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Abstract A unified m (m > 2)-point ternary scheme with some parameter is proposed. The

continuity of subdivision scheme is analyzed based on the relationship between the subdivision

scheme and difference scheme. Moreover, the proposed subdivision is extended to asymmetric

multi-parameter subdivision and the asymmetric schemes in four cases are presented in detail.

Some examples are given to show that the presented scheme has better approximating effect.
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1. Introduction

Subdivision method plays an important role in CAGD. A subdivision scheme refines the

initial control polygon again and again and generates a limit curve satisfying special need. Sub-

division schemes can be divided into two categories: interpolatory one and approximate one.

The interpolatory subdivision scheme preserves all initial vertices and new vertices are inserted

as linear combinations of old vertices. A lot of approximating schemes have been introduced in

the literature. The first approximating subdivision scheme was introduced by Chaikin in [1] and

later its smoothness was proved in [2]. Dyn, Levin and Micchelli added proper parameters to

increase smoothness of curves and surfaces in [3]. Hassan et al. presented a ternary three point

scheme in [4] and 4-point interpolatory scheme in [5]. Siddiqi and Ahmad proposed a 5-point

approximating subdivision scheme with one parameter based on B -spline basis functions in [6],

and it can generate curves with special values. Kashif Rehan and Muhammad Athar Sabri pre-

sented a new blending 4-point ternary scheme in [7]. Ghaffar and Mustafa introduced a family

of odd point ternary approximating subdivision schemes with one parameter in the form of the

Laurent polynomial in [8]. Zheng et al. designed binary convergent subdivision schemes with

certain parameter based on eigenvalues of their difference matrices and the relation between the

subdivision schemes and the difference scheme in [9]. Lian presented a-ary subdivision schemes

with a parameter for curves designing in [10]. Shen and Huang proposed a class of binary con-

vergent subdivision scheme with serval parameters in [11], but only discussed the designing of
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convergent binary subdivision schemes with two or three parameters by analyzing the eigenval-

ues of its difference matrix corresponding to Laurent polynomials D(z) = (a1z + a0)(z + 1) and

D(z) = (a2z
2 + a1z + a0)(z + 1). In this paper, we present a novel ternary subdivision scheme

with some parameters to design the curves more flexibly. The rest of the paper is organized as

follows. In Section 2, with difference matrix of subdivision scheme we introduce the conditions

of the convergence of the scheme. In Section 3 we propose a unified ternary subdivision scheme

with high continuity. In Section 4, the proposed subdivision scheme is extended to asymmetric

multi-parameter subdivision scheme. Four cases are discussed, the convergence and continuity

are analyzed and examples are given to show the effect. Finally, we conclude the paper in Section

5.

2. Preliminaries

A ternary subdivision scheme S maps the polygon pk = {pki : i ∈ Z} to the refined polygon

pk+1 = {pk+1
i : i ∈ Z} in the following way

pk+1
j =

∑

i∈Z

aj−3ip
k
i , j ∈ Z

where the set a = {aj , j ∈ Z} is called the mask of the scheme. The above subdivision process

can be described as pk+1 = Spk, where matrix S is called the subdivision matrix which satisfies

S3j+i,j = ai, i ∈ Z, j ∈ Z. We call S the original subdivision scheme. The generating polynomial

of the scheme can be written as a(z) =
∑

i aiz
i.

Theorem 2.1 ([12]) Let S be a convergent ternary subdivision scheme with the mask a. Then

a satisfies
∑

i∈Z

a3i =
∑

i∈Z

a3i+1 =
∑

i∈Z

a3i+2 = 1.

From Theorem 2.1, it is not difficult to find that the convergent condition implies a(1) = 3.

Theorem 2.2 ([14]) Let S denote a ternary subdivision scheme with mask a = {ai}i∈Z and

Sj (j = 1, 2, . . . , n) denote its jth order divided difference scheme with the mask a(j) = {a
(j)
i }i∈Z

satisfying
∑

i∈Z

a
(j)
3i =

∑

i∈Z

a
(j)
3i+1 =

∑

i∈Z

a
(j)
3i+2 = 1.

We have

a(z) = (
1 + z + z2

3z2
)na(n)(z).

If there exists a smallest positive integer such that ‖(13Sn+1)
L‖∞ < 1, then the ternary subdivi-

sion scheme S is Cn-continuous. In particular, when L = 1,

‖
1

3
Sn+1‖∞ = max

1

3

{

∑

i∈Z

|a
(n+1)
3i |,

∑

i∈Z

|a
(n+1)
3i+1 |,

∑

i∈Z

|a
(n+1)
3i+2 |

}

.

Denote by ∆pj = {(∆pj)i = p
j
i −p

j
i−1} the set of the first difference of the set pj = {pji : i ∈

Z}. So if we analyze the subdivision process of difference vectors, we will get a difference scheme
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which can be indicated as ∆pj+1 = D∆pj , where D is the subdivision matrix for this process,

and we call it difference matrix.

Theorem 2.3 Let S be a subdivision scheme with the generating polynomial a(z) and D(z)

be the generating polynomial of its difference scheme, where D(z) =
∑

i diz
i, di = D3j+i,j , i ∈

Z, j ∈ Z. The relation between the subdivision matrix S and the difference matrix D can be

described as

a(z) = (1 + z + z2)D(z).

Proof Define generating function pj(z) =
∑

i∈Z
p
j
iz

i. Since pk+1
j =

∑

i∈Z
aj−3ip

k
i , it follows

∑

j∈Z

pk+1
j zj =

∑

j∈Z

zj
∑

i∈Z

aj−3ip
k
i =

∑

j∈Z

aj−3iz
j−3i

∑

i∈Z

pki z
3i,

that is pk+1(z) = a(z)pk(z3). Since ∆pj+1 = D∆pj , we have
∑

i

(∆pj+1)iz
i =

∑

i

(D∆pj)iz
i.

The left hand side is equal to
∑

i

(pj+1
i − p

j+1
i−1 )z

i =
∑

i

p
j+1
i zi − z

∑

i

p
j+1
i−1z

i−1 = (1− z)pj+1(z).

The right hand side is equal to
∑

i

∑

k

di−3k(∆pj)kz
i =

∑

i

di−3kz
i−3k

∑

k

(pjk − p
j
k−1)z

3k

=
∑

i

di−3kz
i−3k(

∑

k

p
j
kz

3k − z3
∑

k

p
j
k−1z

3(k−1))

= D(z)(1− z3)pj(z3).

It follows (1− z)pj+1(z) = D(z)(1− z3)pj(z3), namely

pj+1(z) = D(z)(1 + z + z2)pj(z3).

Since ∆pj = {(∆pj)i = p
j
i − p

j
i−1, i ∈ Z}, a(z) = D(z)(1 + z + z2). The proof of Theorem 2.3 is

completed. �

3. New scheme and the property of difference matrix

3.1. A unified ternary subdivision scheme

In this subsection we recall some existing schemes. The general forms of ternary odd point

and even point approximating subdivision schemes were given respectively in [8] and [14], but the

relation between odd point and even point schemes have not been given. Inspired by the results in

[8] and [14], we present a unified ternarym(m ≥ 3)-point subdivision scheme with high continuity.

Denote the subdivision scheme and its generating polynomial by S and a(z) = (1+ z+ z2)D(z),

respectively, where D(z) is a polynomial corresponding to the difference scheme of S and

D(z) = (1 + z + z2)l(a0 + a1z + a2z
2 + · · ·+ aqz

q).
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Remark 3.1 If we set l = 3n, q = 3, a0 = a3 = 1
33n (

1
12 + w), a1 = a2 = 1

33n (
5
12 + w), then it is

the subdivision scheme in [15] and it is a family of even-point scheme that can generate various

curves with high continuity.

If we set l = 3n + 2, q = 2, a0 = 1
33n+2 (

1
12 + w), a1 = a2 = 1

33n+2 (
5
6 − 2w), then it is the

scheme in [8] and it is a family of even-point scheme that can also generate curves with high

continuity and good properties.

If we set l = 3, q = 3, a0 = a3 = − 35
1296 , a1 = a2 = 59

1296 , then it is the scheme in [15].

If we set l = 3, q = 3, a0 = a2 = − 4
81 , a1 = 11

81 , a3 = 0, then it is the scheme with µ = 1
27 in

[14] which is an interpolatory scheme.

So if we set l, q properly, we will get arbitrary (not less than 3) point ternary scheme.

3.2. The property of the eigenvalues of the difference matrix

To analyze the convergence, we introduce the matrix formalism to derive necessary condi-

tions for a subdivision scheme to be Cn based on the eigenvalues of the subdivision matrices. By

Theorem 2.3, we can simplify to study difference matrix D corresponding to the polynomial

D(z) = (1 + z + z2)l(a0 + a1z + a2z
2 + · · ·+ aqz

q),

which can be written as

D(z) = A2l+qz
2l+q +A2l+q−1z

2l+q−1 + · · ·+A1z +A0.

In this subsection, we deduce a property of the eigenvalues of the difference matrix D which

is corresponding to the polynomial

D(z) = (1 + z + z2)l(a0 + a1z + a2z
2 + · · ·+ aqz

q).

And these properties are more complex in ternary schemes than in binary schemes to design high

continuity curves.

Proposition 3.2 Denote by m the point number, then the number of the eigenvalues of the

difference matrix corresponding to the polynomialD(z) = (1+z+z2)l(a0+a1z+a2z
2+· · ·+aqz

q)

can be divided into two situations:

(i) When m = 2k + 1, the numbers of the eigenvalues are 3k and 3k − 1.

(ii) When m = 2k, the numbers of the eigenvalues are 3k − 1 and 3k − 2.

Proof Since D(z) = (1 + z + z2)l(a0 + a1z + a2z
2 + · · ·+ aqz

q) can be rewritten as

D(z) = A2l+qz
2l+q +A2l+q−1z

2l+q−1 + · · ·+A1z +A0,

using the way in [11], we can compute the number of the eigenvalues of the difference matrix D.

Let w denote the width of the mask of the difference scheme with D(z) as its generating polyno-

mial. For the ternary difference scheme determined by the mask, the orders of the corresponding

matrices are N = ⌈ w
a−1⌉ and N − 1.

When point number m is odd, say, m = 2k + 1, the two corresponding difference matrices
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for D(z) are as follows

Q =



































A2l+q−1 A2l+q−4 A2l+q−7 · · · 0 0 0

A2l+q A2l+q−3 A2l+q−6 · · · 0 0 0

0 A2l+q−2 A2l+q−5 · · · 0 0 0

0 A2l+q−1 A2l+q−4 · · · 0 0 0

0 A2l+q A2l+q−3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · A6 A3 A0

0 0 0 · · · A7 A4 A1



































(3k)×(3k)

, (1)

Q̄ =





























A2l+q−2 A2l+q−5 A2l+q−8 · · · 0 0 0

A2l+q−1 A2l+q−4 A2l+q−7 · · · 0 0 0

A2l+q A2l+q−3 A2l+q−6 · · · 0 0 0

0 A2l+q−2 A2l+q−5 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · A7 A4 A1

0 0 0 · · · A8 A5 A2





























(3k−1)×(3k−1)

(2)

and the numbers of the eigenvalues of the difference matrices Q and Q̄ are ⌈ w
a−1⌉ = ⌈ 3(2k+1)−2

2 ⌉ =

3k and 3k − 1, respectively.

So this scheme has two difference matrices with 3k and 3k − 1 eigenvalues respectively.

Similarly when point number m is even, say, m = 2k, we obtain the matrices as follows

L =



































A2l+q A2l+q−3 A2l+q−6 · · · 0 0 0

0 A2l+q−2 A2l+q−5 · · · 0 0 0

0 A2l+q−1 A2l+q−4 · · · 0 0 0

0 A2l+q A2l+q−3 · · · 0 0 0

0 0 A2l+q−2 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · A6 A3 A0

0 0 0 · · · A7 A4 A1



































(3k−1)×(3k−1)

, (3)

L̄ =



































A2l+q−1 A2l+q−4 A2l+q−7 · · · 0 0 0

A2l+q A2l+q−3 A2l+q−6 · · · 0 0 0

0 A2l+q−2 A2l+q−5 · · · 0 0 0

0 A2l+q−1 A2l+q−4 · · · 0 0 0

0 A2l+q A2l+q−3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · A7 A4 A1

0 0 0 · · · A8 A5 A2



































(3k−2)×(3k−2)

. (4)
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This scheme has two difference matrices with 3k − 1 and 3k − 2 eigenvalues, respectively.

3.3. The conditions of the convergence of the scheme

In this subsection, we firstly give some conditions to construct a subdivision scheme, then

give two theorems concerning the convergence of the scheme and the smoothness of the generated

limiting curve.

Condition 3.3 The sums of the coefficients of the 3k, 3k+1 and 3k+2 powers in the polynomial

D(z) = (1 + z + z2)l(a0 + a1z + a2z
2 + · · ·+ aqz

q) are all equal to 1
3 .

Condition 3.4 The spectral radius of difference matrix D which is corresponding to the poly-

nomial D(z) is less than 1.

Theorem 3.5 ([16]) Let the mask of the subdivision scheme S satisfy Theorem 2.1. The differ-

ence matrix is D. If there exist k ∈ N+ and α ∈ (0, 1) such that ‖Dk‖ ≤ α, then the subdivision

scheme S is uniformly convergent.

Theorem 3.6 ([16]) If the subdivision scheme S with the generating polynomial a(z) is con-

vergent, then the subdivision scheme with the generating polynomial (1+z+z2

3 )ka(z) generates a

curve of Ck continuity.

4. New asymmetric scheme

In this section, we propose a novel scheme which contains all four cases according to different

values of l, q.

Case 1 If 2l+q = 6k+2, k = 1, 2, . . . , we can obtain the first type of the schemes. For example,

setting l = 3k, q = 2, if k = 1, a0 + a1 + a2 = 1
27 , we have

D(z) = (1 + z + z2)3(a0 + a1z + a2z
2).

The scheme can be written as










pk+1
3i = (10a0 + 4a1 + a2)p

k
i−1 + (16a0 + 19a1 + 16a2)p

k
i + (a0 + 4a1 + 10a2)p

k
i+1,

pk+1
3i+1 = (4a0 + a1)p

k
i−1 + (19a0 + 16a1 + 10a2)p

k
i + (4a0 + 10a1 + 16a2)p

k
i+1 + a2p

k
i+2,

pk+1
3i+2 = a0p

k
i−1 + (16a0 + 10a1 + 4a2)p

k
i + (10a0 + 16a1 + 19a2)p

k
i+1 + (a1 + 4a2)p

k
i+2

(5)

and

D(z) = {a0, 3a0 + a1, 6a0 + 3a1 + a2, 7a0 + 6a1 + 3a2, 6a0 + 7a1 + 6a2, 3a0 + 6a1 + 7a2,

a0 + 3a1 + 6a2, a1 + 3a2, a2}.

Thus, according to Proposition 3.2, the corresponding difference matrix L has 5 eigenvalues:

9(a0 + a1 + a2), 3(a0 + a1 + a2), a0 + a1 + a2, a0, a2 while the difference matrix L̄ has 4

eigenvalues: 9(a0 + a1 + a2), 3(a0 + a1 + a2), a0 + a1 + a2, a1.

If a0 + a1 + a2 = 1
27 , a0 < 1

3 , a1 < 1
3 , a2 < 1

3 , then the spectral radii of both difference

matrices L and L̄ are less than 1, so Condition 3.4 is satisfied.
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In addition, according to Theorem 2.2, if the scheme satisfies

‖
1

3
S3‖∞ =

1

3
max 27{|a0|+ |a1 + a2|, |a0 + a1|+ |a2|, |a0 + a1 + a2|} < 1,

then this scheme is C2-continuous.

Taking advantage of this scheme, one can design both approximating and interpolatory

curve subdivision schemes.

Example 1 (approximating scheme) Setting a0 = 1
108 −

v
9 , a1 = 1

54 +
2v
9 , a2 = 1

108 −
v
9 , we have











pk+1
3i = ( 19

108 − 1
9v)p

k
i−1 + ( 70

108 + 2
9v)p

k
i + ( 19

108 − 1
9v)p

k
i+1,

pk+1
3i+1 = ( 1

18 − 2
27v)p

k
i−1 + ( 61

108 + 1
9v)p

k
i + (1027 )p

k
i+1 + ( 1

108 − 1
27v)p

k
i+2,

pk+1
3i+2 = ( 1

108 − 1
27v)p

k
i−1 + (1027 )p

k
i + ( 61

108 + 1
9v)p

k
i+1 + ( 1

18 − 2
27v)p

k
i+2.

(6)

If v ∈ (− 7
4 ,

5
4 ), a

(3) = { 1
108 − 1

27v,
3

108 + 1
27v,

1
27 ,

3
108 + 1

27v,
1

108 − 1
27v}. From

‖
1

3
S3‖∞ = 9max{|

1

108
−

1

27
v|+ |

3

108
+

1

27
v|, |

1

27
|} < 1,

it follows that the scheme is of C2-continuity. If v = 0, the scheme will be of C3-continuity.

Example 2 (interpolatory scheme) Setting a0 = a2 = − 1
84 , a1 = 11

81 , a3 = 0 yields the scheme











pk+1
3i = pki ,

pk+1
3i+1 = − 5

81p
k
i−1 +

20
27p

k
i +

10
27p

k
i+1 −

4
81p

k
i+2,

pk+1
3i+2 = − 4

81p
k
i−1 +

10
27p

k
i +

20
27p

k
i+1 −

5
81p

k
i+2,

(7)

which is the scheme of C2-continuity introduced in [4].

Case 2 If 2l + q = 6k + 1, k = 1, 2, . . . , then we get the second type of schemes. For example,

setting l = 3k − 1, k = 1, q = 3 and choosing

a(z) = (1 + z + z2)D(z) = (1 + z + z2)3(a0 + a1z + a2z
2 + a3z

3)

leads to the following subdivision scheme










pk+1
3i = a0p

k
i−1 + (7a0 + 6a1 + 3a2 + a3)p

k
i + (a0 + 3a1 + 6a2 + 7a3)p

k
i+1 + a3p

k
i+2,

pk+1
3i+1 = (6a0 + 3a1 + a2)p

k
i + (3a0 + 6a1 + 7a2 + 6a3)p

k
i+1 + (a2 + 3a3)p

k
i+2,

pk+1
3i+2 = (3a0 + a1)p

k
i + (6a0 + 7a1 + 6a2 + 3a3)p

k
i+1 + (a1 + 3a2 + 6a3)p

k
i+2,

(8)

where

D(z) = {a0, 2a0 + a1, 3a0 + 2a1 + a2, 2a0 + 3a1 + 2a2 + a3, a0 + 2a1 + 3a2 + 2a3,

a1 + 2a2 + 3a3, a2 + 2a3, a3}.

Using the way in [11], we get the numbers of the eigenvalues of the difference matrices are 5 and

4, and the eigenvalues of the matrices are 3(a0 + a1 + a2 + a3), a0 + a1 + a2 + a3, a1, a3, 0 and

3(a0 + a1 + a2 + a3), a0 + a1 + a2 + a3, a2, 0, respectively.

If a0 + a1 + a2 + a3 = 1
9 , a1 < 1

3 , a2 < 1
3 , a3 < 1

3 , then the spectral radius of each difference

matrix D is less than 1 and Condition 3.4 is satisfied.
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Besides, it follows from Theorem 2.2 that if |a0|+ |a3| <
1
9 , |a1| <

1
9 and |a2| <

1
9 , then this

scheme is C2-continuous.

Similarly, we show this family of schemes by an example.

Example 3 Setting a0 = a3 = 1
54 − v

9 , a1 = a2 = 1
27 + v

9 , we have











pk+1
3i = ( 1

54 − 1
9v)p

k
i−1 + (1327 + 1

9v)p
k
i + (1327 + 1

9v)p
k
i+1 + ( 1

54 − 1
9v)p

k
i+2,

pk+1
3i+1 = (1454 − 2

9v)p
k
i + (3554 + 4

9v)p
k
i+1 + ( 5

54 − 2
9v)p

k
i+2,

pk+1
3i+2 = ( 5

54 − 2
9v)p

k
i + (3554 + 4

9v)p
k
i+1 + (1454 − 2

9v)p
k
i+2,

(9)

which is C2-continuous when v ∈ (− 1
3 ,

2
3 ). In particular, when v is equal to 0, the scheme is

C3-continuous.

Case 3 If the point number is odd, one can set 2l+ q = 6k+ 5, k = 1, 2, . . . , and obtain a new

family of schemes. For instance, setting l = 3k + 1, q = 3, k = 1, we have

D(z) = (1 + z + z2)4(a0 + a1z + a2z
2 + a3z

3).

It is not difficult to get the corresponding subdivision scheme as follows











































pk+1
3i = (a2 + 5a3)p

k
i−2 + (5a0 + 15a1 + 30a2 + 45a3)p

k
i−1 + (45a0 + 51a1 + 45a2 + 30a3)p

k
i+

(30a0 + 15a1 + 5a2 + a3)p
k
i+1 + a0p

k
i+2,

pk+1
3i+1 = a3p

k
i−2 + (a0 + 5a1 + 15a2 + 30a3)p

k
i−1 + (30a0 + 45a1 + 51a2 + 45a3)p

k
i+

(45a0 + 30a1 + 15a2 + 5a3)p
k
i+1 + (5a0 + a1)p

k
i+2,

pk+1
3i+2 = (a1 + 5a2 + 15a3)p

k
i−1 + (15a0 + 30a1 + 45a2 + 51a3)p

k
i+

(51a0 + 45a1 + 30a2 + 15a3)p
k
i+1 + (15a0 + 5a1 + a2)p

k
i+2.

(10)

And D(z) can be written in detail as

D(z) = {a3, a2 + 4a3, a1 + 4a2 + 10a3, a0 + 4a1 + 10a2 + 16a3, 4a0 + 10a1 + 16a2 + 19a3,

10a0 + 16a1 + 19a2 + 16a3, 16a0 + 19a1 + 16a2 + 10a3, 19a0 + 16a1 + 10a2 + 4a3,

16a0 + 10a1 + 4a2 + a3, 10a0 + 4a1 + a2, 4a0 + a1, a0}.

According to Proposition 3.2, the difference matrix Q has 6 eigenvalues: 27(a0 + a1 + a2 + a3),

9(a0+a1+a2+a3), 3(a0+a1+a2+a3), a0+a1+a2+a3, a1,a3 while the difference matrix Q̄ has

5 eigenvalues: 27(a0+ a1 + a2 + a3), 9(a0 + a1 + a2 + a3), 3(a0 + a1 + a2 + a3), a0 + a1 + a2 + a3,

a2.

If a0+a1+a2 = 1
81 , a1 < 1

3 , a2 < 1
3 , a3 < 1

3 , then the spectral radii of both difference matrices

are less than 1 and Condition 3.4 is satisfied. Therefore, by Theorem 2.2, if |a0| + |a3| <
1
81 ,

|a1| <
1
81 , |a2| <

1
81 , then this scheme is C4-continuous.
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Example 4 Setting a0 = a3 = 1
486 − v

81 , a1 = a2 = 1
243 + v

81 , we have










































pk+1
3i = ( 7

486 − 4
81v)p

k
i−2 + ( 70

243 − 5
81v)p

k
i−1 + (267486 + 21

27v)p
k
i+

( 71
486 − 11

81v)p
k
i+1 + ( 1

486 − 1
81v)p

k
i+2,

pk+1
3i+1 = ( 1

486 − 1
81v)p

k
i−2 + ( 71

486 − 11
81v)p

k
i−1 + (267486 + 21

81v)p
k
i +

( 70
243 − 5

81v)p
k
i+1 + ( 7

486 − 4
81v)p

k
i+2,

pk+1
3i+2 = ( 27

486 − 1
9v)p

k
i−1 + (216486 + 1

9v)p
k
i+

(216486 + 1
9v)p

k
i+1 + ( 27

486 − 1
9v)p

k
i+2,

(11)

which is C4-continuous. Especially, when v is equal to 0, the scheme is C5-continuous. In

addition, setting the scheme of the multi-parameters

D(z) = (1 + z + z2)3k(a0 + a1z + a2z
2 + a3z

3 + a4z
4 + a5z

5),

one can also design a class of ternary subdivision schemes.

Case 4 Setting 2l + q = 6k + 4, k = 1, 2, . . . . By the rule of difference scheme, we can get

subdivision scheme. For example, setting l = 3k + 1, q = 2, k = 1 with the point number being

5, we have

a(z) = (1 + z + z2)D(z) = (1 + z + z2)5(a0 + a1z + a2z
2).

In this case the subdivision scheme becomes










































pk+1
3i = (a1 + 5a2)p

k
i−2 + (15a0 + 30a1 + 45a2)p

k
i−1 + (51a0 + 45a1 + 30a2)p

k
i+

(15a0 + 5a1 + a2)p
k
i+1,

pk+1
3i+1 = a2p

k
i−2 + (5a0 + 15a1 + 30a2)p

k
i−1 + (45a0 + 51a1 + 45a2)p

k
i+

(30a0 + 15a1 + 5a2)p
k
i+1 + a0p

k
i+2,

pk+1
3i+2 = (a0 + 5a1 + 15a2)p

k
i−1 + (30a0 + 45a1 + 51a2)p

k
i + (45a0 + 30a1 + 15a2)p

k
i+1+

(5a0 + a1)p
k
i+2.

(12)

It is not difficult to get

D(z) = {a2, a1 + 4a2, a0 + 4a1 + 10a2, 4a0 + 10a1 + 16a2, 10a0 + 16a1 + 19a2,

16a0 + 19a1 + 16a2, 19a0 + 16a1 + 10a2, 16a0 + 10a1 + 4a2, 10a0 + 4a1 + a2,

4a0 + a1, a0}.

Using the way in [11], we can compute the numbers of the eigenvalues of the difference matrices

are 6 and 5, and the corresponding eigenvalues of the matrices are 27(a0+a1+a2+a3), 9(a0+a1+

a2+a3), 3(a0+a1+a2+a3), a0+a1+a2+a3, a1, 0, and 27(a0+a1+a2+a3), 9(a0+a1+a2+a3),

3(a0 + a1 + a2 + a3), a0 + a1 + a2 + a3, 0, respectively.

If a0 + a1 + a2 + a3 = 1
81 , a1 < 1

3 , then the spectral radii of difference matrices are less than

1 and Condition 3.4 is satisfied.

In addition, if
∑

i∈Z

a
(4)
3i =

∑

i∈Z

a
(4)
3i+1 =

∑

i∈Z

a
(4)
3i+2 = 1,
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and |a0| <
1
81 , |a1| <

1
81 , |a2| <

1
81 , then

‖
1

3
S5‖∞ =

1

3
max 243{|a0|, |a1|, |a2|} < 1.

Therefore, this scheme is C4-continuous.

Example 5 Setting a0 = a2 = 1
324 − v

81 , a1 = 1
162 + 2v

81 , we have






















pk+1
3i = ( 7

324 − 3
81v)p

k
i−2 + (120324 )p

k
i−1 + (171324 + 1

9v)p
k
i + ( 26

324 − 6
81v)p

k
i+1,

pk+1
3i+1 = ( 1

324 − 1
81v)p

k
i−2 + ( 65

324 − 5
81v)p

k
i−1 + (324192 + 12

81v)p
k
i+

( 65
324 − 5

81v)p
k
i+1 + ( 1

324 − 1
81v)p

k
i+2,

pk+1
3i+2 = ( 26

324 − 6
81v)p

k
i−1 + (171324 + 1

9v)p
k
i + (120324 )p

k
i+1 + ( 7

324 − 3
81v)p

k
i+2,

(13)

which is of C4-continuity. In particular, when v = 0, the scheme is of C5-continuity. Performance

of the proposed subdivision scheme is demonstrated and compared with some existing schemes

in terms of support, continuity and visual inspection in the following table.

Scheme Type Continuity Support

Ternary 4-point [4] Interpolatory C2 5

Ternary 4-point [15] Approximating C2 5.5

Proposed scheme (Example 1) Approximating C3 5

Proposed scheme (Example 3) Approximating C3 4.5

Proposed scheme (Example 4) Approximating C5 6.5

Proposed scheme (Example 5) Approximating C5 6

Table 1 Comparison of the subdivision schemes

Figure 1 shows some continuous curves generated by new schemes. In Figure 1, the blue

dashed line indicates initial control polygon, and the blue solid, the green dashed, the red solid

and the magenta dashed curves shown in (a), (b), (c) and (d) are the curves generated by the

interpolatory scheme in Example 2, the subdivision scheme in Example 1 whose limit curve is

of C2, the subdivision scheme in Example 4 by setting parameter v = 6
5 whose limit curve is

of C4 and the scheme in Example 5 by setting parameter v = 1.5 whose limit curve is of C4,

respectively. Shown in Figure 2 are the four cases of the limiting curves generated by subdivision

schemes, which are corresponding to Examples 1, 3, 4 and 5, from left to right, respectively,

where the tension parameters are set to be 5
4 ,

13
24 ,

2
3 , 2, respectively.

5. Conclusion

In this paper, we have presented a unified ternary approximating subdivision scheme with

several parameters. It can be used to construct arbitrary point ternary scheme which has high

continuity and good visual effect. Some numerical examples are presented to show the visual

performance of our scheme.
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(a) Example 2 (a) Example 2 (a) Example 2 (b) Example 1 v=5/4 (b) Example 1 v=5/4 (b) Example 1 v=5/4 

(c) Example 4 v=6/5(c) Example 4 v=6/5(c) Example 4 v=6/5 (d) Example 5 v=1.5(d) Example 5 v=1.5

Figure 1 Some continuous curves generated by new schemes

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

(e) Case 1 (f) Case 2 (g) Case 3 (h) Case 4

Figure 2 The four cases of the subdivision scheme that generates limiting curves
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