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Abstract In this paper, we study precise large deviation for the non-random difference∑n1(t)
j=1 X1j −

∑n2(t)
j=1 X2j , where

∑n1(t)
j=1 X1j is the non-random sum of {X1j , j ≥ 1} which is

a sequence of negatively associated random variables with common distribution F1(x), and∑n2(t)
j=1 X2j is the non-random sum of {X2j , j ≥ 1} which is a sequence of independent and

identically distributed random variables, n1(t) and n2(t) are two positive integer functions.

Under some other mild conditions, we establish the following uniformly asymptotic relation

lim
t→∞

sup
x≥γ(n1(t))p+1

∣∣∣P (
∑n1(t)

j=1 X1j −
∑n2(t)

j=1 X2j − (µ1n1(t)− µ2n2(t)) > x)

n1(t)F̄1(x)
− 1

∣∣∣ = 0.
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1. Introduction

The study of precise large deviations with heavy tails is an important topic in insurance

and finance, many researchers have achieved the asymptotic relation of precise large deviations

P (Sn − ESn > x) ∼ nF̄ (x),

which hold uniformly for some x-region Tn, where {Xn, n ≥ 1} is a sequence of random variables

with a common distribution function F and a finite mean µ, and Sn is its n-th non-random sum,

n = 1, 2, . . . . The uniformity is understood in the following sense:

lim
n→∞

sup
x∈Tn

|P (Sn − ESn > x)

nF̄ (x)
− 1| = 0. (1)

For recent works of precise large deviations with heavy tails, we refer the reader to [1–4].

We say X (or its distribution F ) is heavy-tailed if it has no exponential moments. In risk

theory, heavy-tailed distributions are often used to model large claims. Now, we recall some
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important subclasses of heavy-tailed distributions. A distribution F with support on [0,∞)

belongs to the class L, if

lim
x→∞

F̄ (x− y)

F̄ (x)
= 1

holds for all y ∈ (−∞,∞). We call that F is a long-tailed distribution. A distribution F is said

to belong to class D, which consists of all distributions with dominated variation in the sense

that the relation

lim sup
x→∞

F̄ (xy)

F̄ (x)
< ∞

holds for any y ∈ (0, 1) (or equivalently, for y = 1/2). Another slightly smaller class is C, which
consists of all distributions with consistent variation in the sense that there holds the relation

lim
y↓1

lim inf
x→∞

F̄ (xy)

F̄ (x)
= 1 or, equivalently, lim

y↑1
lim sup
x→∞

F̄ (xy)

F̄ (x)
= 1.

It is easy to achieve the following inclusion relationship C ⊂ D ∩ L. For a distribution F , we

define

γ(y) := lim inf
x→∞

F̄ (xy)

F̄ (x)
and γF := inf

{
− log γ(y)

log y
: y > 1

}
. (2)

In [5], γF is called the upper Matuszewska index of the nonnegative and nondecreasing function

f(x) = (F̄ (x))−1, x > 0. Without any danger of confusion, we simply call γF the upper

Matuszewska index of the distribution function F . See Chapter 2.1 of [5] for more details of the

Matuszewska index.

Here, we introduce some kinds of dependent structures. A sequence of random variables

{Xn, n ≥ 1} is said to be extended lower negatively dependent (ELND) if there is some M > 0

such that, for each n = 1, 2, . . . and all real numbers x1, x2, . . . , xn,

P (X1 ≤ x1, . . . , Xn ≤ xn) ≤ M
n∏

i=1

P (Xi ≤ xi);

it is said to be extended upper negatively dependent (EUND) if there is some M > 0 such that,

for each n = 1, 2, . . . and all real numbers x1, x2, . . . , xn,

P (X1 > x1, . . . , Xn > xn) ≤ M
n∏

i=1

P (Xi > xi);

it is said to be extended negatively dependent (END) if they are both (ELND) and (EUND).

When M = 1, we call extended lower negatively dependent random variables {Xn, n ≥ 1} lower

negatively dependent (LND) , and call extended upper negatively dependent random variables

{Xn, n ≥ 1} upper negatively dependent (UND); if it is both (LND) and (UND), it is said to be

negatively dependent (ND). We say random variables {Xi, i = 1, . . . , n} Negatively Associated

(NA) if for every pair of disjoint subsets A1,A2 of {1, 2, . . . , n},

Cov{f1(Xi, i ∈ A1), f2(Xi, i ∈ A2)} ≤ 0,

where f1 and f2 are increasing functions. See [3] and [6] for more details for these kinds of

dependent random variable sequences.
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In [7], the precise large deviation (1) called one-risk model large deviations is extended to

the multi-risk model, that is

lim
ni→∞

i=1,2,...,k

sup
x≥max{γni,

i=1,2,...,k}

∣∣∣P (
∑k

i=1

∑ni

j=1 Xij −
∑k

i=1 niµi > x)∑k
i=1 niF̄i(x)

− 1
∣∣∣ = 0.

We refer the reader to [7] for more details. [8] established asymptotic formula for the multi-risk

model in the case where the distribution of X belongs to subexponential distribution, [9] derived

lower bounds of large deviation for sums of long-tailed claims in a multi-risk model, and [10]

studied local precise large deviations for independent sums in a multi-risk model. In addition,

X and Y are independent random variables where X is distributed by F , and Y is non-negative

and non-degenerate at 0. From [11], if F ∈ L, there holds that

P (X − Y > x) ∼ F̄ (x) as x → ∞. (3)

Assume that there are two types of insurance contracts in an insurance company, the i-th

related claims are denoted by {Xij , j ≥ 1} which are independent and identically distributed

random variables, i = 1, 2. The relation |
∑n1

j=1 X1j −
∑n2

j=1 X2j | > x as x → ∞ shows that one

type of insurance claim is much larger than another and it is easier to drive the insurance company

to ruin. Thus, the insurance company should pay more attention to this contract. Unfortunately,

uptill now, there is little research about the asymptotic behaviors of
∑n1

j=1 X1j −
∑n2

j=1 X2j .

Motivated by the above mentioned papers and these facts, it is obvious to consider the

difference of the sums of random variables. In the present work, we aim to deal with the

asymptotic behaviors of
∑n1

j=1 X1j −
∑n2

j=1 X2j . The rest of the paper is organized as follows. In

Section 2, we give some available propositions . The main results are presented in Section 3.

2. Preliminaries

This section presents several useful propositions, some of them will be used in Section 3.

Proposition 2.1 ([6]) Let A1, . . . , Am be disjoint subsets of {1, 2, . . . , k} and f1, f2, . . . , fm be

increasing positive functions. Then X1, X2, . . . , Xn NA implies

E
m∏
i=1

fi(Xj , j ∈ Ai) ≤
m∏
i=1

Efi(Xj , j ∈ Ai).

Proposition 2.2 ([6]) An immediate consequence of Proposition 2.1 is that for A1, A2 disjoint

subsets of {1, 2, . . . , k}, and x1, . . . , xk real,

P (Xi ≤ xi, i = 1, 2, . . . , k) ≤ P (Xi ≤ xi, i ∈ A1)P (Xj ≤ xj , j ∈ A2),

and

P (Xi > xi, i = 1, 2, . . . , k) ≤ P (Xi > xi, i ∈ A1)P (Xj > xj , j ∈ A2).

Remark 2.3 By Proposition 2.2 we know that X1, X2, . . . , Xn NA implies ND.

Proposition 2.4 Let {Xn, n ≥ 1} be NA with common distribution function F ∈ C and mean
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0 satisfying the condition

F (−x) = o(F̄ (x)), as x → ∞. (4)

And there exists some r > 1 such that E(X−
1 )r < ∞. Then

P (Sn > x) ∼ nF̄ (x), as n → ∞

holds uniformly for x ≥ γn, for any fixed γ > 0.

Remark 2.5 This proposition is the case of NA and identically distributed random variables

in the theorem 3.1 of [3]. Let {Yk, k = 1, 2, . . .} be a sequence of nonnegative and NA random

variables with common distribution F ∈ C and finite mean µ > 0. If Xk = Yk − µ, then the

relation (4) holds automatically. By (5), for any fixed γ > 0, the relation

P
( n∑

k=1

Yk − nµ > x
)
= P

( n∑
k=1

Xk > x
)
∼ nF̄ (x)

holds uniformly for all x ≥ γn as n → ∞.

Proposition 2.6 ([2]) For F ∈ D and every p > γF , there exist positive x0 and B such that,

for all θ ∈ (0, 1] and all x ≥ θ−1x0,
F̄ (θx)
F̄ (x)

≤ Bθ−p.

Proposition 2.7 ([2]) For a distribution function F ∈ D with a finite expectation, 1 ≤ γF < ∞
and for any γ > γF , x

−γ = o(F̄ (x)), as x → ∞.

3. Main results

In this section, we are ready to state the main results of this paper and their proofs.

Lemma 3.1 Let {Xi, i = 1, 2, . . . , n} be NA random variables, and {Yi, i = 1, 2, . . . , k} be

independent and identically distributed random variables, 1 ≤ k ≤ n. If {Xi, i = 1, 2, . . . , n} and

{Yi, i = 1, 2, . . . , k} are mutually independent, then {X1 − Y1, . . . , Xk − Yk, Xk+1, . . . , Xn} are

NA, and they are also ND.

Proof Let A1, A2 be disjoint subsets of {1, 2, . . . , n}. We have

cov{f1(Xi − Yi, i ∈ A1), f2(Xj − Yj , j ∈ A2)}

= E [f1(Xi − Yi, i ∈ A1)f2(Xj − Yj , j ∈ A2)]− E [f1(Xi − Yi, i ∈ A1)]E [f2(Xj − Yj , j ∈ A2)]

= E {E [f1(Xi − Yi, i ∈ A1)f2(Xj − Yj , j ∈ A2)|Y1, Y2, . . . , Yk]}−

E [f1(Xi − Yi, i ∈ A1)]E [f2(Xj − Yj , j ∈ A2)]

≤ E {E [f1(Xi − Yi, i ∈ A1)|Y1, Y2, . . . , Yk]}E {E [f2(Xj − Yj , j ∈ A2)|Y1, Y2, . . . , Yk]}−

E [f1(Xi − Yi, i ∈ A1)]E [f2(Xj − Yj , j ∈ A2)]

= E {E [f1(Xi − Yi, i ∈ A1)|Yi, i ∈ A1]}E {E [f2(Xj − Yj , j ∈ A2)|Yj , j ∈ A2]}−

E [f1(Xi − Yi, i ∈ A1)]E [f2(Xj − Yj , j ∈ A2)]

= E [f1(Xi − Yi, i ∈ A1)]E [f2(Xj − Yj , j ∈ A2)]−
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E [f1(Xi − Yi, i ∈ A1)]E [f2(Xj − Yj , j ∈ A2)]

= 0.

By the definition of NA and Remark 2.3, we know that {X1 − Y1, . . . , Xk − Yk, Xk+1, . . . , Xn}
are NA, and then {X1 − Y1, . . . , Xk − Yk, Xk+1, . . . , Xn} are ND.

Lemma 3.2 Let X be a nonnegative random variable with a distribution F1 ∈ C and finite

mean µ1 > 0, and Let Y be a nonnegative random variable with a distribution F2. For some

ρ > γF1 ≥ 1, EY ρ < ∞, where γF1 is defined as (2). If X and Y is independent, X satisfies the

condition (4), then the relation

xP (X − Y − (µ1 − µ2) < −x) = o(P (X − Y − (µ1 − µ2) > x))

holds as x → ∞.

Proof For any fixed v (0 < v < 1), we have

xP (X − Y − (µ1 − µ2) < −x)

P (X − Y − (µ1 − µ2) > x)
=
x
∫ vx

0
P (X ≤ −x+ (µ1 − µ2) + u)dF2(u)

P (X − Y − (µ1 − µ2) > x)
+

x
∫ +∞
vx

P (X ≤ −x+ (µ1 − µ2) + u)dF2(u)

P (X − Y − (µ1 − µ2) > x)

=K1 +K2.

To estimate K1, it follows from the condition (4) and F1 ∈ C ⊂ D that

K1 ≤ xP (X ≤ −x+ (µ1 − µ2) + vx)F2(vx)

P (X − Y − (µ1 − µ2) > x, Y ≤ vx)

≤ xF1((v − 1)x+ (µ1 − µ2))

F̄1((1− v)x+ (µ1 − µ2))
· F̄1((1− v)x+ (µ1 − µ2))

F̄1((v + 1)x+ (µ1 − µ2))
→ 0, as x → ∞.

Using EY ρ+1 < ∞ and Proposition 2.7 gives

K2 ≤ xF̄2(vx)

P (X − Y − (µ1 − µ2) > x,X ≥ x+ µ1)

≤ xF̄2(vx)

F2(µ2)F̄1(x+ µ1)

≤ xρ+1F̄2(vx)

F2(µ2)xρF̄1(x+ µ1)
→ 0, as x → ∞.

So, the proof of the lemma is completed. �

Remark 3.3 Lemma 3.2 means that the left tail of X − Y is lighter than its right tail.

Theorem 3.4 Let {X1j , j ≥ 1} be a sequence of NA and nonnegative and identically distributed

random variables with common distribution function F1 ∈ C, finite mean 0 < µ1 < ∞, and γF1 ≥
1. Also let {X2j , j ≥ 1} be a sequence of nonnegative and independent and identically distributed

random variables with common distribution function F2. For some p > γF1 , EXp+1
2j < ∞. For

i = 1, 2, ni(t) is a positive integer function, ni(t) → ∞ as t → ∞. We assume that {Xij , j ≥ 1}2i=1

are mutually independent, Si
1,ni(t)

=
∑ni(t)

j=1 Xij is partial sum of {Xij , j ≥ 1}, i = 1, 2. If n1(t)
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and n2(t) satisfy

lim
t→∞

n2(t)

n1(t)
= a, 0 ≤ a < ∞, (5)

then for any fixed γ > 0 and some p > γF1 , we have

P (S1
1,n1(t)

− S2
1,n2(t)

− (µ1n1(t)− µ2n2(t)) > x) ∼ n1(t)F̄1(x) (6)

holds uniformly for all x ≥ γ(n1(t))
p+1 as t → ∞. That is,

lim
t→∞

sup
x≥γ(n1(t))p+1

∣∣P (S1
1,n1(t)

− S2
1,n2(t)

− (µ1n1(t)− µ2n2(t)) > x)

n1(t)F̄1(x)
− 1

∣∣ = 0.

Proof Throughout this section, all limit relationships, unless otherwise stated, are as t → ∞.

Here we divide our proof into two parts. Firstly, we give the proof under the condition 0 ≤ a < 1.

Secondly, we give the proof under the condition 1 ≤ a < ∞.

Firstly, we deal with the case of 0 ≤ a < 1. From (5), there exists a large enough t0 > 0,

when t > t0 > 0, we have

n1(t) ≥ n2(t). (7)

Under this condition, the asymptotic relation (6) holds if and only if for any fixed γ > 0,

lim inf
t→∞

inf
x≥γ(n1(t))p+1

P (S1
1,n1(t)

− S2
1,n2(t)

− (µ1n1(t)− µ2n2(t)) > x)

n1(t)F̄1(x)
≥ 1 (8)

and

lim sup
t→∞

sup
x≥γ(n1(t))p+1

P (S1
1,n1(t)

− S2
1,n2(t)

− (µ1n1(t)− µ2n2(t)) > x)

n1(t)F̄1(x)
≤ 1. (9)

Now, we prove (8). Let

S
[1−2]
1,n2(t)

=

n2(t)∑
j=1

(X1j −X2j) ,

S1
n2(t)+1,n1(t)

=

n1(t)∑
j=n2(t)+1

X1j , n
[1−2](t) = n1(t)− n2(t), µ[1−2] = µ1 − µ2.

Using (7), for any 0 < ε < 1, we get

P (S1
1,n1(t)

− S2
1,n2(t)

− (µ1n1(t)− µ2n2(t)) > x)

= P
(
S
[1−2]
1,n2(t)

+ S1
n2(t)+1,n1(t)

> x+ µ[1−2]n2(t) + µ1 · n[1−2](t)
)

≥ P
(
{S[1−2]

1,n2(t)
> (1 + ε)x+ µ[1−2]n2(t), S

1
n2(t)+1,n1(t)

> −εx+ µ1 · n[1−2](t)}
∪

{S1
n2(t)+1,n1(t)

> (1 + ε)x+ µ1 · n[1−2](t), S
[1−2]
1,n2(t)

> −εx+ µ[1−2]n2(t)}
)

≥ P
(
S
[1−2]
1,n2(t)

> (1 + ε)x+ µ[1−2]n2(t), S
1
n2(t)+1,n1(t)

> −εx+ µ1 · n[1−2](t)
)
+

P
(
S1
n2(t)+1,n1(t)

> (1 + ε)x+ µ1 · n[1−2](t), S
[1−2]
1,n2(t)

> −εx+ µ[1−2]n2(t)
)
−

P
(
{S[1−2]

1,n2(t)
> (1 + ε)x+ µ[1−2]n2(t)x}

∩
{S1

n2(t)+1,n1(t)
> (1 + ε)x+ µ1 · n[1−2](t)}

)
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≥ P
(
S
[1−2]
1,n2(t)

> (1 + ε)x+ µ[1−2]n2(t)
)
+ P

(
S1
n2(t)+1,n1(t)

> (1 + ε)x+ µ1 · n[1−2](t)
)
−

P
(
S
[1−2]
1,n2(t)

> (1 + ε)x+ µ[1−2]n2(t), S
1
n2(t)+1,n1(t)

≤ −εx+ µ1 · n[1−2](t)
)
−

P
(
S1
n2(t)+1,n1(t)

> (1 + ε)x+ µ1 · n[1−2](t), S
[1−2]
1,n2(t)

≤ −εx+ µ[1−2]n2(t)
)
−

P
(
S
[1−2]
1,n2(t)

> (1 + ε)x+ µ[1−2]n2(t)
)
P
(
S1
n2(t)+1,n1(t)

> (1 + ε)x+ µ1 · n[1−2](t)
)

:= I1 + I2 − I3 − I4 − I1 · I2,

where we use Lemma 3.1 and Proposition 2.1 in the third inequality. Since F1 ∈ C, we have

lim
ε↓0

lim
t→∞

lim sup
x≥γn1(t)

∣∣ F̄1(1 + ε)x

F̄1(x)
− 1

∣∣ = 0.

Then for any 0 < δ < 1, all sufficiently small ε and (7), we have

F̄1((1 + ε)x) > (1− δ)F̄1(x) (10)

holds uniformly for x ≥ γn1(t). By Lemmas 3.1 and 3.2, Proposition 2.4, (3), (10) and (7), for

any 0 < δ < 1 and any fixed γ > 0, we have

(1 + δ)n2(t)F̄1((1 + ε)x) > I1 > (1− δ)n2(t)F̄1((1 + ε)x) > (1− δ)2n2(t)F̄1(x) (11)

holds uniformly for all x ≥ γn2(t). Similarly, noting that n[1−2](t) → ∞ as t → ∞, for large

enough t > 0 we have

(1 + δ)2n[1−2](t)F̄1((1 + ε)x) > I2 > (1− δ)2n[1−2](t)F̄1(x) (12)

holds uniformly for all x ≥ γn[1−2](t). According to finite mean 0 < µ1 < ∞, it is easy to check

that, for any fixed γ > 0,

lim
t→∞

sup
x≥γn1(t)

n1(t)F̄1(x) = 0.

Note that

lim
t→∞

sup
x≥γn1(t)

n[1−2](t)n2(t)F̄
2
1 ((1 + ε)x)

n1(t)F̄1(x)

= lim
t→∞

sup
x≥γn1(t)

n[1−2](t)n2(t)

(n1(t))2
· F̄1((1 + ε)x)

F̄1(x)
· n1(t)F̄1(x) = 0.

So we arrive at

I1 · I2 = o(n1(t)F̄1(x)) (13)

holds uniformly for x ≥ γn1(t). Here we show that

I3 + I4 = o(n1(t)F̄1(x)) (14)

holds uniformly for x ≥ γ(n1(t))
p+1. Since for any fixed ϵ > 0, there exists a positive B such

that

I4
n1(t)F̄1(x)

≤
P (S

[1−2]
1,n2(t)

≤ −εx+ µ[1−2]n2(t))

n2(t)F̄1(x)
≤

n2(t)P (X11 −X21 − µ[1−2] ≤ −εx
n2(t)

)

n2(t)F̄1(x)
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≤
P (X11 −X21 − (µ1 − µ2) ≤ −εx

n2(t)
)

P (X11 −X21 − (µ1 − µ2) >
εx

n2(t)
)
·
P (X11 > εx

n2(t)
+ (µ1 − µ2))

P (X11 > εx
n2(t)

)

P (X11 > εx
n2(t)

)

F̄1(x)

≤
εx

n2(t)
P (X11 −X21 − (µ1 − µ2) ≤ −εx

n2(t)
)

P (X11 −X21 − (µ1 − µ2) >
εx

n2(t)
)

·
P (X11 > εx

n2(t)
+ (µ1 − µ2))

P (X11 > εx
n2(t)

)
·B(

ε

n2(t)
)−p−1x−1

= o(1)

holds uniformly for x ≥ γ(n1(t))
p+1, where the fourth inequality uses Proposition 2.6, and the

last step holds due to Lemma 3.2 and F1 ∈ C ⊂ D. Similarly,

I3 = o(n1(t)F̄1(x))

holds uniformly for x ≥ γ(n1(t))
p+1. Combining (11)–(14), we arrive at

P
(
S
[1−2]
1,n2(t)

+S1
n2(t)+1,n1(t)

> x+µ[1−2]n2(t)+µ1 ·n[1−2](t)
)
≥ (1−δ)2n1(t)F̄1(x)+o(n1(t)F̄1(x)).

Therefore, letting δ ↓ 0, (8) follows.

Next we will prove (9). Here we use the same ε which appeared above, there is

P
(
S
[1−2]
1,n2(t)

+ S1
n2(t)+1,n1(t)

> x+ µ[1−2]n2(t) + µ1n
[1−2](t)

)
≤ P

(
{S[1−2]

1,n2(t)
> (1− ε)x+ µ[1−2]n2(t)}

∪
{S1

n2(t)+1,n1(t)
> (1− ε)x+ µ1n

[1−2](t)}
∪

{S[1−2]
1,n2(t)

> εx+ µ[1−2]n2(t), S
1
n2(t)+1,n1(t)

> εx+ µ1n
[1−2](t)}

)
≤ P

(
S
[1−2]
1,n2(t)

> (1− ε)x+ µ[1−2]n2(t)
)
+ P

(
S1
n2(t)+1,n1(t)

> (1− ε)x+ µ1n
[1−2](t)

)
+

P
(
S
[1−2]
1,n2(t)

> εx+ µ[1−2]n2(t), S
1
n2(t)+1,n1(t)

> εx+ µ1n
[1−2](t)

)
≤ P

(
S
[1−2]
1,n2(t)

> (1− ε)x+ µ[1−2]n2(t)
)
+ P

(
S1
n2(t)+1,n1(t)

> (1− ε)x+ µ1n
[1−2](t)

)
+

P
(
S
[1−2]
1,n2(t)

> εx+ µ[1−2]n2(t)
)
P
(
S1
n2(t)+1,n1(t)

> εx+ µ1n
[1−2](t)

)
≤ (1 + δ)n1(t)F̄1((1− ϵ)x) + (1 + δ)2n[1−2](t)n2(t)(F̄1(ϵx))

2

≤ (1 + δ)2n1(t)F̄1(x) + o
(
n1(t)

(
F̄1(x)

) )
.

To get last formula we use the same method in the proof of the lower bound. Letting δ ↓ 0, we

get (9). Then we complete the proof of the case of 0 ≤ a < 1. �
At last let us deal with the case of 1 < a < ∞. From (5), we rewrite S1

n1(t)
− S2

n2(t)
as

S1
n1(t)

− S2
n2(t)

=

n1(t)∑
j=1

X1j −
[a]n1(t)∑
j=1

X2j −
n2(t)∑

j=[a]n1(t)+1

X2j

= S
[a]
1,n1(t)

− S2
[a]n1(t)+1,n2(t)

,

where

S
[a]
1,n1(t)

=

n1(t)∑
j=1

(X1j −
j[a]∑

k=(j−1)[a]+1

X2k),
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and

S2
[a]n1(t)+1,n2(t)

=

n2(t)∑
j=[a]n1(t)+1

X2j .

Using Lemma 3.1, we obtain {X1j −
∑j[a]

k=(j−1)[a]+1 X2k, X2i, 1 ≤ j ≤ n1(t), [a]n1(t) + 1 ≤ i ∈
n2(t)} are NA. Referring to the discuss in the case of 0 ≤ a < 1, we have

P (S1
1,n1(t)

− S2
1,n2(t)

− µ1n1(t) + µ2n2(t) > x) ∼ n1(t)F̄1(x).

If a = 1, when n1(t) ≥ n2(t), by Lemma 3.1, {X1 − Y1, . . . , Xn2(t) − Yn2(t), Xn2(t)+1, . . . , Xn1(t)}
are NA, this argument is similar to the case of 0 ≤ a < 1; when n1(t) = n2(t), by Lemma 3.1,

{X1−Y1, . . . , Xn2(t)−Yn2(t)} are NA, they are also ND, Theorem 3.4 holds by Proposition 2.4;

otherwise the argument is similar to the case of 1 < a < ∞. Then the proof of Theorem 3.4 is

completed. �
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