
Journal of Mathematical Research with Applications

Nov., 2016, Vol. 36, No. 6, pp. 741–753

DOI:10.3770/j.issn:2095-2651.2016.06.014

Http://jmre.dlut.edu.cn

A Newton-Based Perturbation Method for a Robust
Inverse Optimization Problem

Zhiqiang JIA1, Jian GU2,∗, Xiantao XIAO1

1. School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China;

2. School of Sciences, Dalian Ocean University, Liaoning 116023, P. R. China

Abstract In this paper, we aim to solve an inverse robust optimization problem, in which the

parameters in both the objective function and the robust constraint set need to be adjusted as

little as possible so that a known feasible solution becomes the optimal one. We formulate this

inverse problem as a minimization problem with a linear equality constraint, a second-order

cone complementarity constraint and a linear complementarity constraint. A perturbation

approach is constructed to solve the inverse problem. An inexact Newton method with Armijo

line search is applied to solve the perturbed problem. Finally, the numerical results are

reported to show the effectiveness of the approach.

Keywords inverse optimization; robust linear programming; perturbation approach; inexact

Newton method
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1. Introduction

A typical optimization problem is usually called a forward problem, in which all parameters

are given and we need to find an optimal solution from all feasible solutions. However, there are

many instances in practice, in which we only have some estimates for parameter values, but we

may know certain optimal solutions from experience, observations or experiments. An inverse

optimization problem is to find values of parameters which make the known solutions optimal

and which differ from the given estimates as little as possible.

Burton and Toint [1] first investigated an inverse shortest path problem. Since then, a

number of inverse combinatorial optimization problems have been studied, see the survey paper

[2] and the references therein. Recently, several inverse continuous optimization problems have

been studied, among which are [3] for inverse linear programming, [4,5] for inverse quadratic

programming, [6–8] for inverse semidefinite quadratic programming and [9] for inverse second-

order programming.

To the best of our knowledge, there are very few studies to discuss the inverse robust

optimization in the literature, except that in [10] the authors used a robust inverse optimization
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framework to handle a portfolio problem. Inspired by [10], in this paper we study a kind of

inverse robust conic optimization problem, which is more general and numerically challenged

than that of [10]. We formulate this inverse problem as a linear conic complementarity problem

and apply a perturbation approach to solve it. By solving a sequence of perturbed subproblems,

we obtain an approximate solution of the inverse robust conic optimization problem.

Firstly, we show that the study of inverse robust optimization problem is significant in

practice by considering a portfolio allocation problem with value-at-risk (VaR) constraint in the

financial industry. Consider a market with n risky assets and one riskless asset where investors

seek to maximize their expected return asset subject to a threshold level of risk. If the risk is

taken by the standard deviation of returns, the investors would solve the well-known Markowitz

portfolio allocation problem

max
x∈Rn

uTx+ (1− eTx)rf ,

s.t.
√
xTΣx ≤ L,

eTx ≤ 1, x ≥ 0,

(1)

where r ∈ R
n is the random vector of the risky asset returns, u = E[r] is the vector of mean asset

returns, Σ ∈ R
n×n is the covariance matrix of asset returns, rf ∈ R+ is the return on the riskless

asset, x ∈ R
n is the fraction of wealth invested in each risky asset, L is an investor-specific

threshold level of risk and e ∈ R
n refers to the vector of all ones.

Alternative measures of risk have been suggested in risk management, such as value-at-risk

(VaR) and conditional value-at-risk (CVaR). Given a random variable Z, its value-at-risk is

defined by

VaRα(Z) := inf{t ∈ R|P(t+ Z ≥ 0) ≤ 1− α} for any α ∈ (0, 1).

The corresponding optimization problem has the form

max
x∈Rn

uTx+ (1− eTx)rf ,

s.t. VaRα((r − rfe)
Tx) ≤ L,

eTx ≤ 1, x ≥ 0.

(2)

For normally distributed random variables, VaR is proportional to the standard deviation. For

discrete distributions, VaRα(Z) is a nonconvex, discontinuous function. A popular alternative

risk that maintains the convexity is conditional value-at-risk (CVaR), which is a coherent risk

measure. Therefore, the corresponding portfolio allocation problem is in the form of

max
x∈Rn

uTx+ (1− eTx)rf ,

s.t. CVaRα((r − rfe)
Tx) ≤ L,

eTx ≤ 1, x ≥ 0.

(3)

Consider the following robust linear conic programming problem:

max
x∈Rn

uTx+ (1 − eTx)rf

s.t. (r − rf e)
Tx ≥ −L, ∀r ∈ U ,

eTx ≤ 1, x ≥ 0

(4)
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for some set U . The following results show that the portfolio allocation problems (1), (2) and

(3) can be casted into the framework of (4).

Lemma 1.1 ([10, Proposition 3]) Consider the following uncertainty sets:

U1 = {r : (r − rfe)
TΣ−1(r − rfe) ≤ 1},

U2 = {r : (r − u+ rfe)
TΣ−1(r − u+ rfe) ≤ z2α},

U3 = {r : (r − u+ rfe)
TΣ−1(r − u+ rfe) ≤ 2πα2e−z2

α
/2},

where zα is the α-quantile.

(i) Problem (4) with U = U1 is equivalent to the Markowitz problem (1).

If r is distributed as a multivariate Gaussian, r ∼ N(u,Σ):

(ii) Problem (4) with U = U2 is equivalent to the VaR problem (2).

(iii) Problem (4) with U = U3 is equivalent to the CVaR problem (3).

One of the primary difficulties in solving portfolio allocation problems is finding a stable

estimation to the expectation u of returns and the investor-specific threshold level of risk L. In

practice, we can assume that x̂ is an optimal solution observed from the stock market, u0 is a

given historical return and L0 is an estimate level from the investors. Let Φ(x̂) denote the set

of all (u, L) which make x̂ optimal. Therefore, we could find a good estimate by solving the

following problem

min ‖(u, L)− (u0, L0)‖2,
s.t. (u, L) ∈ Φ(x̂),

u ∈ R
n, L ∈ R+,

which is a typical robust inverse optimization problem.

In this paper, we consider a type of robust linear conic programming (RLCP) problem of

the form

(RLCP)

min cTx,

s.t. Ax ≥ d,

rTx ≥ b, ∀ r ∈ U,

where U := {r| ∃ v ∈ R
n such that Fr + Gv − g ∈ Qm+1}, A ∈ R

l×n, F ∈ R
(m+1)×n, G ∈

R
(m+1)×n and Qm+1 is a second-order cone defined by

Qm+1 := {s = (s0; s̄) ∈ R× R
m|s0 ≥‖ s̄ ‖},

with ‖ · ‖ being the Euclidean norm. It is easy to verify that the portfolio allocation problems

(1), (2) and (3) can be rewritten in the form of Problem (RLCP).

Given a point x0, which is supposed to be an optimal solution to Problem (RLCP) and a

pair (c0, b0) ∈ R
n × R which is an estimate to (c, b). The inverse robust linear programming

problem considered in this paper is to find (c, b) ∈ R
n × R to solve the problem

min 1
2 ‖ (c, b)− (c0, b0) ‖2,

s.t. x0 ∈ SOL(RLCP),
(5)
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where SOL(RLCP) is the set of optimal solutions to Problem (RLCP).

The following notations and results on second-order cone will be used throughout the paper.

Let Qm+1 be a second-order cone defined to be

Qm+1 := {s = (s0; s̄) ∈ R× R
m | s0 ≥‖ s̄ ‖}.

The topological interior part and the boundary of Qm+1 denoted by intQm+1 and bdQm+1,

respectively, are given by

intQm+1 := {s = (s0; s̄) ∈ R× R
m | s0 >‖ s̄ ‖},

bdQm+1 := {s = (s0; s̄) ∈ R× R
m | s0 =‖ s̄ ‖}.

For any x = (x1;x2) ∈ R× R
m and y = (y1; y2) ∈ R× R

m, we define their Jordan product as

x ◦ y = (xT y; y1x2 + x1y2).

We write x2 to mean x ◦ x. For any x = (x1;x2) ∈ R × R
m, we define its determinant as

det(x) = x21 − ‖x2‖2 and the linear mapping Lx from R
m+1 to R

m+1 as

Lxy =

[

x1 xT2
x2 x1Im

]

y,

where Im ∈ R
m×m is an identity matrix. It can be easily verified that x ◦ y = Lxy, and Lx is

positive definite if and only if x ∈ intQm+1. Also, we have

L−1
x =

1

det(x)

[

x1 −xT2
−x2 det(x)

x1
Im +

x2x
T

2

x1

]

.

In order to avoid any confusion, in the sequel we let x̂ denote that it is a vector in a second-order

cone Qm+1. We denote In and On as the identity matrix and zero matrix in R
n×n. For two

matrices A and B, we write A � B(A ≻ B) to mean that the matrix A−B is positive semidefinite

(positive definite). For a differentiable mapping F : Rn → R
m and a vector x ∈ R

n, let JF (x)
be the Jacobian of F at x and ∇F (x) := JF (x).

The rest of this paper is organized as follows. In Section 2, we first formulate the robust

linear programming problem as a linear programming, then reformulate the inverse robust linear

programming problem as a minimization problem with a linear equality constraint, a second-

order cone complementarity constraint and a linear complementarity constraint. In Section 3, we

use a perturbation approach to solve the inverse problem. An inexact Newton method is applied

to solve the perturbed problem. The numerical results are shown in Section 4.

2. Problem reformulation

Recall that U = {r| ∃ v ∈ R
n such that Fr + Gv − g ∈ Qm+1}. According to the duality

theory, we can obtain

min
r∈U

rTx = max
p̂

{p̂T g|FT p̂ = x, GT p̂ = 0n, p̂ ∈ Qm+1}.

Denote

H = [g FAT G −G]T ∈ R
(2n+l+1)×(m+1),
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q = [b dT 0Tn 0Tn ]
T ∈ R

2n+l+1,

and û = Fc − HTλ and v = Hp̂ − q. By using the classical theory of duality and optimality

conditions, Problem (5) can be rewritten as

min
1

2
‖ (c, b)− (c0, b0) ‖2,

s.t. FT p̂ = x0,

eT1 q = b,

F c−HTλ = û,

Hp̂− q = v,

û ◦ p̂ = 0,

0 ≤ λ ⊥ v ≥ 0,

û ∈ Qm+1, p̂ ∈ Qm+1.

(6)

First, we consider a subproblem of (6) as follows

min
1

2
‖ (c, b)− (c0, b0) ‖2,

s.t. eT1 q = b,

F c−HTλ = û,

Hp̂− q = v,

(7)

which is a convex program parameterized by (p̂, û, λ, v). Since the Slater constraint qualification

is satisfied, by the classical duality theory, there is no duality gap between problem (7) and its

dual. Moreover, for the remainder of the paper, we assume that F is of full column rank, so we

can get its optimal value f(p̂, û, λ, v), i.e.,

f(p̂, û, λ, v) =
1

2
‖ (FTF )−1FT (û−HTλ)− c0 ‖2 +1

2
‖ eT1 (Hp̂− v)− b0 ‖2 .

Therefore, problem (6) can be equivalently expressed as

min f(p̂, û, λ, v),

s.t. FT p̂ = x0,

û ◦ p̂ = 0,

0 ≤ λ ⊥ v ≥ 0,

û ∈ Qm+1, p̂ ∈ Qm+1.

(8)

The above problem is a minimization problem with a vector complementarity constraint and a

second-order cone complementarity constraint, which is a special type of mathematical program

with complementarity constraints (MPCC). For vector MPCCs, many algorithms have been

proposed [11]. For second-order cone MPCCs, there are only a few references. The smoothing

Newton method for second-order cone MPCCs was studied in [12,13] and a perturbation approach

was proposed in [9].

From the duality theory of convex programming, if there exists an optimal solution (p̂∗, û∗, λ∗,

v∗) to Problem (8), then we have that

(c∗, b∗) =
(

(FTF )−1FT (û∗ −HTλ∗), eT1 (Hp̂
∗ − v∗)

)
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is an optimal solution to the original problem (5).

3. A perturbation approach

In this section, we discuss how to solve Problem (8). Due to the complementarity constraints

in this problem, the basic constraint qualification does not hold, then the KKT conditions may

fail at any local minimizer [11]. To overcome this difficulty, we choose a smoothing function

ϕε(p̂, û) = 0 to approximate the second-order cone complementarity relation û◦ p̂ = 0, û ∈ Qm+1,

p̂ ∈ Qm+1, where ϕε(p̂, û) is defined by

ϕε(p̂, û) = p̂+ û−
√

(û − p̂)2 + 4ε2e

with e = (1, 0, . . . , 0) ∈ R
m+1 and ε > 0. It is obvious that

lim
εց0

ϕε(p̂, û) = ϕ0(p̂, û)

and ϕ0(p̂, û) = 0 if and only if û ◦ p̂ = 0, û ∈ Qm+1, p̂ ∈ Qm+1. Similarly, we adopt a smoothing

function Ψε(λ, v) = 0 to approximate the linear complementarity relation 0 ≤ λ, 0 ≤ v, 〈λ, v〉 = 0,

where Ψε(λ, v) is defined by

Ψε(λ, v) =







ψε(λ1, v1)
...

ψε(λ2n+l+1, v2n+l+1)






,

where ψε(λi, vi) = λi + vi −
√

λ2i + v2i + 2ε2, i = 1, . . . , 2n + l + 1. Obviously, Ψ0(λ, v) = 0 is

equivalent to 0 ≤ λ, 0 ≤ v, 〈λ, v〉 = 0.

Then, we construct a perturbation problem of (8) with parameter ε > 0 as follows

(Pε)

min f(p̂, û, λ, v),

s.t. FT p̂ = x0,

ϕε(p̂, û) = 0,

Ψε(λ, v) = 0.

(9)

The function ϕε(p̂, û) and Ψε(λ, v) are continuously differentiable with respect to p̂, û, λ and v

when ε > 0.

Define the following sets

Ω0
1 = {(p̂, û) ∈ Qm+1 ×Qm+1 | û ◦ p̂ = 0, FT p̂ = x0},

Ω0
2 = {(λ, v) ∈ R

2n+l+1
+ × R

2n+l+1
+ | 〈λ, v〉 = 0},

Ω1(ε) = {(p̂, û) ∈ Qm+1 ×Qm+1 | ϕε(p̂, û) = 0, FT p̂ = x0},
Ω2(ε) = {(λ, v) ∈ R

2n+l+1
+ × R

2n+l+1
+ | Ψε(λ, v) = 0},

Ω0 = Ω0
1 × Ω0

2,

Ω(ε) = Ω1(ε)× Ω2(ε).

Clearly, the sets Ω(ε) and Ω0 are the feasible sets of Problem (Pε) and Problem (8), respectively.
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The following lemmas show that the convergence of the set-value mapping Ω(ε) at ε = 0

with respect to R+ implies that the feasible set of (Pε) converges to the feasible set of the original

problem (8).

Lemma 3.1 ([9, Proposition 4.1]) Let Ω0
1 and Ω1(ε) be defined as above. Then we have

lim
εց0

Ω1(ε) = Ω0
1.

Lemma 3.2 ([3, Lemma 2.3]) Let Ω0
2 and Ω2(ε) be defined as above. Then we have

lim
εց0

Ω2(ε) = Ω0
2.

Lemma 3.3 Let Ω(ε) and Ω0 be defined as above. Then we have

lim
εց0

Ω(ε) = Ω0.

Proof Noting that both Ω(ε) and Ω0 are the Cartesian product of finite sets, so, according to

Lemmas 3.1 and 3.2, the conclusion obviously holds.

Let ŵ =
√

(û− p̂)2 + 4ε2e. For any p̂ ∈ Qm+1 and û ∈ Qm+1, we get ŵ
2 = (û− p̂)2+4ε2e ∈

intQm+1, hence ŵ ∈ intQm+1. According to [14, Lemma 3.5], we have that

Lŵ − Lû−p̂ ≻ 0, Lŵ + Lû−p̂ ≻ 0, Lŵ ≻ 0.

Then, we obtain the Jacobian of ϕε as follows,

J(p̂,û)ϕε(p̂, û) = [Im+1 + L−1
ŵ Lû−p̂ Im+1 − L−1

ŵ Lû−p̂].

Define

Φε(p̂, û, λ, v) :=





FT p̂− x0

ϕε(p̂, û)

Ψε(λ, v)



 .

Lemma 3.4 J(p̂,û,λ,v)Φε(p̂, û, λ, v) is of full row rank.

Proof Note that ϕε(p̂, û) and Ψε(λ, v) are continuously differentiable with respect to p̂, û, λ,

and v when ε > 0. Thus, we obtain

J(p̂,û,λ,v)Φε(p̂, û, λ, v) =





FT 0 0 0

Jp̂ϕε(p̂, û) Jûϕε(p̂, û) 0 0

0 0 JλΨε(λ, v) JvΨε(λ, v)



 ,

where

JλΨε(λ, v) =









1− λ1√
λ2
1
+v2

1
+2ε2

. . .

1− λ2n+l+1√
λ2
2n+l+1

+v2
2n+l+1

+2ε2









,

and

JvΨε(λ, v) =









1− v1√
λ2
1
+v2

1
+2ε2

. . .

1− v2n+l+1√
λ2
2n+l+1

+v2
2n+l+1

+2ε2









.
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As for any ε > 0, Jp̂ϕε(p̂, û), Jûϕε(p̂, û), JλΨε(λ, v) and JvΨε(λ, v) are invertible, and

F is of full column rank, we have that J(p̂,û,λ,v)Φε(p̂, û, λ, v) is of full row rank. The proof is

completed. �

Let L(p̂, û, λ, v, η, θ, δ) be the Lagrange function for (Pε):

L(p̂, û, λ, v, η, θ, δ) = f(p̂, û, λ, v) + 〈η, FT p̂− x0〉+ 〈θ, ϕε(p̂, û)〉+ 〈δ,Ψε(λ, v)〉.

By a similar calculation as in [9, Lemma 5.2], we can obtain the Hessian matrix of L(p̂, û, λ, v, η, θ, δ).

We omit the details here.

Lemma 3.5 Denote s = L−1
ŵ θ, then

∇2
(p̂,û,λ,v)L(p̂, û, λ, v, η, θ, δ) =









Lp̂p̂ Lp̂û Lp̂λ Lp̂v

LT
p̂û Lûû Lûλ Lûv

LT
p̂λ LT

ûλ Lλλ Lλv

LT
p̂v LT

ûv LT
λv Lvv









,

where

Lp̂p̂ = HT e1e
T
1H − Ls + Lû−p̂L

−1
ŵ LsL

−1
ŵ Lû−p̂,

Lp̂û = Ls − Lû−p̂L
−1
ŵ LsL

−1
ŵ Lû−p̂,

Lp̂λ = 0(m+1)×(2n+l+1),

Lp̂v = −HT e1e
T
1 ,

Lûû = F (FTF )−2FT − Ls + Lû−p̂L
−1
ŵ LsL

−1
ŵ Lû−p̂,

Lûλ = −F (FTF )−2FTHT ,

Lûv = 0(m+1)×(2n+l+1)

and

Lλλ = HF (FTF )−2FTHT +











− v2
1+2ε2

(λ2
1
+v2

1
+2ε2)

3
2

δ1

. . .

− v2
2n+l+1+2ε2

(λ2
2n+l+1

+v2
2n+l+1

+2ε2)
3
2

δ2n+l+1











,

Lλv =











λ1v1

(λ2
1
+v2

1
+2ε2)

3
2

δ1

. . .
λ2n+l+1v2n+l+1

(λ2
2n+l+1

+v2
2n+l+1

+2ε2)
3
2

δ2n+l+1











,

Lvv = e1e
T
1 +











− λ2
1+2ε2

(λ2
1
+v2

1
+2ε2)

3
2

δ1

. . .

− λ2
2n+l+1+2ε2

(λ2
2n+l+1

+v2
2n+l+1

+2ε2)
3
2

δ2n+l+1











.

As the linear independence constraint qualification (LICQ) holds at any feasible solution of

(Pε), we have that the Lagrange multiplier associated with a KKT point is unique. The following

lemma gives the second order sufficient condition of Problem (Pε) at a KKT point.

Lemma 3.6 Assume that (p̂∗, û∗, λ∗, v∗) is a KKT point of (Pε) and (η̄, θ̄, δ̄) is the corresponding
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Lagrange multiplier. Suppose the following condition holds,

〈d,∇2
(p̂,û,λ,v)L(p̂

∗, û∗, λ∗, v∗, η̄, θ̄, δ̄)d〉 > 0

for d 6= 0 satisfying J(p̂,û,λ,v)Φε(p̂
∗, û∗, λ∗, v∗)d = 0.

Then, the second order growth condition holds at (p̂∗, û∗, λ∗, v∗), namely there exist positive

numbers γ > 0 and ρ > 0 such that

f(p̂, û, λ, v)− f(p̂∗, û∗, λ∗, v∗) ≥ γ ‖ (p̂, û, λ, v)− (p̂∗, û∗, λ∗, v∗) ‖2,

∀ (p̂, û, λ, v) ∈ Ω(ε) ∩Bρ(p̂
∗, û∗, λ∗, v∗).

Let us introduce some notations

κ(ε) = inf{f(p̂, û, λ, v) | (p̂, û, λ, v) ∈ Ω(ε)},
s(ε) = argmin{f(p̂, û, λ, v) | (p̂, û, λ, v) ∈ Ω(ε)},
f̂ε(p̂, û, λ, v) = f(p̂, û, λ, v) + δΩ(ε)(p̂, û, λ, v),

where δΩ(ε) is the indicator function of Ω(ε).

The convergence behavior of the optimal set of (Pε) is obtained in the following theorem.

Theorem 3.7 The function κ(ε) is continuous at ε = 0 with respect to R+ and the set-valued

mapping s(ε) is outer semicontinuous at ε = 0 with respect to R+.

Proof As f(p̂, û, λ, v) is convex and bounded, we have that κ(ε) is finite and s(ε) is nonempty

for any ε ≥ 0. From Lemma 3.3, Ω(ε) → Ω0 as ε ց 0, thus f̂ε epi-converges to f̂0. The level-

boundedness of f̂ε is easily verified for ε ≥ 0. Therefore, we have from [15, Theorem 7.41] that

the function κ(ε) is continuous at 0 with respect to R+ and the set-valued mapping s(ε) is outer

semi-continuous at 0 with respect to R+. The proof is completed. �

From Theorem 3.7, we have that the optimal solution set of (Pε) is outer semicontinuous at

ε = 0. Therefore, in this section we focus on how to solve (Pε) with a sufficiently small ε > 0.

Define

Fε(p̂, û, λ, v, η, θ, δ) :=

[

∇(p̂,û,λ,v)L(p̂, û, λ, v, η, θ, δ)

Φε(p̂, û, λ, v)

]

.

If (p̂∗, û∗, λ∗, v∗) is a local solution for (Pε), then as the LICQ holds, there is a unique La-

grange multiplier (η̄, θ̄, δ̄) such that the KKT conditions are satisfied at (p̂∗, û∗, λ∗, v∗, η̄, θ̄, δ̄),

hence Fε(p̂
∗, û∗, λ∗, v∗, η̄, θ̄, δ̄) = 0. In fact, finding KKT points of (Pε) is equivalent to solving

Fε(p̂
∗, û∗, λ∗, v∗, η̄, θ̄, δ̄) = 0. The following result shows that the Jacobian of Fε at a KKT point

of (Pε) is nonsingular.

Proposition 3.8 Assume that (p̂∗, û∗, λ∗, v∗, η̄, θ̄, δ̄) is a KKT point of (Pε) satisfying the second

order sufficient conditions shown in Lemma 3.6. Then, JFε(p̂
∗, û∗, λ∗, v∗, η̄, θ̄, δ̄) is nonsingular.

Proof It is easy to calculate that JFε(p̂
∗, û∗, λ∗, v∗, η̄, θ̄, δ̄) equals to

[

∇2
(p̂,û,λ,v)L(p̂

∗, û∗, λ∗, v∗, η̄, θ̄, δ̄) J(p̂,û,λ,v)Φε(p̂
∗, û∗, λ∗, v∗)T

J(p̂,û,λ,v)Φε(p̂
∗, û∗, λ∗, v∗) 0

]

.
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From Lemma 3.4, we know that J(p̂,û,λ,v)Φε(p̂
∗, û∗, λ∗, v∗) is of full row rank. Thus, the second

order sufficient conditions can derive the non-singularity of JFε(p̂
∗, û∗, λ∗, v∗, η̄, θ̄, δ̄).

In the following, we give a well-known Line Search Inexact Newton Algorithm to solve

Fε(p̂
∗, û∗, λ∗, v∗, η̄, θ̄, δ̄) = 0, in which the Armijo line search is carried out. Let z = (p̂, û, λ, v, η, θ, δ)

and

gε(z) =
1

2
‖ Fε(z) ‖2 .

Then

∇gε(z) = JFε(z)
TFε(z).

Algorithm 3.1

Step 0. Choose z0 = (p̂0, û0, λ0, v0, η0, θ0, δ0) ∈ Ω(ε) × R
n × R

m+1 × R
(2n+l+1), ρ0 > 0,

κ > 2, σ ∈ (0, 1/2), τ0 ≥ 0, and set k = 0.

Step 1. If ‖ ∇gε(zk) ‖= 0, stop. Otherwise, go to Step 2.

Step 2. Find a solution dk ∈ R
7n+3m+3l+6 of the system

JFε(z
k)d = −Fε(z

k) + rk,

where the residual vector rk ∈ R
7n+3m+3l+6 satisfies the condition

‖ rk ‖≤ τk ‖ Fε(z
k) ‖ .

If the above system is not compatible or if the condition

〈∇gε(zk), dk〉 ≤ −ρ0 ‖ dk ‖κ

is not satisfied, set dk = −∇gε(zk).
Step 3. Find the smallest ik ∈ {0, 1, 2, . . .} such that

gε(z
k + 2−ikdk) ≤ gε(z

k) + σ2−ik〈∇gε(zk), dk〉.

Step 4. Set zk+1:=zk+2−ikdk, choose τk+1 ≥ 0, k=k+1 and go to Step 1.

The global convergence of Algorithm 3.1 is described in the following theorem. The techni-

cal proof is omitted here, since the results are classical in references.

Theorem 3.9 Assume that Algorithm 3.1 does not terminate within a finite number of itera-

tions. Let {zk} be generated by Algorithm 3.1. Assume that τk ≤ τ̄ with τ̄ ∈ (0, 1). Then

(a) Each accumulation point z̄ of {zk} satisfies ∇gε(z̄) = 0.

(b) If zk → z̄, where z̄ satisfies Fε(z̄) = 0 and JFε(z̄) is nonsingular, then the rate of

convergence is Q-superlinear if τk → 0. Furthermore, if τk = O(‖Fε(zk)‖), then the rate of

convergence is Q-quadratic.

4. Preliminary numerical experiments

In this section, we report our numerical experiments. We implemented the algorithm in

MATLAB R2012a running on a PC Intel Pentium T4400 of 2.20 GHz CPU and 2 GB of
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RAM. The stopping criterion chosen for Algorithm 3.1 is ‖∇gε(zk)‖ < 10−3 in Example 4.1.

For Example 4.2, the stopping criterion is that the relative residual is less than 10−5. We

use SYMMLQ MATLAB package to solve the system in Step 2 of Algorithm 3.1. The initial

(p̂0, û0, λ0, v0, η0, θ0, δ0) are chosen to be the zero vectors.

Example 4.1 Considering the portfolio problem in section 1 with n = 10, where worst-case

losses α% = 2.22%, risk-free rate rf = 0, and risk threshold L = 0.1287. The optimal portfolio

x0, mean return u and covariance matrix Σ are based on historical data [10]. Data (u0, L0) are

generated by perturbing parameters u and L with MATLAB code:

u0 = u+ 0.01 ∗ rand(n, 1), L0 = L+ 0.01 ∗ rand(1, 1).

We set the perturbed parameter ε = 1.0e− 6. The data x0, u and Σ are respectively presented

in Tables 1–3. The numerical result is presented in Figure 1.

0.0715 0.0454 0.1092 0.1077 0.1347 0.1356 0.1581 0.1516 0.0588 0.0274

Table 1 Optimal portfolio x0

0.2347 0.1321 0.2292 0.2396 0.2622 0.2941 0.3767 0.3016 0.2358 0.139

Table 2 Mean return u

261.59 81.98 86.24 80.21 22.34 45.74 83.89 170.22 6.83 35.26

81.98 157.88 136.29 125.81 84.26 135.23 132.26 254.68 76.81 24.5

86.24 136.29 179.58 138.87 147.63 169.65 155.77 255.9 149.41 76.54

80.21 125.81 138.87 158.92 102.72 146.82 134.2 211.12 129.38 63.66

22.34 84.26 147.63 102.72 197.46 159.9 158.1 154.78 162.13 98.47

45.74 135.23 169.65 146.82 159.9 239.64 166.05 239.02 171.73 65.17

83.89 132.26 155.77 134.2 158.1 166.05 206.45 226.23 141.88 91.13

170.22 254.68 255.9 211.12 154.78 239.02 226.23 665.95 134.99 2.14

6.83 76.81 149.41 129.38 162.13 171.73 141.88 134.99 280.96 126.22

35.26 24.5 76.54 63.66 98.47 65.17 91.13 2.14 126.22 131.4

Table 3 Covariance matrix Σ (10−4)

0.2292 0.1325 0.2277 0.237 0.2538 0.2916 0.3686 0.2992 0.2265 0.1337

Table 4 Optimal solution u
∗

Example 4.2 The matrix F is a randomly generated (m+1)×n full column rank matrix with

entries in −[1, 1] by MATLAB code:

F = 2.0 ∗ rand(m+ 1, n)− ones(m+ 1, n).
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Then we randomly generate an l×n matrix A, n×1 vector c, l×1 vector d, (m+1)×1 vector g,

and real number b. We let matrix G be zero in R
m+1 × R

n. The parameter set (c0, b0) required

in (5) is generated by perturbing (c, b) and x0 ∈ SOL(RLCP). We solve the corresponding

perturbed problem (Pε) with ε = 1.0e − 5, 1.0e − 6, 1.0e − 7, and 1.0e − 8, respectively. The

numerical results are shown in Figure 2.
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Figure 1 Numerical result of Example 4.1
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Figure 2 Numerical result of Example 4.2

The numerical results are reported in Figures 1 and 2. “Iterate” and “Residual” stand for the

number of iterations and the residuals at the iterated point, respectively. Figure 1 demonstrates

the implementation and the residual of each iteration, which show that the convergence is stable

and rapid. The optimal solution of the inverse problem of problem (4) is (u∗, L∗), where u∗ can
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be found in Table 4 and L∗ = 0.1267. Based on the data in Table 2 and Table 4, we can get

‖ (u∗, L∗)− (u, L) ‖∞ < 0.009, which can illustrate that the algorithm proposed in this paper is

of practical significance. As can be seen in Figure 2, the convergence of random problems is also

stable and fast. Furthermore, the accuracy for the random problems with the same dimension

does not change so much when the parameter ε changes from 1.0e− 5 to 1.0e− 8. The numerical

experiments show that the algorithm proposed in this paper is implementable and effective, and

the inverse Robust linear programming problem is computable.
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