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Abstract It is well known that Fourier analysis or wavelet analysis is a very powerful and

useful tool for a function since they convert time-domain problems into frequency-domain

problems. Are there similar tools for a matrix? By pairing a matrix to a piecewise function,

a Haar-like wavelet is used to set up a similar tool for matrix analyzing, resulting in new

methods for matrix approximation and orthogonal decomposition. By using our method, one

can approximate a matrix by matrices with different orders. Our method also results in a

new matrix orthogonal decomposition, reproducing Haar transformation for matrices with

orders of powers of two. The computational complexity of the new orthogonal decomposition

is linear. That is, for an m× n matrix, the computational complexity is O(mn). In addition,

when the method is applied to k-means clustering, one can obtain that k-means clustering

can be equivalently converted to the problem of finding a best approximation solution of a

function. In fact, the results in this paper could be applied to any matrix related problems.

In addition, one can also employ other wavelet transformations and Fourier transformation to

obtain similar results.

Keywords wavelet analysis; Fourier analysis; matrix decomposition; k-means clustering;

linear equation
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1. Wavelet transformation of matrix

It is well known that the Fourier series is very important and it decomposes a function into

infinite sum of sine and cosine functions and the coefficients of sine and cosine functions contain

the spectral information of the original function. Wavelet transformation is an update of Fourier

transformation (series) and it decomposes a function into infinite sum of wavelets. Since the co-

efficients of the wavelets (Fourier transformation) are the spectrums of the functions, the wavelet

(Fourier) transformation converts time-domain problems into frequency-domain problems. In

this section a Haar-like wavelet transform is employed to set up a new matrix analyzing method.

The same as the function’s wavelet (Fourier) transformation, the new method can also convert

time-domain problems of a matrix into its frequency-domain problems, by resulting in a new

orthogonal decomposing of a matrix into a matrix composed of its spectrums.
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For an m× n matrix A = (ai,j)0≤i≤m−1, 0≤j≤n−1, we define function fA on [0, a]× [0, b] by

fA(x, y) = ai,j ,
ia

m
< x <

(i+ 1)a

m
,
jb

n
< y <

(j + 1)b

n
, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1. (1)

a = 1, b = n
m or a = m

n , b = 1 is reasonable, but we set a = b = 1 for convenience. That

is, we assign the matrix A to a piecewise constant function with possibly break lines x = i
m ,

1 ≤ i ≤ m− 1 and y = i
n , 1 ≤ i ≤ n− 1. A and fA are called dual pair of each other.

For the value of fA at a point on the beak lines, although definition is acceptable, we define

it to be the average of the function values of its neighbors. For example, we define

f(
i

m
,
j

n
) =

1

4
(ai−1,j−1 + ai−1,j + ai,j−1 + ai,j), 0 < i < m, 0 < j < n,

f(
i

m
, y) =

1

2
(ai−1,j + ai,j), 0 < i < m,

j

n
< y <

j + 1

n
.

To obtain a Haar-like wavelet, we define

h0(x) =1, 0 < x < 1, h0(x) = 0, x < 0 or x > 1, h0(0) = h0(1) = 0.5,

h(x) =1, 0 < x < 0.5, h(x) = −1, 0.5 < x < 1, h0(x) = 0, x < 0 or x > 1,

h0(0) = 0.5, h(0.5) = 0, h0(1) = −0.5. (2)

Then, we define

hi,j(x) = 2
i
2h(2ix− j) = h2i+j(x), i ≥ 0, 0 ≤ j ≤ 2i − 1. (3)

It is easy to see that h1 = h0,0 = h. The following lemma is obvious.

Lemma 1.1 {hi, i ≥ 0} is an orthonormal basis of L2[0, 1]. That is, {hi, i ≥ 0} is a Haar

wavelet-like basis of L2[0, 1].

It is obvious that fA ∈ L2([0, 1]× [0, 1]) and thus there holds

fA(x, y) =
∞∑
i=0

∞∑
j=0

ci,jhi(x)hj(y), in L2 (4)

where

ci,j =

∫ 1

0

hj(y)dy

∫ 1

0

fA(x, y)hi(x)dx =

∫ 1

0

hj(y)dy

∫ 1

0

fA(x, y)hs,t(x)dx.

It is well known that, like Fourier series, ci,j reflects the frequency information of fA contained

in the support region of hi(x)hj(y), i.e., ci,j reflects the corresponding spectrum information of

fA. Equation (4) is called the (Harr) wavelet transformation of the matrix A. For the expansion

of fA in (4), we have the following lemma.

Lemma 1.2 fA(x, y) =
∑m−1

i=0

∑∞
j=0 ci,jhi(x)hj(y) if m = 2M for some natural number M ,

fA(x, y) =
∑∞

i=0

∑n−1
j=0 ci,jhi(x)hj(y) if n = 2N for some natural number N , and

fA(x, y) =

m−1∑
i=0

n−1∑
j=0

ci,jhi(x)hj(y) (5)

if both m = 2M and n = 2N for some natural numbers M and N .
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Proof If i ≥ m = 2M , then there exists s ≥ M and 0 ≤ t ≤ 2s − 1, such that i = 2s + t.

Therefore, there holds

ci,j =

∫ 1

0

hj(y)dy

∫ 1

0

fA(x, y)hi(x)dx =

∫ 1

0

hj(y)dy

∫ 1

0

fA(x, y)hs,t(x)dx.

Since the support of hs,t is ( t
2s ,

t+1
2s ) ⊂ ( t

2M
, t+1
2M

) = ( t
m , t+1

m ). According to the definition,

fA(x, y) is independent of x in the region ( t
m , t+1

m )× [0, 1]. Therefore,∫ 1

0

fA(x, y)hs,t(x)dx = fA(x, y)

∫ 1

0

hs,t(x)dx = 0.

That is ci,j = 0. The other two conclusions can be proved similarly. �
In fact, the following result shows that (4) holds point-wisely almost everywhere.

Theorem 1.3 Let Bx = { i
m , 0 ≤ i ≤ m}, By = { j

n , 0 ≤ j ≤ n} and D = { t
2s , s ≥ 1, 0 ≤ t ≤ 2s}.

Then,
∞∑
i=0

∞∑
j=0

ci,jhi(x̄)hj(ȳ)

converges if both x̄ /∈ Bx and ȳ /∈ By. Furthermore, if both x̄ /∈ Bx

∪
D and ȳ /∈ By

∪
D, then

∞∑
i=0

∞∑
j=0

ci,jhi(x̄)hj(ȳ) = fA(x̄, ȳ), (6)

i.e., (4) holds point-wisely almost everywhere. If x̄ ∈ Bx or ȳ ∈ By,
∑∞

i=0

∑∞
j=0 ci,jhi(x̄)hj(ȳ)

usually diverges, but it is a bounded sequence.

Proof Only the most important case of both x̄ /∈ Bx

∪
D and ȳ /∈ By

∪
D is taken as an example

to prove Theorem 1.3. Assuming x̄ =
∑∞

s=1
εs
2s and ȳ =

∑∞
t=1

ηt

2t are the binary representations

of x̄, ȳ ∈ (0, 1), where both εs and ηt equal 0 or 1. Since x̄ /∈ D and ȳ /∈ D, both εs and ηt

contain infinite many 0′s and 1′s. Since x̄ /∈ Bx and ȳ /∈ By, there exist i0 and j0 such that

i0
m

< x̄ <
i0 + 1

m
,

j0
n

< ȳ <
j0 + 1

n
.

For i ≥ 1, let i = 2a + b with 0 ≤ b ≤ 2a − 1. Then

hi(x̄) = ha,b(x̄) = 2
a
2 h(2ax̄− b) = 2

a
2 h
(
2a

a∑
s=1

εs
2s

− b+
∞∑

s=a+1

εs
2s−a

)

=

 (−1)εa+12
a
2 , if b = 2a

∑a
s=1

εs
2s ,

0, otherwise.

Similarly, for j ≥ 1, let j = 2s + t with 0 ≤ t ≤ 2s − 1. Then

hj(ȳ) = hs,t(ȳ) = 2
s
2h(2sȳ − t) = 2

s
2h
(
2s

s∑
l=1

ηl
2l

− t+
∞∑

l=s+1

ηl
2l−s

)

=

 (−1)ηs+12
s
2 , if t = 2s

∑s
l=1

ηl

2l
,

0, otherwise.
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Since h0(x̄) = h0(ȳ) = 1, we have

∞∑
i=0

∞∑
j=0

ci,jhi(x̄)hj(ȳ) =c0,0 +
∞∑
i=1

ci,0hi(x̄) +
∞∑
j=1

c0,jhj(ȳ) +
∞∑
i=1

∞∑
j=1

ci,jhi(x̄)hj(ȳ)

=c0,0 +

∞∑
a=0

(−1)εa+12
a
2 c2a+b,0 +

∞∑
j=1

(−1)ηs+12
s
2 c0,2s+t+

∞∑
a=0

∞∑
s=0

(−1)εa+1+ηs+12
s
2+

s
2 c2a+b,2s+t, (7)

where b = 2a
∑a

s=1
εs
2s and t = 2s

∑s
l=1

ηl

2l
. Since i0

m < x̄ < i0+1
m , j0

n < ȳ < j0+1
n , by denoting

x0 = 0, xa =

a∑
l=1

εl
2l
, y0 = 0, ys =

s∑
l=1

ηl
2l
,

there exist ā and s̄, such that

i0
m

< xā < x̄ < xā +
1

2ā
<

i0 + 1

m
,

j0
n

< ys̄ < ȳ < ys̄ +
1

2s̄
<

j0 + 1

n
. (8)

Thus, fA depends only on y for x ∈ [xā, xā +
1
2ā ] and fA depends only on x for y ∈ [ys̄, ys̄ +

1
2s̄ ].

Therefore, for j ≥ 0 and a ≥ ā (b = 2axa), it holds that

c2a+b,j =

∫ 1

0

hj(y)dy

∫ 1

0

fA(x, y)ha,b(x)dx =

∫ 1

0

hj(y)dy

∫ xā+
1
2ā

xā

fA(x, y)ha,b(x)dx

=

∫ 1

0

fA(x, y)hj(y)dy

∫ xā+
1
2ā

xā

ha,b(x)dx =

∫ 1

0

fA(x, y)hj(y)dy

∫ 1

0

ha,b(x)dx = 0.

Similarly, for i ≥ 0 and s ≥ s̄ (t = 2sys), it holds that

ci,2s+t = 0.

Thus, (7) is reduced to

∞∑
i=0

∞∑
j=0

ci,jhi(x̄)hj(ȳ) =c0,0 +
ā−1∑
a=0

(−1)εa+12
a
2 c2a+b,0 +

s̄−1∑
s=0

(−1)ηs+12
s
2 c0,2s+t+

ā−1∑
a=0

s̄−1∑
s=0

(−1)εa+1+ηs+12
a
2+

s
2 c2a+b,2s+t

=c0,0 +
ā−1∑
a=0

(−1)εa+12
a
2 c2a+b,0+

s̄−1∑
s=0

(−1)ηs+12
s
2

[
c0,2s+t +

ā−1∑
a=0

(−1)εa+12
a
2 c2a+b,2s+t

]
. (9)

This shows that
∑∞

i=0

∑∞
j=0 ci,jhi(x̄)hj(ȳ) converges. In addition, for any x /∈ D, one can easily

check that

h0(x) + (−1)ε1h(x) = 2h0(2x− ε1)
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and for any k ≥ 1 it holds that

2kh0

(
2kx−

k∑
i=1

2k−iεi

)
+ (−1)εk+12kh

(
2kx−

k∑
i=1

2k−iεi

)
= 2k+1h0

(
2k+1x−

k+1∑
i=1

2k+1−iεi

)
.

Thus, by mathematical induction, for any k ≥ 0, it holds that

h0(x) +

k∑
a=0

(−1)εa+12
a
2 ha,b(x) = 2k+1h0

(
2k+1x−

k+1∑
i=1

2k+1−iεi

)
. (10)

Noting that b = 2a
∑a

s=1
εs
2s and t = 2s

∑s
l=1

ηl

2l
, one can prove that

c0,0 +
ā−1∑
a=0

(−1)εa+12
a
2 c2a+b,0 +

s̄−1∑
s=0

(−1)ηs+12
s
2

[
c0,2s+t +

ā−1∑
a=0

(−1)εa+12
a
2 c2a+b,2s+t

]
=

∫ 1

0

∫ 1

0

fA(x, y)
[
2āh0

(
2s̄y −

s̄∑
i=1

2s̄−iεi
)][

2āh0

(
2āx−

ā∑
i=1

2ā−iεi
)]
dxdy. (11)

In fact,

c0,0 +

ā−1∑
a=0

(−1)εa+12
a
2 c2a+b,0 +

s̄−1∑
s=0

(−1)ηs+12
s
2 [c0,2s+t +

ā−1∑
a=0

(−1)εa+12
a
2 c2a+b,2s+t]

=

∫ 1

0

h0(y)dy

∫ 1

0

fA(x, y)h0(x)dx+

ā−1∑
a=0

(−1)εa+12
a
2

∫ 1

0

h0(y)dy

∫ 1

0

fA(x, y)ha,b(x)dx+

s̄−1∑
s=0

(−1)ηs+12
s
2

[ ∫ 1

0

hs,t(y)dy

∫ 1

0

fA(x, y)h0(x)dx+

ā−1∑
a=0

(−1)εa+12
a
2

∫ 1

0

hs,t(y)dy

∫ 1

0

fA(x, y)ha,b(x)dx
]

=

∫ 1

0

h0(y)dy

∫ 1

0

fA(x, y)
[
h0(x)dx+

ā−1∑
a=0

(−1)εa+12
a
2 ha,b(x)

]
dx+

s̄−1∑
s=0

(−1)ηs+12
s
2

∫ 1

0

hs,t(y)dy

∫ 1

0

fA(x, y)
[
h0(x)dx+

ā−1∑
a=0

(−1)εa+12
a
2 ha,b(x)

]
dx

=

∫ 1

0

h0(y)dy

∫ 1

0

fA(x, y)
[
2āh0

(
2āx−

ā∑
i=1

2ā−iεi
)]
dx+

s̄−1∑
s=0

(−1)ηs+12
s
2

∫ 1

0

hs,t(y)dy

∫ 1

0

fA(x, y)
[
2āh0(2

āx−
ā∑

i=1

2ā−iεi)
]
dx

=

∫ 1

0

∫ 1

0

fA(x, y)
[
h0(y) +

s̄−1∑
s=0

(−1)ηs+12
s
2

][
2āh0

(
2āx−

ā∑
i=1

2ā−iεi
)]
dxdy

=

∫ 1

0

∫ 1

0

fA(x, y)
[
2s̄h0

(
2s̄y −

s̄∑
i=1

2s̄−iεi
)][

2āh0

(
2āx−

ā∑
i=1

2ā−iεi
)]
dxdy.
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According to the definition of h0,∫ 1

0

∫ 1

0

fA(x, y)
[
2s̄h0

(
2s̄y −

s̄∑
i=1

2s̄−iεi
)][

2āh0

(
2āx−

ā∑
i=1

2ā−iεi
)]
dxdy

=

∫ xā+
1
2ā

xā

dx

∫ ys̄+
1
2s̄

ys̄

fA(x, y)
[
2s̄h0

(
2s̄y −

s̄∑
i=1

2s̄−iεi
)][

2āh0

(
2āx−

ā∑
i=1

2ā−iεi
)]
dy

=

∫ xā+
1
2ā

xā

dx

∫ ys̄+
1
2s̄

ys̄

fA(x, y)2
s̄2ādy = fA(x̄, ȳ). (12)

In the last step, the fact that, according to (8), restricted to the rectangle region (x, y) ∈
[xā, xā +

1
2ā ]× [ys̄, ys̄ +

1
2s̄ ], fA(x, y) = a(i0, j0) = fA(x̄, ȳ) is used. (6) is thus obtained by (9),

(11) and (12). Theorem 1.3 is proved. �
The following result is a direct conclusion of Theorem 1.3.

Corollary 1.4 For any p, 1 ≤ p < ∞, it holds that

fA(x, y) =
∞∑
i=0

∞∑
j=0

ci,jhi(x)hj(y), in Lp. (13)

Since

fM,N (x, y) =

2M−1∑
i=0

2N−1∑
j=0

ci,jhi(x)hj(y) (14)

is piecewise constant with possible break lines x = i
2M

, 1 ≤ i ≤ 2M−1 and y = i
2N

, 1 ≤ i ≤ 2N−1,

its dual pair matrix AM,N can be obtained by

AM,N =
(
fM,N (

2i+ 1

2M+1
,
2j + 1

2N+1
)
)
0≤i≤2M−1, 0≤j≤2N−1

. (15)

Since fM,N is an approximation of fA, AM,N is thus an approximation of the matrix A, with the

property that

Lemma 1.5 A = AM,N if m = 2M and n = 2N .

Lemma 1.5 is a direct conclusion of Lemma 1.2.

Note that

fM,N (x, y) =
2M−1∑
i=0

2N−1∑
j=0

ci,jhi(x)hj(y) = h̃T
M (x)CM,N h̃N (y),

where

h̃T
M (x) = (h0(x), h1(x), h2(x), . . . , h2M−1(x)), h̃T

N (y) = (h0(y), h1(y), h2(y), . . . , h2N−1(y))

and CM,N = (ci,j)0≤i≤2M−1, 0≤j≤2N−1, it holds that

AM,N =
(
fM,N (

2i+ 1

2M+1
,
2j + 1

2N+1
)
)
0≤i≤2M−1, 0≤j≤2N−1

= HT
MCM,NHN , (16)

where Ht = (h̃t(
1

2t+1 ) h̃t(
3

2t+1 ) · · · h̃t(
2t+1−1
2t+1 )) is a 2t × 2t matrix. The following lemma is well

known.
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Lemma 1.6 Qt = 2−
t
2Ht is a Haar orthogonal matrix for any natural number t ≥ 1.

According to the above results, we obtain the following wavelet decomposition of matrix.

Theorem 1.7 Let A be an m× n matrix and fA(x, y) =
∑∞

i=0

∑∞
j=0 ci,jhi(x)hj(y) be wavelet

expansion of its corresponding dual pair function. Then AM,N , an approximation matrix of the

matrix A defined in (16), has the following orthogonal decomposition.

AM,N = HT
MCM,NHN ,

where Qt = 2−
t
2Ht is an orthogonal matrix. In addition,

A = AM,N = HT
MCM,NHN ,

if m = 2M and n = 2N .

We should note that Ht is also a sparse matrix with each column having equal t+1 non-zero

entries. H1, H2, H3 are given as follows.

H1 =

(
1 1

1 −1

)
, H2 =


1 1 1 1

1 1 −1 −1
√
2 −

√
2 0 0

0 0
√
2 −

√
2

 ,

H3 =



1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1
√
2

√
2 −

√
2 −

√
2 0 0 0 0

0 0 0 0
√
2

√
2 −

√
2 −

√
2

2 −2 0 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 0 0 0 2 −2 0 0

0 0 0 0 0 0 2 −2


.

Since Ht is known, all the computational complexity of the wavelet decomposition comes from

ci,j .

Theorem 1.8 The calculation of ci,j involves at most 69 multiplications. Therefore, the wavelet

decomposition (16) has linearly computational complexity O(2M2N ).

Proof To calculate ci,j , for 0 ≤ x1 < x2 ≤ 1 and 0 ≤ y1 < y2 ≤ 1, we first calculate

I(x1, x2; y1, y2) =

∫ x2

x1

∫ y2

y1

fA(x, y)hi(x)hj(y)dxdy.

Let

m1 = [mx1], m2 = [mx2], n1 = [ny1], n2 = [ny2],
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where [x] is the greatest integer of less then or equal to x. Then,

I(x1, x2; y1, y2) =



(x2 − x1)(y2 − y1)am1,n1 , if x2 ≤ m1+1
m and y2 ≤ n1+1

n ,

(x2 − x1)((
n1+1

n − y1)am1,n1 +
1
n

∑n2−1
j=n1+1 am1,j + (y2 − n2

n )am1,n2),

if x2 ≤ m1+1
m and y2 > n1+1

n ,

(y2 − y1)((
m1+1

m − x1)am1,n1 +
1
m

∑m2−1
i=m1+1 ai,n1 + (x2 − m2

m )am2,n1),

if x2 > m1+1
m and y2 ≤ n1+1

n ,

(y2 − y1)((
m1+1

m − x1)am1,n1 +
1
m

∑m2−1
i=m1+1 ai,n1 + (x2 − m2

m )am2,n1),

if x2 > m1+1
m and y2 ≤ n1+1

n ,

I(x1,
m1+1

m ; y1, y2) + I(m2

m , x2; y1, y2) + I(m1+1
m , m2

m ; y1,
n1+1

n )+

I(m1+1
m , m2

m ; n2

n , y2) +
1

mn

∑m2−1
i=m1+1

∑n2−1
j=n1+1 ai,j ,

if x2 > m1+1
m and y2 > n1+1

n .

(17)

Equation (17) shows that the calculation of I(x1, x2; y1, y2) needs at most seventeen multiplica-

tions. Let i = 2s + t, 0 ≤ t < 2s and j = 2u + v, 0 ≤ v < 2u. Then

ci,j =

∫ 1

0

∫ 1

0

fA(x, y)hi(x)hj(y)dxdy =

∫ 1

0

∫ 1

0

fA(x, y)hs,t(x)hu,v(y)dxdy

=2
s+u
2

(
I(

t

2s
,
2t+ 1

2s+1
;
v

2u
,
2v + 1

2u+1
)− I(

t

2s
,
2t+ 1

2s+1
;
2v + 1

2u+1
,
v + 1

2u
)−

I(
2t+ 1

2s+1
,
t+ 1

2s
;
v

2u
,
2v + 1

2u+1
) + I(

2t+ 1

2s+1
,
t+ 1

2s
;
2v + 1

2u+1
,
v + 1

2u
)
)
.

Above equation shows that the calculation of ci,j involves at most 69 multiplications. �

2. Some applications of wavelet decomposition of matrix

A k-partition of {0, 1, . . . ,m−1} is to decompose {0, 1, . . . ,m−1} into k non-empty sets S =

{S1, S2, . . . , Sk} such that
∪k

i=1 Si = {0, 1, . . . ,m−1} and Si

∩
Sj is empty if i ̸= j. The k-means

clustering of a given set of d-dimensional observation data xj = (a0,j , a1,j , . . . , ad−1,j)
T ∈ Rd,

0 ≤ j ≤ m − 1, is to find a k-partition S̃ = {S̃1, S̃2, . . . , S̃k} such that for any other k-partition

S = {S1, S2, . . . , Sk}, it holds that
k∑

j=1

∑
i∈S̃j

∥xi − m̃j∥2 ≤
k∑

j=1

∑
i∈Sj

∥xi −mj∥2,

where

m̃j =
1

|S̃j |

∑
i∈S̃j

xi := (m̃0,j , m̃1,j , . . . , m̃d−1,j)
T ,

mj =
1

|Sj |
∑
i∈Sj

xi := (m0,j ,m1,j , . . . ,md−1,j)
T
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and |A| is the cardinality of the set A. k-means clustering is an NP -hard and very active

problem [1,2]. Different from all the current methods, in this section a new method is presented

by converting the k-means clustering to an equivalent new form.

For any k-partition S = {S1, S2, . . . , Sk} of {0, 1, . . . ,m − 1}, denote Dj =
∪

i∈Sj
( i
m , i+1

m ).

Then D = {D1, D2, . . . , Dk} is called a k-partition of interval (0, 1) based on intervals {( i
m , i+1

m ),

0 ≤ i ≤ m−1}. It is easy to see that any k-partition of {0, 1, . . . ,m−1} is pairing to a k-partition

of interval (0, 1) based on intervals {( i
m , i+1

m ), 0 ≤ i ≤ m− 1}, and vice versa.

Assume that A = (ai,j)0≤i≤d−1,0≤j≤m−1 and its dual pair function is fA(x, y). For a k-

partition S = {S1, S2, . . . , Sk} of {0, 1, . . . ,m − 1}, denote E = (bi,j)0≤i≤d−1,0≤j≤m−1 where

bt = (b0,t, b1,t, . . . , bd−1,t)
T = mj if t ∈ Sj . Then it holds that

k∑
j=1

∑
i∈Sj

∥xi −mj∥2 =
m−1∑
j=0

∥xj − bj∥2 = ∥A− E∥2F , (18)

where ∥A∥F is the Frobenius norm of the matrix A. Denote also that Dj =
∪

i∈Sj
( i
m , i+1

m ) and

let fE(x, y) be the dual pair function of E. Then,

fE(x, y) = mi,j , for
i

d
< x <

i+ 1

d
and y ∈ Dj .

In fact, it holds that

mi,j =
1

|Sj |
∑
l∈Sj

ai,l =
1

m|Dj |meas

∑
l∈Sj

ai,l =
1

|Dj |meas

∫
Dj

fA(x, y)dy,
i

d
< x <

i+ 1

d
,

where |Dj |meas is the Lebesgue measure of Dj . That is,

fE(x, y) =
1

|Dj |meas

∫
Dj

fA(x, y)dy, for y ∈ Dj (19)

is the mean of of fA on the set Dj . This shows that the k-means clustering of vectors is

corresponding to the following k-means clustering of a piecewise constant function.

k-means clustering of a given piecewise function f defined on the unit square with possible

break lines x = i
d , 1 ≤ i ≤ d − 1 and y = j

m , 1 ≤ j ≤ m − 1 is to find a k-partition D =

{D1, D2, . . . , Dk} of interval (0, 1) based on intervals {( i
m , i+1

m ), 0 ≤ i ≤ m− 1}, such that

∥fA − fE∥2 =

∫ 1

0

∫ 1

0

|fA(x, y)− fE(x, y)|2dxdy

is minimum among all possible such kind k-partitions, where

fE(x, y) =
1

|Dj |meas

∫
Dj

fA(x, y)dy, for y ∈ Dj , 1 ≤ j ≤ k.

Let E = (bi,j)0≤i≤d−1,0≤j≤m−1 denote the pair matrix of fE . Then, for t ∈ Sj , it holds that

bi,t =
1

|Sj |
∑
l∈Sj

ai,l, for t ∈ Sj

where S = {S1, S2, . . . , Sk} is the pair k-partition of {0, 1, . . . ,m − 1} corresponding to D =
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{D1, D2, . . . , Dk}. According to the definitions of fA and fE , it holds that

∥fA−fE∥2 =

∫ 1

0

∫ 1

0

|fA(x, y)−fE(x, y)|2dxdy =
1

dm

d−1∑
i=0

m−1∑
j=0

|ai,j−bi,j |2 =
1

dm
∥A−E∥2F . (20)

According to (18) and (20), the following equivalent theorem is obtained.

Theorem 2.1 The k-means clustering of vectors xj = (a0,j , a1,j , . . . , ad−1,j)
T ∈ Rd, 0 ≤

j ≤ m − 1, is equivalent to the k-means clustering of the piecewise function fA, where A =

(ai,j)0≤i≤d−1,0≤j≤m−1.

The above equivalent theorem provides a new method to study k-means clustering. The

following lemma is obvious.

Lemma 2.2 If Q is an orthogonal matrix of order d and c is a constant, then the k-means

clustering of vectors xj = (a0,j , a1,j , . . . , ad−1,j)
T ∈ Rd, 0 ≤ j ≤ m − 1 is equivalent to the

k-means clustering of vectors cQxj ∈ Rd, 0 ≤ j ≤ m− 1.

Assuming that AM,N is a suitable approximation of A, according to (16), it holds that

HMAM,N = 2MCM,NHN .

Since usually CM,N is an approximate sparse matrix and HN is a sparse matrix, above formula

produces a new method for dimensional reduction other than principal component analysis. In

addition, this skill can be repeatedly used to achieve better results. Considering dimension

reduction is a key step for k-means clustering, a new method is presented for k-means clustering.

Theorem 2.3 Assume that the k-partition S̃ = {S̃1, S̃2, . . . , S̃k} of {0, 1, . . . , 2N−1} is a k-means

solution of the data AM,N and denote that D̃j =
∪

i∈S̃j(
i

2N
, i+1

2N
). Then S = {S1, S2, . . . , Sk} is an

approximate solution of the k-means clustering of the original data xj = (a0,j , a1,j , . . . , ad−1,j)
T ∈

Rd, 0 ≤ j ≤ m− 1, where Sj is the collection of all the index i such that ( i
m , i+1

m )
∩
D̃j has the

maximum Lebesgue measure, i.e.,

Sj =
{
i; |( i

m
,
i+ 1

m
)
∩

D̃j |meas = max{|( i

m
,
i+ 1

m
)
∩

D̃l|meas; 1 ≤ l ≤ k}
}
.

In addition, this method is also useful in feature extraction, such as image processing or

signal processing. The study of this aspect is still investigating.
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