Stable Hypersurfaces in a 4-Dimensional Sphere

Peng ZHU ${ }^{1, *}$, Shouwen FANG ${ }^{2}$
1. School of Mathematics and physics, Jiangsu University of Technology, Jiangsu 213001, P. R. China;
2. School of Mathematical Sciences, Yangzhou University, Jiangsu 225002, P. R. China

Abstract

We study complete noncompact 1-minimal stable hypersurfaces in a 4-dimensional sphere \mathbb{S}^{4}. We show that there is no complete noncompact 1-minimal stable hypersurfaces in \mathbb{S}^{4} with polynomial volume growth and the restriction of the mean curvature and GaussKronecker curvature. These results are partial answers to the conjecture of Alencar, do Carmo and Elbert when the ambient space is a 4 -dimensional sphere.

Keywords constant scalar curvature; 1-minimal stable hypersurfaces in space forms
MR(2010) Subject Classification 53C21; 54C42

1. Introduction

Cheng and Yau [1] proved that any complete noncompact hypersurface in the Euclidean space with constant scalar curvature and nonnegative sectional curvature must be a generalized cylinder. It is natural to study the global properties of hypersurfaces in space forms with constant scalar curvature. Alencar, do Carmo and Elbert posed the following question: Is there any complete 1-minimal stable hypersurfaces in \mathbb{R}^{4} with nonzero Gauss-Kronecker curvature? In [2], it was proved that there is no complete noncompact 1-minimal stable hypersurface M in \mathbb{R}^{4} with nonzero Gauss-Kronecker curvature and finite total curvature. Silva Neto [3] showed that there is no complete 1-minimal stable hypersurface in \mathbb{R}^{4} with zero scalar curvature, polynomial volume growth and the restriction of the mean curvature and the Gauss-Kronecker curvature.

Motivatived by our recent work of hypersurfaces in spheres in [4,5], we study the global properties of complete noncompact 1-minimal stable hypersurfaces in a 4-dimensional sphere \mathbb{S}^{4} in this paper. A Riemannian manifold M^{3} has polynomial volume growth, if there exists $\gamma \in(0,3]$ such that $\lim _{r \rightarrow \infty} \frac{\operatorname{vol} B_{r}(p)}{r^{\gamma}}<+\infty$, for all $p \in M$, where $B_{r}(p)$ is the geodesic ball of radius r in M. We show two non-existence results as follows:

Theorem 1.1 There is no stable complete noncompact 1-minimal hypersurface M^{3} in \mathbb{S}^{4} with polynomial volume growth and such that the mean curvature H satisfying

$$
|H| \leq \delta_{1}, \quad\left|\nabla\left(\frac{1}{H}\right)\right| \leq \delta_{2}
$$

[^0]for any positive constants δ_{1} and δ_{2}.
Theorem 1.2 There is no stable complete noncompact 1-minimal hypersurface M^{3} in \mathbb{S}^{4} with polynomial volume growth and such that
$$
\frac{-K}{H^{3}} \geq \delta_{1},\left|\nabla\left(\frac{1}{H}\right)\right| \leq \delta_{2}
$$
for any positive constants δ_{1} and δ_{2}, where H and K are the mean curvature and the GaussKronecker curvature, respectively.

2. Preliminaries

Let M^{3} be a complete Riemannian manifold and let $x: M^{3} \rightarrow \mathbb{S}^{4}$ be an isometric immersion into the sphere \mathbb{S}^{4} with constant scalar curvature. We choose a unit normal field N to M and define the shape operator A associated with the second fundamental form of M, i.e., for any $p \in M$

$$
A: T_{p} M \rightarrow T_{p} M
$$

satisfies $\langle A(X), Y\rangle=-\left\langle\bar{\nabla}_{X} N, Y\right\rangle$, where $\bar{\nabla}$ is the Riemannian connection in \mathbb{S}^{4}. Let $\lambda_{1}, \lambda_{2}, \lambda_{3}$ denote the eigenvalues of A. The r-th symmetric function of $\lambda_{1}, \lambda_{2}, \lambda_{3}$, denoted by S_{r}, is defined by

$$
\begin{aligned}
& S_{1}=\lambda_{1}+\lambda_{2}+\lambda_{3}, \\
& S_{2}=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}, \\
& S_{3}=\lambda_{1} \lambda_{2} \lambda_{3} .
\end{aligned}
$$

With the above notations, we call $H_{r}=\frac{S_{r}}{C_{3}^{3}}$ the r-mean curvature of the immersion. Obviously, $H_{1}=H$ is the mean curvature and $K=H_{3}$ is the Gauss-Kronecker curvature. H_{2} is, modulo a constant 1 , the scalar curvature of M. The hypersurface M is called r-minimal if $H_{r+1} \equiv 0$.

It is well known that hypersurfaces with constant scalar curvature in space forms are critical point for a geometric variational problem, namely, that associated to the functional

$$
\mathcal{A}_{1}(M)=\int_{M} S_{1}
$$

under compactly supported variations that preserves the volume. Let

$$
P_{1}=S_{1} I d-A: T_{p} M \rightarrow T_{p} M .
$$

Obviously,

$$
\operatorname{trace}\left(P_{1}\right)=2 S_{1} .
$$

We obtain the second variational formula for hypersurfaces in \mathbb{S}^{4} with constant 2-mean curvature [6]:

$$
\left.\frac{\mathrm{d}^{2} \mathcal{A}_{1}}{\mathrm{~d} t}\right|_{t=0}=\int_{M}\left\langle P_{1}(\nabla f), \nabla f\right\rangle-\int_{M}\left(S_{1} S_{2}-3 S_{3}+2 S_{1}\right) f^{2},
$$

for each $f \in C_{c}^{\infty}(M)$. It is known that M^{3} is stable if and only if

$$
\begin{equation*}
\int_{M}\left(S_{1} S_{2}-3 S_{3}+2 S_{1}\right) f^{2} \leq \int_{M}\left\langle P_{1}(\nabla f), \nabla f\right\rangle \tag{2.1}
\end{equation*}
$$

for each $f \in C_{c}^{\infty}(M)$.

3. Proof of main results

In this section, we will give the proofs of Theorems 1.1 and 1.2.
Proof of Theorem 1.1 Suppose by contradiction there exists a complete noncompact stable hypersurface satisfying the condition of Theorem 1.1. By assumption, $S_{1}=3 H$ is nonzero. We can choose an orientation such that $S_{1}=3 H>0$. There is a fact that $2 S_{1} S_{3} \leq S_{2}^{2}$ which implies that $S_{3} \leq 0$. The operator P_{1} is positive definite since H is positive [7]. Stability and 1-minimality of the hypersurface M imply that there is the following inequality:

$$
\begin{equation*}
\int_{M}\left(2 S_{1}-3 S_{3}\right) f^{2} \leq \int_{M}\left\langle P_{1}(\nabla f), \nabla f\right\rangle, \tag{3.1}
\end{equation*}
$$

for each $f \in C_{c}^{\infty}(M)$. Choose $f=S_{1}{ }^{q} \varphi$ for a positive constant q to be determined and $\varphi \in$ $C_{c}^{\infty}(M)$. Since

$$
\nabla f=q S_{1}^{q-1} \varphi \nabla S_{1}+S_{1}^{q} \nabla \varphi
$$

we get that

$$
\begin{align*}
\left\langle P_{1}(\nabla f), \nabla f\right\rangle= & \left\langle q S_{1}{ }^{q-1} \varphi P_{1}\left(\nabla S_{1}\right)+S_{1}{ }^{q} P_{1}(\nabla \varphi),(1+q) S_{1}{ }^{q-1} \varphi \nabla S_{1}+S_{1}{ }^{q} \nabla \varphi\right\rangle \\
= & q^{2} S_{1}^{2 q-2} \varphi^{2}\left\langle P_{1}\left(\nabla S_{1}\right), \nabla S_{1}\right\rangle+2 q S_{1}{ }^{2 q-1} \varphi\left\langle P_{1}\left(\nabla S_{1}\right), \nabla \varphi\right\rangle+ \\
& S_{1}{ }^{2 q}\left\langle P_{1}(\nabla \varphi), \nabla \varphi\right\rangle . \tag{3.2}
\end{align*}
$$

Since P_{1} is positive definite, we obtain that

$$
\begin{align*}
& 2 q S_{1}^{2 q-1} \varphi\left\langle P_{1}\left(\nabla S_{1}\right), \nabla \varphi\right\rangle=S_{1}^{2 q-2}\left\langle P_{1}\left(\varphi \nabla S_{1}\right), S_{1} \nabla \varphi\right\rangle \\
& \quad=2 q S_{1}^{2 q-2}\left\langle\sqrt{P_{1}}\left(\varphi \nabla S_{1}\right), \sqrt{P_{1}}\left(S_{1} \nabla \varphi\right)\right\rangle \\
& \quad \leq q S_{1}^{2 q-2}\left(\left|\sqrt{P_{1}}\left(\varphi \nabla S_{1}\right)\right|^{2}+\left|\sqrt{P_{1}}\left(S_{1} \nabla \varphi\right)\right|^{2}\right) \\
& \quad=q S_{1}^{2 q-2} \varphi^{2}\left\langle P_{1}\left(\nabla S_{1}, \nabla S_{1}\right)\right\rangle+q S_{1}{ }^{2 q}\left\langle P_{1}(\nabla \varphi), \nabla \varphi\right\rangle \tag{3.3}
\end{align*}
$$

By (3.1)-(3.3) and the fact $\left\langle P_{1}(X), X\right\rangle \leq 2 S_{1}|X|^{2}$, we get the following inequality:

$$
\begin{align*}
\int_{M}\left(2 S_{1}-3 S_{3}\right) S_{1}^{2 q} \varphi^{2} & \leq\left(q^{2}+q\right) \int_{M} S_{1}^{2 q-2} \varphi^{2}\left\langle P_{1}\left(\nabla S_{1}\right), \nabla S_{1}\right\rangle+\int_{M}(1+q) S_{1}^{2 q}\left\langle P_{1}(\nabla \varphi), \nabla \varphi\right\rangle \\
& \leq 2\left(q^{2}+q\right) \int_{M} S_{1}^{2 q-1} \varphi^{2}\left|\nabla S_{1}\right|^{2}+2(1+q) \int_{M} S_{1}^{2 q+1}|\nabla \varphi|^{2} \tag{3.4}
\end{align*}
$$

We choose $\varphi=\phi^{\frac{3+2 q}{2}}$ and get that

$$
\begin{equation*}
|\nabla \varphi|^{2}=\frac{(3+2 q)^{2}}{4} \phi^{1+2 q}|\nabla \phi|^{2} \tag{3.5}
\end{equation*}
$$

Combining (3.4) with (3.5), we obtain that

$$
\begin{align*}
\int_{M}\left(2 S_{1}-3 S_{3}\right) S_{1}{ }^{2 q} \phi^{3+2 q} \leq & 2\left(q^{2}+q\right) \int_{M} S_{1}^{2 q-1} \phi^{3+2 q}\left|\nabla S_{1}\right|^{2}+ \\
& \frac{(1+q)(3+2 q)^{2}}{2} \int_{M} S_{1}^{1+2 q} \phi^{1+2 q}|\nabla \phi|^{2} \tag{3.6}
\end{align*}
$$

Using Young's inequality, we have

$$
\begin{align*}
& S_{1}{ }^{1+2 q} \phi^{1+2 q}|\nabla \phi|^{2}=\left(b S_{1}{ }^{1+2 q} \phi^{1+2 q}\right) \cdot\left(\frac{|\nabla \phi|^{2}}{b}\right) \\
& \quad \leq \frac{1+2 q}{3+2 q} b^{\frac{3+2 q}{1+2 q}} S_{1}^{3+2 q} \phi^{3+2 q}+\frac{2}{3+2 q} b^{-\frac{3+2 q}{2}}|\nabla \phi|^{3+2 q} \tag{3.7}
\end{align*}
$$

for a positive constant b to be determined. Combining with (3.6), we have

$$
\begin{align*}
& \int_{M}\left(2 S_{1}-3 S_{3}\right) S_{1}^{2 q} \phi^{3+2 q}-2\left(q^{2}+q\right) \int_{M} S_{1}^{2 q-1} \phi^{3+2 q}\left|\nabla S_{1}\right|^{2} \\
& \quad \leq \frac{(1+q)(3+2 q)}{2} \int_{M}\left((1+2 q) b^{\frac{3+2 q}{1+2 q}} S_{1}^{3+2 q} \phi^{3+2 q}+2 b^{-\frac{3+2 q}{2}}|\nabla \phi|^{3+2 q}\right) . \tag{3.8}
\end{align*}
$$

That is,

$$
\begin{equation*}
\int_{M} \mathcal{A} S_{1}^{3+2 q} \phi^{3+2 q} \leq \mathcal{B} \int_{M}|\nabla \phi|^{3+2 q}, \tag{3.9}
\end{equation*}
$$

where

$$
\mathcal{A}=\frac{2}{S_{1}^{2}}+\frac{-3 S_{3}}{S_{1}^{3}}-2\left(q^{2}+q\right)\left|\nabla\left(\frac{1}{S_{1}}\right)\right|^{2}-\frac{(1+q)(3+2 q)(1+2 q) b^{\frac{3+2 q}{1+2 q}}}{2}
$$

and

$$
\mathcal{B}=(1+q)(3+2 q) b^{-\frac{3+2 q}{2}}>0 .
$$

Since

$$
|H| \leq \delta_{1},\left|\nabla\left(\frac{1}{H}\right)\right| \leq \delta_{2}
$$

we have

$$
\left|S_{1}\right| \leq 3 \delta_{1},\left|\nabla\left(\frac{1}{S_{1}}\right)\right| \leq \frac{\delta_{2}}{3},
$$

which imply that

$$
\begin{equation*}
\mathcal{A} \geq \frac{2}{9 \delta_{1}^{2}}+\frac{-3 S_{3}}{S_{1}^{3}}-\frac{2\left(q^{2}+q\right) \delta_{2}^{2}}{9}-\frac{(1+q)(3+2 q)(1+2 q) b^{\frac{3+2 q}{1+2 q}}}{2} \tag{3.10}
\end{equation*}
$$

Choosing q and b sufficiently small such that

$$
\frac{2}{9 \delta_{1}^{2}}-\frac{2\left(q^{2}+q\right) \delta_{2}^{2}}{9}-\frac{(1+q)(3+2 q)(1+2 q) b^{\frac{3+2 q}{1+2 q}}}{2}>0
$$

Combining (3.10) with the fact that $\frac{-3 S_{3}}{S_{1}^{3}} \geq 0$, we get

$$
\mathcal{A}>0 .
$$

Let ϕ be a function depending on the distance r with respect to a fixed point p,

$$
\phi(x)= \begin{cases}1, & \text { on } B(R), \\ \frac{2 R-r}{R}, & \text { on } B(2 R) \backslash B(R), \\ 0, & \text { on } M \backslash B(2 R) .\end{cases}
$$

Combining with (3.9), we obtain that

$$
\begin{equation*}
\int_{B(R)} \mathcal{A} S_{1}^{3+2 q} \leq \mathcal{B} \int_{B(2 R) \backslash B(R)} \frac{1}{R^{3+2 q}} \leq \mathcal{B} \frac{\operatorname{vol}(B(2 R))}{R^{3+2 q}} \tag{3.11}
\end{equation*}
$$

Noting that M has polynomial volume growth and taking $R \rightarrow+\infty$, we obtain that $S_{1}=0$. This contradicts $S_{1} \neq 0$.

Proof of Theorem 1.2 Suppose by contradiction there exists a complete noncompact stable hypersurface satisfying the condition of Theorem 1.2. Following the same step as proof of Theorem 1.1, we still obtain the inequality (3.9). Since

$$
\frac{-K}{H^{3}} \geq \delta_{1},\left|\nabla\left(\frac{1}{H}\right)\right| \leq \delta_{2}
$$

we get

$$
\frac{-S_{3}}{S_{1}^{3}} \geq \frac{\delta_{1}}{27},\left|\nabla\left(\frac{1}{S_{1}}\right)\right| \leq \frac{\delta_{2}}{3} .
$$

Thus,

$$
\mathcal{A}=\frac{2}{S_{1}^{2}}+\frac{\delta_{1}}{9}-\frac{2\left(q^{2}+a q\right) \delta_{2}}{3}-\frac{(a+q)(3+2 q)(1+2 q) b^{\frac{3+2 q}{1+2 q}}}{2 a} .
$$

Choosing q and b sufficiently small such that

$$
\frac{\delta_{1}}{9}-\frac{2\left(q^{2}+a q\right) \delta_{2}}{3}-\frac{(a+q)(3+2 q)(1+2 q) b^{\frac{3+2 q}{1+2 q}}}{2 a}>0
$$

Thus $\mathcal{A}>0$. Let ϕ be a function depending on the distance r with respect to a fixed point p,

$$
\phi(x)= \begin{cases}1, & \text { on } B(R), \\ \frac{2 R-r}{R}, & \text { on } B(2 R) \backslash B(R), \\ 0, & \text { on } M \backslash B(2 R) .\end{cases}
$$

Combining with (3.9), we obtain that

$$
\begin{equation*}
\int_{B(R)} \mathcal{A} S_{1}{ }^{3+2 q} \leq \mathcal{B} \int_{B(2 R) \backslash B(R)} \frac{1}{R^{3+2 q}} \leq \mathcal{B} \frac{\operatorname{vol}(B(2 R))}{R^{3+2 q}} . \tag{3.12}
\end{equation*}
$$

Noting that M has polynomial volume growth and taking $R \rightarrow+\infty$, we obtain that $S_{1}=0$. This contradicts $S_{1} \neq 0$.

Acknowledgements Both authors would like to thank professors Hongyu WANG and Detang ZHOU for useful discussion.

References

[1] S. Y. CHENG, S. T. YAU. Hypersurfaces with constant scalar curvature. Math. Ann., 1977, 225(3): 195-204.
[2] H. ALENCAR, W. SANTOS, Detang ZHOU. Stable hypersurfaces with constant scalar curvature. Proc. Amer. Math. Soc., 2010, 138(9): 3301-3312.
[3] G. SILVA NETO. On stable hypersurfaces with vanishing scalar curvature. Math. Z., 2014, 277(1-2): 481-497.
[4] Peng ZHU, Shouwen FANG. A gap theorem on submanifolds with finite total curvature in spheres. J. Math. Anal. Appl., 2014, 413(1): 195-201.
[5] Peng ZHU, Shouwen FANG. Finiteness of non-parabolic ends on submanifolds in spheres. Ann. Global Anal. Geom., 2014, 46(2): 103-115.
[6] H. ALENCAR, M. P. DO CARMO, A. G. COLARES. Stable hypersurfaces with constant scalar curvature. Math. Z., 1993 213(1): 117-131.
[7] J. HOUNIE, M. L. LEITE. Two-ended hypersurfaces with zero scalar curvature. Indiana Univ. Math. J., 1999, 48(3): 867-882.

[^0]: Received April 21, 2015; Accepted October 12, 2016
 Supported by the National Natural Science Foundation of China (Grant Nos. 11471145; 11401514) and Qing Lan Projects.

 * Corresponding author

 E-mail address: zhupeng2004@126.com (Peng ZHU)

