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Abstract In this paper we derive finite forms of the summation formulas for bilateral basic

hypergeometric series 3ψ3, 4ψ4 and 5ψ5. We therefrom obtain the summation formulae ob-

tained recently by Wenchang CHU and Xiaoxia WANG. As applications of these summation

formulae, we deduce the well-known Jacobi’s two and four square theorems, a formula for the

number of representations of an integer n as sum of four triangular numbers and some theta

function identities.
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1. Introduction

In [1], Dougall derived the summation formulae for the bilateral 2H2 and very well-posed

5H5 hypergeometric series, which are perhaps the first summation formulae appearing in the

literature. Later Ramanujan [2] gave a summation formula for 1ψ1 series, where rψr is defined

by

rψr

(
a1, a2, . . . , ar

b1, b2, . . . , br
; q; z

)
:=

∞∑
n=−∞

(a1)n(a2)n · · · (ar)n
(b1)n(b2)n · · · (br)n

zn. (1.1)

Here |q| < 1, | b1···bra1···ar
| < |z| < 1,

(a)∞ := (a; q)∞ :=
∞∏

n=0

(1− aqn), (a)n := (a; q)n :=
(a)∞

(aqn)∞

and

(a1, a2, a3, . . . , am)n = (a1)n(a2)n(a3)n · · · (am)n, n is an integer or ∞.
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Further contributions to summations and transformations for bilateral basic hypergeometric

series were made by Bailey [3,4], Slater [5], Jackson [6] and Jackson [7]. For more details one

may refer to the book [8] by Gasper and Rahman.

In the recent past many authors including Schlosser [9], Zhang and Hu [10,11], Somashekara

and Narasimha Murthy [12], Somashekara, Narasimha Murthy and Shalini [13], Chen and Fu

[14] have contributed to the proofs of some summation and transformation formulae for bilateral

basic hypergeometric series. In [15], Chu and Wang derived the following summation formulae:

3ψ3

(
b, c, d

q/b, q/c, q/d,
; q;

q

bcd

)
=

(q, q/bc, q/bd, q/cd; q)∞
(q/b, q/c, q/d, q/bcd; q)∞

, (1.2)

3ψ3

(
b, c, d

q2/b, q2/c, q2/d,
; q;

q2

bcd

)
=

(q, q2/bc, q2/bd, q2/cd; q)∞
(q2/b, q2/c, q2/d, q2/bcd; q)∞

, (1.3)

4ψ4

(
qw, b, c, d

w, q/b, q/c, q/d,
; q;

q

bcd

)
=

(q, q/bc, q/bd, q/cd; q)∞
(q/b, q/c, q/d, q/bcd; q)∞

, (1.4)

5ψ5

(
qu, qv, b, c, d

u, v, q/b, q/c, q/d,
; q;

q−1

bcd

)

=
(q, 1/bc, 1/bd, 1/cd; q)∞

(q/b, q/c, q/d, q−1/bcd; q)∞

(1− 1/quv)

(1− 1/u)(1− 1/v)
(1.5)

by using very well-posed 6ϕ5-series summation formula [8, equation(II.20), p.356].

One way of deriving such formulae is by finding their finite forms. Way back in 1915,

MacMahon [16] had given the finite version

(qz; q2)∞(q/z; q2)∞ =
n∑

j=−m

(
m+ n

j +m

)
(−z2)jqj

2

(1.6)

of the well-known Jacobi’s triple product identity namely

(qz; q2)∞(q/z; q2)∞(q2; q2)∞ =
∞∑

n=−∞
(−1)nqn

2

zn. (1.7)

In 2005, Chen, Chu and Gu [17] gave the following finite form

n∑
k=0

(1 + zqk)

(
m

k

)
(z; q)m+1

(z2qk; q)m+1
zkqk

2

≡ 1 (1.8)

of the famous Watson’s quintuple product identity

(qz; q)∞(1/z; q)∞(qz; q2)∞(q/z; q2)∞(q; q)∞ =

∞∑
n=−∞

(1− zqn)q3n(n−1)/2(qz3)n. (1.9)

For different finite forms of the Jacobi’s triple product identity and the Watson’s quintuple

product identity one may refer to the works of Ma [18], Chu and Jia [19] and Guo and Zeng [20].

Schlosser [21] derived the following finite form

n∑
k=−n

(q−n, a, bqn)k
(qn+1, c, abq1−n/c)k

qk =
(c/a)2n(c/b, bq/c, q, q)n
(q)2n(c, q/a, b, c/ab)n

(1.10)
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of the well-known Ramanujan’s 1ψ1 summation formula [2,22]

∞∑
n=−∞

(a)n
(b)n

zn =
(q, b/a, az, q/az; q)∞
(b, q/a, z, b/az; q)∞

. (1.11)

Recently Bayad, Somashekara and Narasimha Murthy [23] have obtained the finite forms

of Bailey’s 2ψ2 transformation formulae. Also, in [24], Somashekara and Narasimha Murthy

have derived finite forms of Ramanujan’s reciprocity theorem and of its three and four variable

generalizations.

In this sequel, we derive the finite forms of all the four summation formulae (1.2)–(1.5) and

thereby give the proofs of them.

According to Dickson [25, p.6], Fermat made the following famous comment about 355 years

ago: “I was the first to discover the very beautiful and entirely general theorem that every number

is either triangular or the sum of 2 or 3 triangular numbers; every number is either a square or

the sum of 2, 3 or 4 squares; either pentagonal or the sum of 2, 3, 4 or 5 pentagonal numbers; and

so on ad infinitum...”. Here “number” means “positive integer” and the triangular, square and

pentagonal numbers are respectively described by: n(n+1)/2, n2 and n(3n− 1)/2, n = 1, 2, . . . .

Only that part of the Fermat’s statement regarding the squares and triangular numbers have

become the most celebrated problems in Number Theory. If rk(n) and tk(n) denote the number

of representations of an integer n as sum of k squares and k triangular numbers respectively,

the problem is to find formulae for determining rk(n) and tk(n), in terms of simple arithmetical

functions such as divisor functions. The well-known two and four square theorems of Jacobi are:

r2(n) = 4[d1(n)− d3(n)] and r4(n) = 8
∑

d|n, 4-d

d

where di(n) denotes the number of divisors d of n with d ≡ i (mod 4). Ramanujan [26],

Mordell [27], Andrews [28], Hirschhorn [29,30], Bhargava and Adiga [31], Bhargava, Adiga and

Somashekara [32], Cooper and Hirschhorn [33] are among many others who contributed to the

problem on sums of squares.

Adiga [34], Ono, Robins and Wahl [35] and Liu [36] have derived the following formula for

sum of four tringular numbers

t4(n) =
∑

d|2n+1

d.

As an application of 3ψ3 summation formula we deduce the Jacobi’s two and four square

theorems and the formula for the sum of four triangular numbers.

In Section 2, we present some standard identities which we employ to prove our main

results. In Section 3, we present the finite forms of 3ψ3, 4ψ4 and 5ψ5 summations. In Section 4,

we use 3ψ3-sum to deduce Jacobi’s two and four Square theorems and the formula for the sum

of 4-triangular numbers. We further deduce some theta function identities from the 3ψ3 -sum.

2. Some standard identities for basic hypergeometric series
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In this section, we list some standard identities for basic hypergeometric series which will

be used to prove our main results. A q-shifted factorial identity [8, equation (I.2), p.351] is

(a)−n =
1

(aq−n)n
=

(−q/a)n

(q/a)n
q(

n
2), n, a non-negative integer. (2.1)

Ramanujan’s general theta function f(a, b) is given by

f(a, b) := 1 +
∞∑

n=1

(ab)n(n−1)/2(an + bn) =
∞∑
−∞

(ab)n(n+1)/2(b)n(n−1)/2, |ab| < 1.

See [2,22] for more details. The special cases of f(a, b) are given by

φ(q) := f(q, q) = 1 + 2
∞∑
k=1

qk
2

=
(−q; q2)∞(q2; q2)∞
(q; q2)∞(−q2; q2)∞

, (2.2)

ψ(q) := f(q, q3) =

∞∑
k=0

qk(k+1)/2 =
(q2; q2)∞
(q; q2)∞

, (2.3)

f(−q) := f(−q,−q2) =
∞∑

k=−∞

(−1)kqk(3k−1)/2 = (q; q)∞, (2.4)

χ(q) := (−q; q2)∞. (2.5)

Jackson’s q-analogue of Dougall’s 7F6 sum [8, (II.22), p.356] is given by

n∑
k=0

(a, qa1/2,−qa1/2, b, c, d, e, q−n)k
(q, a1/2,−a1/2, aq/b, aq/c, aq/d, aq/e, aqn+1)k

qk =
(aq, aq/bc, aq/bd, aq/cd)n
(aq/b, aq/c, aq/d, aq/bcd)n

, (2.6)

where a2q = bcdeq−n.

3. Finite forms of (1.2)–(1.5)

In this section, we derive the finite forms of (1.2)–(1.5) using Jackson’s q-analogue of Dougal-

l’s 7F6 summation.

Theorem 3.1 We have for | q
bcd | < 1,

n∑
k=−n

(b, c, d, q−n, q1+n/bcd)k
(q/b, q/c, q/d, qn+1, bcdq−n)k

qk =
(q, q/bc, q/bd, q/cd)n
(q/b, q/c, q/d, q/bcd)n

. (3.1)

Proof In (2.6) noting that e = a2q1+n/bcd and then putting a = 1, we obtain

1 +
n∑

k=1

(b, c, d, q−n, q1+n/bcd)k
(q/b, q/c, q/d, qn+1, bcdq−n)k

qk +
n∑

k=1

(b, c, d, q−n, q1+n/bcd)k
(q/b, q/c, q/d, qn+1, bcdq−n)k

q2k

=
(q, q/bc, q/bd, q/cd)n
(q/b, q/c, q/d, q/bcd)n

.

Changing k to −k in the second sum on the left side of the above equation and using (2.1), we

obtain (3.1) after some simplifications. �
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Theorem 3.2 We have for | q2

bcd | < 1,

n∑
k=−(n+1)

(b, c, d, q−n, q3+n/bcd)k
(q2/b, q2/c, q2/d, qn+2, bcdq−n−1)k

qk =
(q, q2/bc, q2/bd, q2/cd)n
(q2/b, q2/c, q2/d, q2/bcd)n

. (3.2)

Proof In (2.6) noting that e = a2q1+n/bcd and then putting a = q, we obtain

n∑
k=0

(b, c, d, q−n, q3+n/bcd)k
(q2/b, q2/c, q2/d, qn+2, bcdq−n−1)k

qk −
n∑

k=0

(b, c, d, q−n, q3+n/bcd)k
(q2/b, q2/c, q2/d, qn+2, bcdq−n−1)k

q3k+1

=
(q, q2/bc, q2/bd, q2/cd)n
(q2/b, q2/c, q2/d, q2/bcd)n

.

Changing k to (−k− 1) in the second sum on the left side of the above equation and using (2.1),

we obtain (3.2) after some simplifications. �

Theorem 3.3 We have for | q
bcd | < 1,

n∑
k=−n

(qw, b, c, d, q−n, q1+n/bcd)k
(w, q/b, q/c, q/d, qn+1, bcdq−n)k

qk =
(q, q/bc, q/bd, q/cd)n
(q/b, q/c, q/d, q/bcd)n

. (3.3)

Proof By reversing the summation index k to −k in (3.1) and then using (2.1), we obtain, after

some simplifications

n∑
k=−n

(b, c, d, q−n, q1+n/bcd)k
(q/b, q/c, q/d, qn+1, bcdq−n)k

q2k =
(q, q/bc, q/bd, q/cd)n
(q/b, q/c, q/d, q/bcd)n

.

Multiplying the above equation by w and then subtracting it from (3.1), we obtain (3.3). �

Theorem 3.4 We have for | 1
bcdq | < 1,

n∑
k=−n

(qu, qv, b, c, d, q−n−1, qn−1/bcd)k
(u, v, 1/b, 1/c, 1/d, qn+1, bcdq−n+1)k

qk

=
(q, 1/bc, 1/bd, 1/cd)n
(q/b, q/c, q/d, q−1/bcd)n

1− 1/quv

(1− 1/u)(1− 1/v)
. (3.4)

Proof Changing k to (k−1) in (3.2) and then replacing b, c and d by bq, cq and dq, respectively,

we obtain

n+1∑
k=−n

(b, c, d, q−n−1, qn−1/bcd)k
(1/b, 1/c, 1/d, qn+1, bcdq−n+1)k

qk =
−1

q

(q, 1/bc, 1/bd, 1/cd)n
(q/b, q/c, q/d, q/bcd)n

. (3.5)

Changing k to −(k − 1) in the above equation, we obtain after some simplifications,

n∑
k=−n

(b, c, d, q−n−1, qn−1/bcd)k
(1/b, 1/c, 1/d, qn+1, bcdq−n+1)k

q3k =
(q, 1/bc, 1/bd, 1/cd)n
(q/b, q/c, q/d, q−1/bcd)n

. (3.6)

When the variable of finite form of 3ψ3 series is situated between those of (3.5) and (3.6), there

holds the following reduced formula

n∑
k=−n

(b, c, d, q−n−1, qn−1/bcd)k
(1/b, 1/c, 1/d, qn+1, bcdq−n+1)k

q2k = 0. (3.7)
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Considering the linear combination

(3.5)

(1− u)(1− v)
+

uv(3.6)

(1− u)(1− v)
− (u+ v)(3.7)

(1− u)(1− v)

and simplifying the result, we get (3.4). �

4. Some applications of identities (1.2) and (1.3)

In this section, we deduce some theta function identities from (1.2) and (1.3).

Corollary 4.1 If 0 < q < 1, then

f8(−q2)
f4(−q4)

= 8

∞∑
k=−∞

(−1)kq2k

(1 + q2k)3
, (4.1)

φ2(q) = 1 + 4
∞∑
k=1

( qk

1 + q2k
)
, (4.2)

φ2(q)χ4(−q)
χ4(q)

= 4
∞∑

k=−∞

(−q)k

(1 + q2k)2
, (4.3)

φ4(q) = 8
∞∑

k=−∞

qk

(1 + (−q)k)3
, (4.4)

ψ4(q) =
∞∑

k=−∞

qk

(1− q2k+1)3
. (4.5)

Proof Changing q to q2 and then putting b = c = d = −1 in (1.2), we obtain (4.1). Changing

q to q2 and then putting b = −1 = d and c = q in (1.2), we obtain (4.2). Changing q to q2 and

then putting b = −q and c = −1 = d in (1.2), we obtain (4.3). Putting b = c = d = −1 in (1.2)

and then changing q to −q, we obtain (4.4). Changing q to q2 and then putting b = c = d = q

in (1.3), we obtain (4.5). �

Corollary 4.2 We have,

r2(n) = 4[d1(n)− d3(n)], (4.6)

r4(n) = 8
∑

d|n, 4-d

d (4.7)

and

t4(n) =
∑

d|2n+1

d. (4.8)

Proof Expanding (1 + q2k)−1 in (4.2), we obtain,

φ2(q) = 1 + 4

∞∑
k=1

∞∑
m=0

(−1)mq(2m+1)k

which yields (4.6).
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Equation (4.4) can be written as

φ4(q) = 1 + 8
[ ∞∑
k=1

qk

(1 + (−q)k)3
+

∞∑
k=1

q2k(−1)k

(1 + (−q)k)3
]

= 1 + 8
∞∑
k=1

qk

[1 + (−q)k]2
= 1 + 8

∞∑
k=1

kqk

1 + (−q)k

= 1 + 8
[ ∞∑
k=1

kqk

1− qk
−

∞∑
k=1

4kq4k

1− q4k

]
(4.9)

which yields (4.7).

Equation (4.5) can be written as

ψ4(q) =
∞∑
k=0

qk(1 + q2k+1)

(1− q2k+1)2
. (4.10)

Expanding (1− q2k+1)−2 in (4.10), we obtain

ψ4(q) =
∞∑
k=0

qk(1 + q2k+1)
∞∑

m=0

(m+ 1)qm(2k+1)

=
∞∑
k=0

∞∑
m=0

(m+ 1)qk(2m+1)+m +
∞∑
k=0

∞∑
m=0

(m+ 1)qk(2m+3)+m+1. (4.11)

Interchanging the order of summation on the right side of (4.11), we obtain,

ψ4(q) =

∞∑
m=0

(m+ 1)qm

1− q2m+1
+

∞∑
m=0

(m+ 1)qm+1

1− q2m+3

=
1

1− q
+

∞∑
m=1

(m+ 1)qm

1− q2m+1
+

∞∑
m=1

mqm

1− q2m+1

=
1

1− q
+

∞∑
m=1

(2m+ 1)qm

1− q2m+1
=

∞∑
m=0

(2m+ 1)qm

1− q2m+1

which yields (4.8). �
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