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1-Planar Graphs with Girth at Least 7 are
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Abstract A graph is 1-planar if it can be drawn on the plane so that each edge is crossed

by at most one other edge. In this paper, it is shown that 1-planar graphs with girth at least

7 are (1, 1, 1, 0)-colorable.
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1. Introduction

We consider only finite, simple and undirected graphs in this paper. Any undefined notation

and terminology follows that of Bondy and Murty [1].

Let d1, . . . , dk be k nonnegative integers. A graphG = (V,E) is called improperly (d1, . . . , dk)-

colorable, or just (d1, . . . , dk)-colorable, if the vertex set V can be partitioned into subsets

V1, . . . , Vk, such that the graph G[Vi] induced by the vertices of Vi has maximum degree at most

di for all 1 ≤ i ≤ k. This notion generalizes those of proper k-coloring (when d1 = · · · = dk = 0).

Improper coloring of planar graphs has been studied extensively. By Four-Color Theorem,

every plane graph is (0, 0, 0, 0)-colorable, but there exist non-(1, 1, 1)-colorable plane graphs [2].

Motivated by Steinberg’s conjecture, many known results are obtained, for example, every planar

graph with neither 4-cycles nor 5-cycles is (1, 1, 1)-colorable [3]. In [4–6], some results about

(1, 1, 0)-coloring of planar graphs were given.

A graph is 1-planar if it can be drawn on the plane so that each edge is crossed by at most

one other edge. The notion of 1-planar graphs was introduced by Ringel, and he conjectured

that each 1-planar graph is 6-colorable [7]. It was confirmed by Borodin [8] in 1986, and in [9] a

new simpler proof was given. Since there exists a 7-regular 1-planar graph, the bound 6 is sharp.

Borodin et al. [10] also proved that each 1-planar graph is acyclically 20-colorable.

In this paper, we will show the following result.

Theorem 1.1 1-Planar graphs with girth at least 7 are (1, 1, 1, 0)-colorable.

2. Preliminaries
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The vertex set, edge set, face set and minimum degree of a graph G are denoted by V (G),

E(G), F (G) and δ(G), respectively. For a vertex υ ∈ V , let d(υ) and N(υ) denote the degree and

neighborhood of υ in G, respectively. Call υ a k-vertex, a k+-vertex or a k−-vertex, if d(υ) = k ,

d(υ) ≥ k or d(υ) ≤ k, respectively. For a face f ∈ F , the number of edges of f , denoted by d(f),

is called the degree of f . The k-face, k+-face and k−-face can be defined similarly. The girth of

a graph is the length of a shortest cycle.

For any 1-planar graph G, we assume that G has been embedded on a plane such that every

edge is crossed by at most one other edge. The associated plane graph G∗ of a 1-planar graph

G is the plane graph obtained from G by turning each crossing of G into a new 4-vertex, called

a crossing vertex.

Some definitions of non-crossing vertex are as follows:

(1) Important 4-vertex: a 4-vertex which is incident with two 3-faces, one 4-face and one

6+-face (Figure 1-1).

(2) Special 4-vertex: a 4-vertex which is incident with two 4-faces, one 3-face and one

5+-face (Figure 1-2).
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We can get the following observation:

(1) Non-important 4-vertex which is incident with two 3-faces can be seen in Figure 1-3.

(2) Non-special 4-vertex which is incident with one 3-face can be seen in Figure 1-4.

(3) 5-vertex which is incident with three 3-faces can be seen in Figure 1-5.
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(The white vertices represent crossing vertices in Figures 1-1 up to 1-5.)

3. Structural properties

In the sequel, let c = {1, 2, 3, 4} denote the color set with four colors. The proof of Theorem

1.1 is by contradiction. Let G be a counterexample with the least number of vertices and edges

which is a 1-planar graph and has no (1, 1, 1, 0)-coloring. Thus, G is connected. Moreover, every
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subgraph G′ of G with fewer vertices and edges has a (1, 1, 1, 0) -coloring by using color set c. In

other words, V (G′) is partitioned into four subsets V1, V2, V3 and V4, such that ∆(G[V1]) ≤ 1,

∆(G[V2]) ≤ 1, ∆(G[V3]) ≤ 1 and ∆(G[V4]) = 0. As usual, to properly color a vertex v means

to assign v a color such that v has no neighbor of that color. Now suppose that the vertices in

G[Vi] are colored with i (i = 1, 2, 3, 4).

Claim 1 The minimum degree δ(G) is at least 4.

Proof Suppose to the contrary that G contains a 3−-vertex v. Let G′ = G − v. By the

minimality of G, G′ has a (1, 1, 1, 0)-coloring φ by using color set c. We may easily extend φ to

G by properly coloring v. This contradicts the choice of G, which is a contradiction. �

Claim 2 Every 4-vertex is adjacent to at most one 4-vertex.

Proof Suppose to the contrary that a 4-vertex v is adjacent to two 4-vertices x and y. Let z

and w denote other neighbors of v. Let G′ = G−{v, x, y}. Clearly, G′ is (1, 1, 1, 0) -colorable by

the minimality of G. Let φ denote a (1, 1, 1, 0) -coloring of G′ by using c. First, properly color x

and y. If {φ(x), φ(y), φ(z), φ(w)} ̸= c, we may color v with a color in c\{φ(x), φ(y), φ(z), φ(w)}.
Otherwise, we assign a color in {1, 2, 3} \ {φ(z), φ(w)} to v. It is easy to check that in each case

the obtained coloring of G is a (1, 1, 1, 0) -coloring, which is a contradiction. �

Claim 3 ([11]) Let G be a 1-planar graph and G∗ the associated plane graph of G. Then for

any two crossing vertices u and v in G∗, uv /∈ E(G∗).

Since the girth of G is at least 7, we can easily get Claims 4 and 5.

Claim 4 Every v in G is incident with at most (2× ⌊d
3⌋+ 1) 3-faces.

Claim 5 The graph G does not contain the following subgraphs (Figure 1-6), where white

vertices represent crossing vertices.

Figure 1 6
  Four kinds of non−existence cycle

−

4. Proof of Theorem 1.1

Now we complete the proof of Theorem 1.1 by the discharging method. Define an initial

charge µ on V (G∗)∪F (G∗) by letting µ(x) = d(x)− 4, for every x ∈ V (G∗)∪F (G∗). Note that

G∗ is a planar graph, so by Euler’s formula |V (G∗)| − |E(G∗)| + |F (G∗)| = 2 and the relation∑
v∈V (G∗) d(v) =

∑
f∈F (G∗) d(f) = 2|E(G∗)|, we can easily deduce that∑

v∈V (G∗)

(d(v)− 4) +
∑

f∈F (G∗)

(d(f)− 4) = −8.



646 Ya-nan CHU and Lei SUN

Since any discharging procedure preserves the total charge of G∗, we shall define a suitable

discharging rules to change the initial charge µ to the final charge µ∗ for every x ∈ V (G∗)∪F (G∗)

such that

−8 =
∑

x∈V (G∗)∪F (G∗)

µ(x) =
∑

x∈V (G∗)∪F (G∗)

µ∗(x) ≥ 0.

This will be a contradiction.

Our discharging rules are defined as follows.

R1 Every non-crossing vertex sends 1
2 to every incident 3-face.

R2 Charge from a 5-face.

R2.1 Every 5-face sends 1
2 to every incident 4-vertex which is incident with two 3-faces.

R2.2 Every 5-face sends 1
2 to every incident special 4-vertex.

R2.3 Every 5-face sends 1
4 to every incident 4-vertex which is incident with one 3-face.

R3 Charge from a 6+-face.

R3.1 Every 6+-face sends 1 to every incident important 4-vertex.

R3.2 Every 6+-face sends 1
2 to every incident special 4-vertex.

R3.3 Every 6+-face sends 1
2 to every incident 4-vertex which is incident with two 3-faces.

R3.4 Every 6+-face sends 1
2 to every incident 5-vertex which is incident with three 3-faces.

R3.5 Every 6+-face sends 1
4 to every incident 4-vertex which is incident with one 3-face.

In the following, we will prove that µ∗(x) ≥ 0 for all x ∈ V (G∗) ∪ F (G∗).

First we consider vertices.

By Claim 1, δ ≥ 4.

(1) d(v) = 4.

If v is a crossing vertex, then µ∗(v) = d(v)− 4 = 0; If v is a non-crossing vertex, then it is

incident with at most two 3-faces.

Case 1 If v is incident with two 3-faces, then

Case 1.1 v is an important 4-vertex: µ∗(v) = d(v)−4−2× 1
2 +1 = 0 by R1, R3.1 (Figure 1-1).

Case 1.2 v is not an important 4-vertex: µ∗(v) = d(v) − 4 − 2 × 1
2 + 1

2 + 1
2 = 0 by R1, R2.1,

R3.3 and observation(1) (Figure 1-3).

Case 2 If v is incident with one 3-face, then

Case 2.1 v is a special 4-vertex: µ∗(v) = d(v)− 4− 1
2 + 1

2 = 0 by R1, R2.2, R3.2 (Figure 1-2).

Case 2.2 v is not a special 4-vertex: µ∗(v) ≥ d(v)− 4− 1
2 + 2× 1

4 = 0 by R1, R2.3, R3.5 and

observation(2) (Figure 1-4).

Case 3 If v is not incident with 3-faces, then µ∗(v) = d(v)− 4 = 0.

(2) d(v) = 5.

By Claim 4, v is incident with at most three 3-faces.

Case 1 v is incident with three 3-faces. Then µ∗(v) = d(v) − 4 − 3 × 1
2 + 1

2 = 0 by R1, R3.4
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and observation(3) (Figure 1-5).

Case 2 v is incident with at most two 3-faces. Then µ∗(v) ≥ d(v)− 4− 2× 1
2 = 0 by R1.

(3) d(v) ≥ 6.

By Claim 4 and G has no 3-cycles, v is incident with at most ⌊ 2d
3 ⌋ 3-faces. Thus,

µ∗(v) ≥ d(v)− 4− 1

2
× ⌊2d

3
⌋ ≥ 2d

3
− 4 ≥ 0

by R1.

Next we consider faces.

(1) d(f) = 3. Since G has no 3-cycles, it must be incident with a crossing vertex. Thus,

µ∗(f) = d(f)− 4 + 2× 1
2 = 0 by R1.

(2) d(f) = 4. µ∗(f) = d(f)− 4 = 0.

(3) d(f) = 5. Since G has no 5-cycles, f is incident with at least one crossing vertex.

Furthermore, by the definition of important 4-vertex, it is obvious that f has no important 4-

vertex.

Case 1 f is incident with two crossing vertices. Then f is incident with at most one special

4-vertex, and one 4-vertex which is incident with two 3-faces. Furthermore, they cannot exist

at the same time. In fact, let v1, . . . , v5 be the five vertices of f , with edges vivi+1 (i mod 5).

By Claim 3, we may assume that v1 and v4 are crossing vertices. Suppose that v5 is a special

4-vertex. There are two ways to place the 3-face and 4-face incident with v5, but in any way it

is easy to see that the face of G∗ \ v5 whose interior contains v5 will correspond to a cycle of

length at most 6 in G, a contradiction. So v5 is not a special 4-vertex. By a similar argument,

at most one of v2, v3 and v5 can be a special vertex or a 4-vertex which is incident with two

3-faces. (Figure 2-1(a)(b) v is a special 4-vertex; (c)(d)(e)v′ is a 4-vertex which is incident with

two 3-faces.) Thus,

µ∗(f) ≥ d(f)− 4− 1

2
− 2× 1

4
= 0

by R2.

Case 2 f is incident with one crossing vertex. By the definition of special 4-vertex, it is obvious

that f has no special 4-vertex (Figure 2-2 (a)(b)). By Claim 2, f is incident with at most three

4-vertices. Moreover, if v and v′ are 4-vertices which are incident with two 3-faces, then the

other two vertices u and u′ are 5-vertices (Figure 2-2 (c)). Thus,

µ∗(f) = d(f)− 4− 2× 1

2
= 0

or

µ∗(f) ≥ d(f)− 4− 1

2
− 2× 1

4
= 0

by R2.1 and R2.3.

(4) d(f) = 6. Since G has no 6-cycles, f is incident with at least one crossing vertex.

Case 1 f is incident with three crossing vertices. Then f is incident with at most one important
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4-vertex. If v is an important 4-vertex, then u and w cannot be special 4-vertex, 4-vertex which

is incident with two 3-faces, and 5-vertex which is incident with three 3-faces (Figure 3-1). Thus,

µ∗(f) ≥ d(f)− 4− 1− 2× 1

4
=

1

2
> 0

by R3.1 and R3.5.

Case 2 f is incident with two crossing vertices. Then there is no important 4-vertex, and f is

incident with at most four 4-vertices (Figure 3-2). Thus,

µ∗(f) ≥ d(f)− 4− 4× 1

2
= 0

by R3.2–R3.5.

Case 3 f is incident with one crossing vertex. Then there is no important 4-vertex, and 5-vertex

which is incident with three 3-faces. f is incident with at most four 4-vertices (Figure 3-3). Thus,

µ∗(f) ≥ d(f)− 4− 4× 1

2
= 0

by R3.2–R3.5.

(5) d(f) = 7.

Case 1 f is incident with three crossing vertices. Then there is at most one important 4-vertex

(Figure 4-1). Thus,

µ∗(f) ≥ d(f)− 4− 1− 3× 1

2
=

1

2
> 0

by R3.1–R3.5.

Case 2 f is incident with two crossing vertices. Then f is incident with at most four 4-vertices.

There is at most one important 4-vertex (Figure 4-2). Thus,

µ∗(f) ≥ d(f)− 4− 1− 4× 1

2
= 0

by R3.

Case 3 f is incident with one crossing vertex. Then there is no important 4-vertex. Moreover,

f is incident with at most four 4-vertices, and one 5-vertex v which is incident with three 3-faces

(Figure 4-3). Thus,

µ∗(f) ≥ d(f)− 4− 4× 1

2
− 1

2
=

1

2
> 0

by R3.

Case 4 f is not incident with any crossing vertices. Then f is incident with at most four

4-vertices. There is no important 4-vertex, special 4-vertex, and 5-vertex which is incident with

three 3-faces. (Figure 4-4 v1, v2, v3 and v4 are 4-vertices which are incident with two 3-faces.)

Thus, µ∗(f) ≥ d(f)− 4− 4× 1
2 = 1 > 0 by R3.2–R3.5.

(6) d(f) ≥ 8.

Case 1 f is incident with at least one crossing vertex. Since the girth of G is at least 7, and by
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the definition of important 4-vertex, it is obvious that f is incident with at most ⌊d
4⌋ important

4-vertices, and the other non-crossing vertices are at most (d− ⌊d
4⌋ − 2× ⌊d

4⌋). Thus,

µ∗(f) ≥ d(f)− 4− 1× ⌊d
4
⌋ − 1

2
× (d− ⌊d

4
⌋ − 2× ⌊d

4
⌋) > 0

by R3.

Case 2 f is not incident with any crossing vertices. Then by Claim 2, f is incident with at

most ⌊ 2d
3 ⌋ 4-vertices. Thus,

µ∗(f) ≥ d(f)− 4− 1

2
× ⌊2d

3
⌋ ≥ 2d

3
− 4 > 0

by R3.

The proof of Theorem 1.1 is completed. �
The pictures in the proof of Theorem 1.1 are as follows.

(a) (b) (c) (d) (e)
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Figure 2 1
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Figure 2 2
 5−face with one crossing vertex 
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(a) (b) (a) 6−cycle (b) 5−cycle (c)
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u w
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(a) (b)
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 6−face with one crossing vertex  7−face with three crossing vertices
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7−face with no
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