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On Minimal Asymptotic Basis of Order 4
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Abstract Let N denote the set of all nonnegative integers and A be a subset of N. Let W be

a nonempty subset of N. Denote by F∗(W ) the set of all finite, nonempty subsets of W . Fix

integer g ≥ 2, let Ag(W ) be the set of all numbers of the form
∑

f∈F afg
f where F ∈ F∗(W )

and 1 ≤ af ≤ g − 1. For i = 0, 1, 2, 3, let Wi = {n ∈ N | n ≡ i (mod 4)}. In this paper, we

show that the set A =
∪3

i=0 Ag(Wi) is a minimal asymptotic basis of order four.
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1. Introduction

Let N denote the set of all nonnegative integers and A be a subset of N. Let h ≥ 2 be an

integer, and let hA be the set of all numbers n of the form n = a1+ · · ·+ah where a1, . . . , ah are

elements of A and are not necessarily distinct. Let W be an nonempty subset of N. Denote by

F∗(W ) the set of all finite, nonempty subsets of W . For integer g ≥ 2, let Ag(W ) be the set of

all numbers of the form
∑

f∈F afg
f where F ∈ F∗(W ) and 1 ≤ af ≤ g− 1. For i = 0, . . . , h− 1,

let Wi = {n ∈ N | n ≡ i (mod h)}. The set A is called an asymptotic basis of order h if hA

contains all sufficiently large integers. An asymptotic basis A of order h is minimal if no proper

subset of A is an asymptotic basis of order h.

In 1988, based on the properties of powers of 2, Nathanson [1] proved the following result:

Theorem 1.1 ([1]) Let h ≥ 2. For i = 0, 1, . . . , h − 1, let Wi = {n ∈ N | n ≡ i (mod h)}. Let
A = A2(W0) ∪ · · · ∪A2(Wh−1). Then A is a minimal asymptotic basis of order h.

It is hard to extend Nathanson’s method to all g ≥ 3. In 1996, Jia [2] considered the g-adic

minimal asymptotic bases of order h.

Theorem 1.2 ([2, Corollary 2]) Let π be any partition of nonnegative integers into h pairwise

disjoint infinite subsets W0,W1, . . . ,Wh−1. Then for any g ≥ h + 1, Ag(π) = Ag(W0) ∪ · · · ∪
Ag(Wh−1) is a minimal asymptotic basis of order h.

It is natural to consider the following problem:
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Problem 1.3 Let g, h ≥ 2 be integers. For i = 0, . . . , h− 1, let Wi = {n ∈ N | n ≡ i (mod h)}.
Is A = Ag(W0) ∪ · · · ∪Ag(Wh−1) a minimal asymptotic basis of order h?

Recently, Ling and Tang (by private communication) have proved that for h = 3, the answer

to Problem 1.3 is affirmative. For related problems we refer to [3–6]. In this paper, we prove the

following result:

Theorem 1.4 For i = 0, 1, 2, 3, let Wi = {n ∈ N | n ≡ i (mod 4)}. Then for any g ≥ 2,

A = Ag(W0) ∪Ag(W1) ∪Ag(W2) ∪Ag(W3) is a minimal asymptotic basis of order 4.

2. Proof of Theorem 1.4

To prove Theorem 1.4, we need the following Lemma:

Lemma 2.1 ([7, Lemma 1]) Let g ≥ 2 be any integer.

(a) If W1 and W2 are disjoint subsets of N, then Ag(W1) ∩Ag(W2) = ∅.
(b) If W ⊆ N and W (x) = θx+O(1) for some θ ∈ (0, 1], then there exist positive constants

c1 and c2 such that

c1x
θ < Ag(W )(x) < c2x

θ

for all x sufficiently large.

(c) Let N = W0 ∪ · · · ∪Wh−1, where Wi ̸= ∅ for i = 0, 1, . . . , h − 1. Then A = Ag(W0) ∪
· · · ∪Ag(Wh−1) is an asymptotic basis of order h.

By Theorems 1.1 and 1.2, it is sufficient to prove that the theorem holds for g = 3, 4. Now

we suppose that g ∈ {3, 4}. Let a ∈ Ag(Wu) for some u ∈ {0, 1, 2, 3}, and so a has a unique

g-adic representation in the form

a = ang
4n+u +

∑
s∈S

asg
4s+u,

where n ≥ 0, and S is a finite, possibly empty, set of integers greater than n, 1 ≤ an, as ≤ g − 1

for all s ∈ S. For any finite set T of integers greater than n, let

m = a0g
u +

∑
s∈S

asg
4s+u + (g − 1)

∑
i ̸=u

0≤i≤3

gi +
∑
t∈T

g4t+u+1, if n = 0. (1)

m = ang
4n+u +

∑
s∈S

asg
4s+u + (g − 1)

u+2∑
t=u

g4n−3+t +
∑
t∈T

g4t+u+1, if n > 0. (2)

By Lemma 2.1(c), we know that for each i ∈ {0, 1, 2, 3} there exists ji ∈ {0, 1, 2, 3} such that

mi ∈ Ag(Wji) and

m = m0 +m1 +m2 +m3. (3)

For i = 0, 1, 2, 3, let c
(k)
i be the least nonnegative residue of mi modulo gk. Write M =

{m0,m1,m2,m3}. For fixed ji ∈ {0, 1, 2, 3}, let

Iji = ♯{i : mi ∈ Ag(Wji), i = 0, 1, 2, 3}.
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We shall show that for any j ∈ {0, 1, 2, 3},

M *
∪

i∈{0,1,2,3}\{j}

Ag(Wi). (4)

It is equivalent to prove the following four statements.

(a) M * Ag(W1) ∪Ag(W2) ∪Ag(W3); (b) M * Ag(W0) ∪Ag(W2) ∪Ag(W3);

(c) M * Ag(W0) ∪Ag(W1) ∪Ag(W3); (d) M * Ag(W0) ∪Ag(W1) ∪Ag(W2).

(I) We shall show that (a)–(d) hold for n = 0.

Proof of (a) Suppose that M ⊆
∪

i∈{1,2,3} Ag(Wi), then mi ≡ 0 (mod g), i = 0, 1, 2, 3, thus

by (3) we have m ≡ 0 (mod g). On the other hand, by (1) we have m ≡ a0 or g − 1 (mod g), a

contradiction.

Proof of (b) Suppose that M ⊆
∪

i∈{0,2,3} Ag(Wi). By (a) we know I0 > 0, thus we have the

following observations:

(b1) If I0 = 4, then
∑3

i=0 c
(3)
i ≤ 4(g − 1); If I0 ̸= 4, then

∑3
i=0 c

(2)
i ≤ 3(g − 1);

(b2) If I0 ≥ 3, then
∑3

i=0 c
(4)
i ≤ g4 − g3 + 3g − 3; If I0 < 3, then

∑3
i=0 c

(2)
i ≤ 2(g − 1).

If u = 0, 2, 3, then by (1) we have m ≡ a0 + g2 − g or g2 − 1 (mod g2) and m ≡ a0 + g3 −
g, g2a0 + g2 − 1 or g3 − 1 (mod g3) which contradicts the fact (b1).

If u = 1, then by (1) we have

m ≡
3∑

i=0

c
(2)
i ≡ ga0 + g − 1 (mod g2), (5)

m ≡
3∑

i=0

c
(4)
i ≡ ga0 + g4 − g2 + g − 1 (mod g4). (6)

By (b2), we have (5), (6) cannot hold.

Proof of (c) Suppose that M ⊆
∪

i∈{0,1,3} Ag(Wi). By (a), (b) we know I0, I1 > 0, thus we

have the following facts:

(c1)
∑3

i=0 c
(3)
i ≤ 3g2 − 2g− 1; (c2) If I3 = 0, then

∑3
i=0 c

(4)
i ≤ 3g2 − 2g− 1; If I3 > 0, then∑3

i=0 c
(3)
i ≤ 2g2 − g − 1.

If u = 0, 1, 3, then by (1) we have m ≡ a0+ g3− g, ga0+ g3− g2+ g− 1 or g3− 1 (mod g3),

which contradicts the fact (c1). If u = 2, then by (1) we have

m ≡ g2a0 + g4 − g3 + g2 − 1 (mod g4), m ≡ g2a0 + g2 − 1 (mod g3). (7)

By (c2), we have (7) cannot hold.

Proof of (d) Suppose that M ⊆
∪

i∈{0,1,2} Ag(Wi). By (a)–(c) we know I0, I1, I2 > 0, thus∑3
i=0 c

(4)
i ≤ 2g3 − g2 − 1. If u = 0, 1, 2, 3, then by (1) we have

m ≡ a0 + g4 − g, ga0 + g4 − g2 + g − 1, g2a0 + g4 − g3 + g2 − 1 or g3a0 + g3 − 1 (mod g4),

which contradicts m ≡
∑3

i=0 c
(4)
i (mod g4).

(II) We shall show that (a)–(d) hold for n > 0.
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Case 1 u = 0. By (2) we have

m ≡
3∑

i=0

c
(4n−2)
i ≡ (g − 1)g4n−3 (mod g4n−2), (8)

m ≡
3∑

i=0

c
(4n−1)
i ≡ (g − 1)g4n−2 + (g − 1)g4n−3 (mod g4n−1), (9)

m ≡
3∑

i=0

c
(4n)
i ≡ (g − 1)g4n−1 + (g − 1)g4n−2 + (g − 1)g4n−3 (mod g4n), (10)

m ≡
3∑

i=0

c
(4n+1)
i ≡ ang

4n + (g − 1)g4n−1 + (g − 1)g4n−2 + (g − 1)g4n−3 (mod g4n+1). (11)

Proof of (a) Suppose that M ⊆
∪

i∈{1,2,3} Ag(Wi). If I3 > 2, then

3∑
i=0

c
(4n−1)
i ≤ 3(g − 1)

n−2∑
i=0

g4i+3 + (g − 1)

n−1∑
i=0

g4i+2 < (g − 1)g4n−2 + (g − 1)g4n−3,

which contradicts (9). If I3 ≤ 2, then

3∑
i=0

c
(4n+1)
i ≤ 2(g − 1)

n−1∑
i=0

g4i+3 + 2(g − 1)
n−1∑
i=0

g4i+2

< ang
4n + (g − 1)g4n−1 + (g − 1)g4n−2 + (g − 1)g4n−3,

which contradicts (11).

Proof of (b) Suppose that M ⊆
∪

i∈{0,2,3} Ag(Wi). By (a) we know I0 > 0. If I0 ≥ 3, then

3∑
i=0

c
(4n)
i ≤ (g − 1)

n−1∑
i=0

g4i+3 + 3(g − 1)

n−1∑
i=0

g4i < (g − 1)g4n−1 + (g − 1)g4n−2 + (g − 1)g4n−3,

which contradicts (10). If I0 < 3, then

3∑
i=0

c
(4n−2)
i ≤ 2(g − 1)

n−2∑
i=0

g4i+3 + 2(g − 1)
n−1∑
i=0

g4i < (g − 1)g4n−3,

which contradicts (8).

Proof of (c) Suppose that M ⊆
∪

i∈{0,1,3} Ag(Wi). By (a), (b) we know I0, I1 > 0, thus

3∑
i=0

c
(4n−1)
i ≤ 3(g − 1)

n−1∑
i=0

g4i+1 + (g − 1)

n−1∑
i=0

g4i < (g − 1)g4n−2 + (g − 1)g4n−3,

which contradicts (9).

Proof of (d) Suppose that M ⊆
∪

i∈{0,1,2} Ag(Wi). By (a)–(c) we know I0, I1, I2 > 0, thus

3∑
i=0

c
(4n)
i ≤ 2(g − 1)

n−1∑
i=0

g4i+2 + (g − 1)
n−1∑
i=0

g4i+1 + (g − 1)
n−1∑
i=0

g4i
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< (g − 1)g4n−1 + (g − 1)g4n−2 + (g − 1)g4n−3,

which contradicts (10).

Case 2 u = 1. By (2) we have

m ≡
3∑

i=0

c
(4n−1)
i ≡ (g − 1)g4n−2 (mod g4n−1), (12)

m ≡
3∑

i=0

c
(4n)
i ≡ (g − 1)g4n−1 + (g − 1)g4n−2 (mod g4n), (13)

m ≡
3∑

i=0

c
(4n+1)
i ≡ (g − 1)g4n + (g − 1)g4n−1 + (g − 1)g4n−2 (mod g4n+1), (14)

m ≡
3∑

i=0

c
(4n+2)
i ≡ ang

4n+1 + (g − 1)g4n + (g − 1)g4n−1 + (g − 1)g4n−2 (mod g4n+2). (15)

Proof of (a) Suppose that M ⊆
∪

i∈{1,2,3} Ag(Wi). We have

3∑
i=0

c
(4n+1)
i ≤ 4(g − 1)

n−1∑
i=0

g4i+3 < (g − 1)g4n + (g − 1)g4n−1 + (g − 1)g4n−2,

which contradicts (14).

Proof of (b) Suppose that M ⊆
∪

i∈{0,2,3} Ag(Wi). By (a) we know I0 > 0.

If I3 = 0, then

3∑
i=0

c
(4n)
i ≤ 3(g − 1)

n−1∑
i=0

g4i+2 + (g − 1)

n−1∑
i=0

g4i < (g − 1)g4n−1 + (g − 1)g4n−2,

which contradicts (13). If I3 > 0, I2 = 0, then

3∑
i=0

c
(4n−1)
i ≤ (g − 1)

n−2∑
i=0

g4i+3 + 3(g − 1)
n−1∑
i=0

g4i < (g − 1)g4n−2,

which contradicts (12). If I3 > 0, I2 > 0, then

3∑
i=0

c
(4n+2)
i ≤ (g − 1)

n−1∑
i=0

g4i+3 + (g − 1)
n−1∑
i=0

g4i+2 + 2(g − 1)
n∑

i=0

g4i

< ang
4n+1 + (g − 1)g4n + (g − 1)g4n−1 + (g − 1)g4n−2,

which contradicts (15).

Proof of (c) Suppose that M ⊆
∪

i∈{0,1,3} Ag(Wi). By (a), (b) we know I0, I1 > 0. If I3 > 0,

then

3∑
i=0

c
(4n−1)
i ≤ (g − 1)

n−2∑
i=0

g4i+3 + 2(g − 1)
n−1∑
i=0

g4i+1 + (g − 1)
n−1∑
i=0

g4i < (g − 1)g4n−2,
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which contradicts (12). If I3 = 0, then

3∑
i=0

c
(4n)
i ≤ 3(g − 1)

n−1∑
i=0

g4i+1 + (g − 1)
n−1∑
i=0

g4i < (g − 1)g4n−1 + (g − 1)g4n−2,

which contradicts (13).

Proof of (d) Suppose that M ⊆
∪

i∈{0,1,2} Ag(Wi). By (a)− (c) we know I0, I1, I2 > 0, thus

3∑
i=0

c
(4n)
i ≤ 2(g − 1)

n−1∑
i=0

g4i+2 + (g − 1)

n−1∑
i=0

g4i+1 + (g − 1)

n−1∑
i=0

g4i < (g − 1)g4n−1 + (g − 1)g4n−2,

which contradicts (13).

Case 3 u = 2. By (2) we have

m ≡
3∑

i=0

c
(4n)
i ≡ (g − 1)g4n−1 (mod g4n), (16)

m ≡
3∑

i=0

c
(4n+1)
i ≡ (g − 1)g4n + (g − 1)g4n−1 (mod g4n+1), (17)

m ≡
3∑

i=0

c
(4n+2)
i ≡ (g − 1)g4n+1 + (g − 1)g4n + (g − 1)g4n−1 (mod g4n+2), (18)

m ≡
3∑

i=0

c
(4n+3)
i ≡ ang

4n+2 + (g − 1)g4n+1 + (g − 1)g4n + (g − 1)g4n−1 (mod g4n+3). (19)

Proof of (a) Suppose that M ⊆
∪

i∈{1,2,3} Ag(Wi). If I3 = 4, then

3∑
i=0

c
(4n+3)
i ≤ 4(g − 1)

n−1∑
i=0

g4i+3 < ang
4n+2 + (g − 1)g4n+1 + (g − 1)g4n + (g − 1)g4n−1,

which contradicts (19). If I3 < 4, then

3∑
i=0

c
(4n+1)
i ≤ 3(g − 1)

n−1∑
i=0

g4i+3 + (g − 1)

n−1∑
i=0

g4i+2 < (g − 1)g4n + (g − 1)g4n−1,

which contradicts (17).

Proof of (b) Suppose that M ⊆
∪

i∈{0,2,3} Ag(Wi). By (a) we know I0 > 0. We have

3∑
i=0

c
(4n+2)
i ≤ 4(g − 1)

n∑
i=0

g4i < (g − 1)g4n+1 + (g − 1)g4n + (g − 1)g4n−1,

which contradicts (18).

Proof of (c) Suppose that M ⊆
∪

i∈{0,1,3} Ag(Wi). By (a), (b) we know I0, I1 > 0. If I3 = 0,

then
3∑

i=0

c
(4n)
i ≤ 3(g − 1)

n−1∑
i=0

g4i+1 + (g − 1)
n−1∑
i=0

g4i < (g − 1)g4n−1,
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which contradicts (16). If I3 > 0, then

3∑
i=0

c
(4n+3)
i ≤ (g − 1)

n−1∑
i=0

g4i+3 + 2(g − 1)

n∑
i=0

g4i+1 + (g − 1)

n∑
i=0

g4i

< ang
4n+2 + (g − 1)g4n+1 + (g − 1)g4n + (g − 1)g4n−1,

which contradicts (19).

Proof of (d) Suppose that M ⊆
∪

i∈{0,1,2} Ag(Wi). By (a)–(c) we know I0, I1, I2 > 0, thus

3∑
i=0

c
(4n)
i ≤ 2(g − 1)

n−1∑
i=0

g4i+2 + (g − 1)
n−1∑
i=0

g4i+1 + (g − 1)
n−1∑
i=0

g4i < (g − 1)g4n−1,

which contradicts (16).

Case 4 u = 3. By (2) we have

m ≡
3∑

i=0

c
(4n+1)
i ≡ (g − 1)g4n (mod g4n+1), (20)

m ≡
3∑

i=0

c
(4n+2)
i ≡ (g − 1)g4n+1 + (g − 1)g4n (mod g4n+2), (21)

m ≡
3∑

i=0

c
(4n+3)
i ≡ (g − 1)g4n+2 + (g − 1)g4n+1 + (g − 1)g4n (mod g4n+3), (22)

m ≡
3∑

i=0

c
(4n+4)
i ≡ ang

4n+3 + (g − 1)g4n+2 + (g − 1)g4n + (g − 1)g4n+1 (mod g4n+4). (23)

Proof of (a) Suppose that M ⊆
∪

i∈{1,2,3} Ag(Wi). If I3 = 4, then

3∑
i=0

c
(4n+2)
i ≤ 4(g − 1)

n−1∑
i=0

g4i+3 < (g − 1)g4n+1 + (g − 1)g4n,

which contradicts (21). If I3 = 3, then

3∑
i=0

c
(4n+3)
i ≤ 3(g − 1)

n−1∑
i=0

g4i+3 + (g − 1)
n∑

i=0

g4i+2 < (g − 1)g4n+2 + (g − 1)g4n+1 + (g − 1)g4n,

which contradicts (22). If I3 < 3, then

3∑
i=0

c
(4n+1)
i ≤ 2(g − 1)

n−1∑
i=0

g4i+3 + 2(g − 1)
n−1∑
i=0

g4i+2 < (g − 1)g4n,

which contradicts (20).

Proof of (b) Suppose that M ⊆
∪

i∈{0,2,3} Ag(Wi). By (a) we know I0 > 0. If I2 = 0, then

3∑
i=0

c
(4n+3)
i ≤ 4(g − 1)

n∑
i=0

g4i < (g − 1)g4n+2 + (g − 1)g4n+1 + (g − 1)g4n,
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which contradicts (22). If I2 > 0, then

3∑
i=0

c
(4n+2)
i ≤ (g − 1)

n−1∑
i=0

g4i+2 + 3(g − 1)

n∑
i=0

g4i < (g − 1)g4n+1 + (g − 1)g4n,

which contradicts (21).

Proof of (c) Suppose that M ⊆
∪

i∈{0,1,3} Ag(Wi). By (a), (b) we know I0, I1 > 0, thus

3∑
i=0

c
(4n+3)
i ≤ 3(g − 1)

n∑
i=0

g4i+1 + (g − 1)

n∑
i=0

g4i < (g − 1)g4n+2 + (g − 1)g4n+1 + (g − 1)g4n,

which contradicts (22).

Proof of (d) Suppose that M ⊆
∪

i∈{0,1,2} Ag(Wi). By (a)–(c) we know I0, I1, I2 > 0, thus

3∑
i=0

c
(4n+4)
i ≤ 2(g − 1)

n∑
i=0

g4i+2 + (g − 1)

n∑
i=0

g4i+1 + (g − 1)

n∑
i=0

g4i

< ang
4n+3 + (g − 1)g4n+2 + (g − 1)g4n+1 + (g − 1)g4n,

which contradicts (23).

By (I) and (II), we show that for any j ∈ {0, 1, 2, 3}, M *
∪

i∈{0,1,2,3}\{j} Ag(Wi). After

suitable renumbering we have mi ∈ Ag(Wi), i = 0, 1, 2, 3. Moreover, the g-adic representation of

m is unique. Hence m ̸∈ 4(A \ {a}).
This completes the proof of Theorem 1.4. �
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[6] A. STÖHR. Gelöste und ungelöste fragen über basen der natürlichen zahlenreihe II. J. Renie Angew. Math.,

1955, 194: 111–140.

[7] J. B. LEE. A construction of minimal asymptotic bases. Period. Math. Hungar., 1993, 26(3): 211–218.


