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Abstract We study complete noncompact 1-minimal stable hypersurfaces in a 4-dimensional

sphere S4. We show that there is no complete noncompact 1-minimal stable hypersurfaces

in S4 with polynomial volume growth and the restriction of the mean curvature and Gauss-

Kronecker curvature. These results are partial answers to the conjecture of Alencar, do Carmo

and Elbert when the ambient space is a 4-dimensional sphere.
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1. Introduction

Cheng and Yau [1] proved that any complete noncompact hypersurface in the Euclidean

space with constant scalar curvature and nonnegative sectional curvature must be a generalized

cylinder. It is natural to study the global properties of hypersurfaces in space forms with constant

scalar curvature. Alencar, do Carmo and Elbert posed the following question: Is there any

complete 1-minimal stable hypersurfaces in R4 with nonzero Gauss-Kronecker curvature? In [2],

it was proved that there is no complete noncompact 1-minimal stable hypersurface M in R4

with nonzero Gauss-Kronecker curvature and finite total curvature. Silva Neto [3] showed that

there is no complete 1-minimal stable hypersurface in R4 with zero scalar curvature, polynomial

volume growth and the restriction of the mean curvature and the Gauss-Kronecker curvature.

Motivatived by our recent work of hypersurfaces in spheres in [4,5], we study the global

properties of complete noncompact 1-minimal stable hypersurfaces in a 4-dimensional sphere

S4 in this paper. A Riemannian manifold M3 has polynomial volume growth, if there exists

γ ∈ (0, 3] such that limr→∞
volBr(p)

rγ < +∞, for all p ∈ M , where Br(p) is the geodesic ball of

radius r in M . We show two non-existence results as follows:

Theorem 1.1 There is no stable complete noncompact 1-minimal hypersurface M3 in S4 with

polynomial volume growth and such that the mean curvature H satisfying

|H| ≤ δ1,
∣∣∇(

1

H
)
∣∣ ≤ δ2,
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for any positive constants δ1 and δ2.

Theorem 1.2 There is no stable complete noncompact 1-minimal hypersurface M3 in S4 with

polynomial volume growth and such that

−K

H3
≥ δ1,

∣∣∇(
1

H
)
∣∣ ≤ δ2,

for any positive constants δ1 and δ2, where H and K are the mean curvature and the Gauss-

Kronecker curvature, respectively.

2. Preliminaries

Let M3 be a complete Riemannian manifold and let x : M3 → S4 be an isometric immersion

into the sphere S4 with constant scalar curvature. We choose a unit normal field N to M and

define the shape operator A associated with the second fundamental form of M , i.e., for any

p ∈ M

A : TpM → TpM

satisfies ⟨A(X), Y ⟩ = −⟨∇̄XN,Y ⟩, where ∇̄ is the Riemannian connection in S4. Let λ1, λ2, λ3

denote the eigenvalues of A. The r-th symmetric function of λ1, λ2, λ3, denoted by Sr, is defined

by

S1 = λ1 + λ2 + λ3,

S2 = λ1λ2 + λ1λ3 + λ2λ3,

S3 = λ1λ2λ3.

With the above notations, we call Hr = Sr

Cr
3
the r-mean curvature of the immersion. Obviously,

H1 = H is the mean curvature and K = H3 is the Gauss-Kronecker curvature. H2 is, modulo a

constant 1, the scalar curvature of M . The hypersurface M is called r-minimal if Hr+1 ≡ 0.

It is well known that hypersurfaces with constant scalar curvature in space forms are critical

point for a geometric variational problem, namely, that associated to the functional

A1(M) =

∫
M

S1

under compactly supported variations that preserves the volume. Let

P1 = S1Id−A : TpM → TpM.

Obviously,

trace(P1) = 2S1.

We obtain the second variational formula for hypersurfaces in S4 with constant 2-mean curvature

[6]:
d2A1

dt

∣∣
t=0

=

∫
M

⟨P1(∇f),∇f⟩ −
∫
M

(S1S2 − 3S3 + 2S1)f
2,

for each f ∈ C∞
c (M). It is known that M3 is stable if and only if∫

M

(S1S2 − 3S3 + 2S1)f
2 ≤

∫
M

⟨P1(∇f),∇f⟩, (2.1)
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for each f ∈ C∞
c (M).

3. Proof of main results

In this section, we will give the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1 Suppose by contradiction there exists a complete noncompact stable

hypersurface satisfying the condition of Theorem 1.1. By assumption, S1 = 3H is nonzero. We

can choose an orientation such that S1 = 3H > 0. There is a fact that 2S1S3 ≤ S2
2 which

implies that S3 ≤ 0. The operator P1 is positive definite since H is positive [7]. Stability and

1-minimality of the hypersurface M imply that there is the following inequality:∫
M

(2S1 − 3S3)f
2 ≤

∫
M

⟨P1(∇f),∇f⟩, (3.1)

for each f ∈ C∞
c (M). Choose f = S1

qφ for a positive constant q to be determined and φ ∈
C∞

c (M). Since

∇f = qS1
q−1φ∇S1 + S1

q∇φ,

we get that

⟨P1(∇f),∇f⟩ =⟨qS1
q−1φP1(∇S1) + S1

qP1(∇φ), (1 + q)S1
q−1φ∇S1 + S1

q∇φ⟩

=q2S1
2q−2φ2⟨P1(∇S1),∇S1⟩+ 2qS1

2q−1φ⟨P1(∇S1),∇φ⟩+

S1
2q⟨P1(∇φ),∇φ⟩. (3.2)

Since P1 is positive definite, we obtain that

2qS1
2q−1φ⟨P1(∇S1),∇φ⟩ = S1

2q−2⟨P1(φ∇S1), S1∇φ⟩

= 2qS1
2q−2⟨

√
P1(φ∇S1),

√
P1(S1∇φ)⟩

≤ qS1
2q−2(|

√
P1(φ∇S1)|2 + |

√
P1(S1∇φ)|2)

= qS1
2q−2φ2⟨P1(∇S1,∇S1)⟩+ qS1

2q⟨P1(∇φ),∇φ⟩. (3.3)

By (3.1)–(3.3) and the fact ⟨P1(X), X⟩ ≤ 2S1|X|2, we get the following inequality:∫
M

(2S1 − 3S3)S1
2qφ2 ≤(q2 + q)

∫
M

S1
2q−2φ2⟨P1(∇S1),∇S1⟩+

∫
M

(1 + q)S1
2q⟨P1(∇φ),∇φ⟩

≤2(q2 + q)

∫
M

S1
2q−1φ2|∇S1|2 + 2(1 + q)

∫
M

S1
2q+1|∇φ|2. (3.4)

We choose φ = ϕ
3+2q

2 and get that

|∇φ|2 =
(3 + 2q)2

4
ϕ1+2q|∇ϕ|2. (3.5)

Combining (3.4) with (3.5), we obtain that∫
M

(2S1 − 3S3)S1
2qϕ3+2q ≤2(q2 + q)

∫
M

S1
2q−1ϕ3+2q|∇S1|2+

(1 + q)(3 + 2q)2

2

∫
M

S1
1+2qϕ1+2q|∇ϕ|2. (3.6)
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Using Young’s inequality, we have

S1
1+2qϕ1+2q|∇ϕ|2 = (bS1

1+2qϕ1+2q) · ( |∇ϕ|2

b
)

≤ 1 + 2q

3 + 2q
b

3+2q
1+2q S3+2q

1 ϕ3+2q +
2

3 + 2q
b−

3+2q
2 |∇ϕ|3+2q, (3.7)

for a positive constant b to be determined. Combining with (3.6), we have∫
M

(2S1 − 3S3)S1
2qϕ3+2q − 2(q2 + q)

∫
M

S1
2q−1ϕ3+2q|∇S1|2

≤ (1 + q)(3 + 2q)

2

∫
M

((1 + 2q)b
3+2q
1+2q S3+2q

1 ϕ3+2q + 2b−
3+2q

2 |∇ϕ|3+2q). (3.8)

That is, ∫
M

AS3+2q
1 ϕ3+2q ≤ B

∫
M

|∇ϕ|3+2q, (3.9)

where

A =
2

S2
1

+
−3S3

S3
1

− 2(q2 + q)|∇(
1

S1
)|2 − (1 + q)(3 + 2q)(1 + 2q)b

3+2q
1+2q

2

and

B = (1 + q)(3 + 2q)b−
3+2q

2 > 0.

Since

|H| ≤ δ1,
∣∣∇(

1

H
)
∣∣ ≤ δ2,

we have

|S1| ≤ 3δ1,
∣∣∇(

1

S1
)
∣∣ ≤ δ2

3
,

which imply that

A ≥ 2

9δ21
+

−3S3

S3
1

− 2(q2 + q)δ22
9

− (1 + q)(3 + 2q)(1 + 2q)b
3+2q
1+2q

2
. (3.10)

Choosing q and b sufficiently small such that

2

9δ21
− 2(q2 + q)δ22

9
− (1 + q)(3 + 2q)(1 + 2q)b

3+2q
1+2q

2
> 0.

Combining (3.10) with the fact that −3S3

S3
1

≥ 0, we get

A > 0.

Let ϕ be a function depending on the distance r with respect to a fixed point p,

ϕ(x) =


1, on B(R),

2R− r

R
, on B(2R) \B(R),

0, on M \B(2R).

Combining with (3.9), we obtain that∫
B(R)

AS1
3+2q ≤ B

∫
B(2R)\B(R)

1

R3+2q
≤ Bvol(B(2R))

R3+2q
. (3.11)
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Noting that M has polynomial volume growth and taking R → +∞, we obtain that S1 = 0.

This contradicts S1 ̸= 0. �

Proof of Theorem 1.2 Suppose by contradiction there exists a complete noncompact sta-

ble hypersurface satisfying the condition of Theorem 1.2. Following the same step as proof of

Theorem 1.1, we still obtain the inequality (3.9). Since

−K

H3
≥ δ1,

∣∣∇(
1

H
)
∣∣ ≤ δ2,

we get
−S3

S3
1

≥ δ1
27

,
∣∣∇(

1

S1
)
∣∣ ≤ δ2

3
.

Thus,

A =
2

S2
1

+
δ1
9

− 2(q2 + aq)δ2
3

− (a+ q)(3 + 2q)(1 + 2q)b
3+2q
1+2q

2a
.

Choosing q and b sufficiently small such that

δ1
9

− 2(q2 + aq)δ2
3

− (a+ q)(3 + 2q)(1 + 2q)b
3+2q
1+2q

2a
> 0.

Thus A > 0. Let ϕ be a function depending on the distance r with respect to a fixed point p,

ϕ(x) =


1, on B(R),

2R− r

R
, on B(2R) \B(R),

0, on M \B(2R).

Combining with (3.9), we obtain that∫
B(R)

AS1
3+2q ≤ B

∫
B(2R)\B(R)

1

R3+2q
≤ Bvol(B(2R))

R3+2q
. (3.12)

Noting that M has polynomial volume growth and taking R → +∞, we obtain that S1 = 0.

This contradicts S1 ̸= 0. �
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