the number of con-

nected components of G. By Theorem 1.1, we know that for a tree T , its nullity cannot be

|V (T )| − 2m(T )− 1 while 2c(T )− 1 = −1. By Theorem 1.2, there is no unicyclic graph G with

nullity |V (G)| − 2m(G) + 1 while 2c(G)− 1 = 1. By Theorems 3.1 and 3.2, there is no bicyclic

graph G with nullity |V (G)|−2m(G)+3 while 2c(G)−1 = 3. Up to now, we have not found any

graph G with nullity |V (G)| − 2m(G) + 2c(G) − 1. Then, at the end of this paper, we propose

the following question:

Question: Is there any graph G with nullity |V (G)| − 2m(G) + 2c(G) − 1, where c(G) =

|E(G)| − |V (G)|+ ω(G), ω(G) is the number of connected components of G ?
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