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Abstract In this paper, we discuss an inverse problem, i.e., the reconstruction of a linear

differential dynamic system from the given discrete data of the solution. We propose a model

and a corresponding algorithm to recover the coefficient matrix of the differential system

based on the normal vectors from the given discrete points, in order to avoid the problem of

parameterization in curve fitting and approximation. We also give some theoretical analysis on

our algorithm. When the data points are taken from the solution curve and the set composed

of these data points is not degenerate, the coefficient matrix A reconstructed by our algorithm

is unique from the given discrete and noisefree data. We discuss the error bounds for the

approximate coefficient matrix and the solution which are reconstructed by our algorithm.

Numerical examples demonstrate the effectiveness of the algorithm.

Keywords differential system; discrete data; normal vector method; least square method;

parameterization
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1. Introduction

The theory of differential equations is an important research field in modern mathematics.

The dynamical system is a system in which a function describes the time dependence of a point

in a geometrical space. Differential equations and dynamical system theory have a very wide

range of applications, such as in physics, mechanics, chemistry, biology, medicine, engineering,

meteorology, statistics and other disciplines [1–4]. There are many classical differential models in

practice including population model, epidemic model, population ecological model [5] and Lorenz

equation.

The theory of differential equations has been studied many years, since differential equations

and dynamic systems have a large applied background. Usually the research on the differential

equations is about the behavior of the solution of the differential equation [6–8]. But there is also

a kind of inverse problem: how to describe a dynamical system from the given discrete points of

a solution in practical applications.
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In geometric design, there are many effective methods to approximate a curve from the

discrete data, such as the polynomial curve, Bézier curve, B-spline curve, NURBS curve [9–11],

unit quaternion curve [12] and so on. However, these methods cannot directly represent the

kinetic properties of the curves or surfaces from the discrete geometric data. Some methods

have been proposed to construct the surfaces according to their physical constraints such as

hydrodynamic and aerodynamic constrains. Ye et al. [13] developed a method for geometric

design of functional surfaces directly from their underlying physical constraints which involve

normal vectors of surfaces.

There are some methods of differential system reconstruction from the given discrete points

in the natural sciences. Wang and Lin [14] proposed a new K-value estimation method for Logistic

curve by analyzing the characteristics of the Logistic equation. The number of susceptible,

infected and removed in Beijing city has been calculated using susceptible-infected-removed (SIR)

model, all parameters with epidemiological meaning including transmission rate, removal ratio

and threshold value have been estimated by the difference method in [15].

In this paper, we also consider the reconstruction problem of the differential system from

the given discrete points. The simplest way to calculate the derivatives is by the difference

method. However, the difference method needs the parameterization of the observed data and

the fitting accuracy is largely affected by the parameterization. In order to avoid the problem of

parameterization, we discuss the reconstruction method of differential system based on normal

vectors from the given discrete points.

The organization of our paper is as follows: In Section 2, we propose a model and devise an

algorithm to reconstruct the differential system based on normal vectors from the given discrete

points. We deduce some theoretical analysis on our algorithm in Section 3. We point out that

when the points are taken from the solution curve and the set composed of these data points is

not degenerate, the coefficient matrix A reconstructed by our algorithm is unique from the given

discrete and noisefree data. And we discuss the error bound between the coefficient matrix which

is reconstructed by our algorithm and the coefficient matrix of the original differential system.

The error bound between the solution of the original differential system and the solution of the

the reconstructed differential system is also discussed. In Section 4, the numerical experiments

show the effectiveness of our algorithm.

2. The reconstruction of homogeneous linear ordinary differential sys-
tem

For the given set of discrete points on an exponential curve, Xi ∈ R3, i = 0, 1, 2, . . . , n,

the problem is to reconstruct the curve X(t) as a solution of a homogeneous linear differential

system(LDS) with an initial condition, i.e.,{
dX(t)
dt = AX(t),

X(0) = X0,
(1)

where A ∈ R3×3 is an unknown matrix to be determined.
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When A is a constant matrix, Eq. (1) is the simplest differential dynamic system, and the

solution can be represented explicitly by

X(t) = eAtX0, (2)

where the exponential of the matrix At is defined by the Taylor’s series

eAt = I + tA+
t2

2!
A2 + · · ·+ tk

k!
Ak + · · · . (3)

If the discrete points are parameterized by Xi = X(ti), i = 0, 1, . . . , n, then the reconstruction

problem can be expressed as the fitting problem

P0 model : min
A∈R3×3

n∑
i=0

∥X(ti)−Xi∥2 = min
A∈R3×3

n∑
i=0

∥eAtiX0 −Xi∥2. (4)

However, the above optimization problem cannot be solved directly, since the unknown matrix

A is involved in the Taylor’s series of the exponential function.

Considering the differential system, we can use the numerical difference method to recon-

struct this system from discrete points, such as by two points scheme,

dX(ti)

dt
≃ Xi −Xi−1

ti − ti−1
.

Therefore, we can consider the following optimization model

P1 model : min
A∈R3×3

n∑
i=1

∥Xi −Xi−1 − (ti − ti−1)AXi∥2.

This method of parameterization is from the observed data. Usually, we use the method of

accumulative chord lengths. However, the method of parameterization directly affects the fitting

accuracy, and the fitting result is sensitive to the parameterization. As shown by the blue line

in Figures 1–3, fitting accuracy is poor by the difference method P1 model.

Since the tangent vector is perpendicular to the normal vectors, we consider the following

optimization model

min
A∈R3×3

n−1∑
i=1

{(1− ω)(NT
i AXi)

2 + ω(ÑT
i AXi)

2}, (5)

where Ni and Ñi,i = 1, 2, . . . , n− 1 represent the principal normal vectors and binormal vectors

of the spatial curve, respectively, and ω is a constant in [0, 1]. It is clear that the zero matrix is

a global optimal solution of (5). In order to avoid zero solution of the optimization problem, we

need a constraint condition of A.

In fact, let Ã = cA, where c is a nonzero constant. The two solutions for the two differential

systems dX(t)
dt = AX(t) and dX(τ)

dτ = ÃX(τ) are X1(t) = eAt and X2(τ) = eÃτ , with correspond-

ing parameters t and τ satisfying t = cτ . It means that X1(t) and X2(τ) can represent the same

solution curve. So we can introduce a condition by ∥A∥2F = 1. Therefore, we can consider the

following optimization model with constraints

P2 model : minA∈R3×3 f(A) = minA∈R3×3

∑n−1
i=1 {(1− ω)(NT

i AXi)
2 + ω(ÑT

i AXi)
2},

s.t. ∥A∥2F = 1.
(6)
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If we denote the matrixA =

 a1 a2 a3

a4 a5 a6

a7 a8 a9

 as a vector Y = [a1 a2 a3 a4 a5 a6 a7 a8 a9]
T
,

and denote Ni = [ni,1, ni,2, ni,3]
T , Ñi = [ñi,1, ñi,2, ñi,3]

T . Then the optimization model (6) can

be transformed to the following model

minY ∈R9 g(Y ) = minY ∈R9

∑n−1
i=1 Y

T {(1− ω)BT
i Bi + ωCT

i Ci}Y = minY ∈R9 Y TFY,

s.t.∥Y ∥22 = 1,
(7)

where Bi = [ni,1X
T
i , ni,2X

T
i , ni,3X

T
i ] = NT

i ⊗XT
i and Ci = [ñi,1X

T
i , ñi,2X

T
i , ñi,3X

T
i ] = ÑT

i ⊗XT
i

are two row vectors in R9, and F =
∑n−1

i=1 {(1−ω)BT
i Bi+ωC

T
i Ci}, is a 9×9 positive semidefinite

matrix. Here ⊗ denotes the Kronecker product.

Let us denote the lagrangian function of the optimization model (7) as

L(Y, µ) = g(Y ) + µ(1− ∥Y ∥22) = Y TFY + µ(1− Y TY ). (8)

The partial derivatives of L(Y, µ) are{
∂
∂Y (L(Y, µ)) = FY − µY,
∂
∂µ (L(Y, µ)) = 1− Y TY.

(9)

Let

{
∂
∂Y (L(Y, µ)) = 0
∂
∂µ (L(Y, µ)) = 0

.We have

{
FY = µY X

Y TY = 1
, i.e., µ should be an eigenvalue of F and Y is

the corresponding eigenvector satisfying ∥Y ∥22 = 1. So min g(Y ) = minY TFY = minY T (µY ) =

minµ, i.e., µ is the smallest eigenvalue of F .

From the given data, we propose an algorithm for reconstructing the differential system as

follows:

Algorithm Input: given the discrete points Xi, i = 1, 2, . . . , n;

(i) Compute the principal normal vectors Ni = [ni,1, ni,2, ni,3]
T , and binormal vectors Ñi =

[ñi,1, ñi,2, ñi,3]
T of the discrete points Xi, i = 1, 2, . . . , n;

(ii) Compute F by F = (1−ω)BT
i Bi+ωC

T
i Ci, Bi and Ci are defined in the optimization model

(7);

(iii) Compute the unit eigenvector Y = [a1 a2 a3 a4 a5 a6 a7 a8 a9]
T

corresponding to the

smallest eigenvalue of F .

Output: A =

 a1 a2 a3

a4 a5 a6

a7 a8 a9

.

3. Algorithm analysis

In Section 2, we have shown that when Ã = cA, X1(t) = eAt and X2(τ) = eÃτ can represent

the same curve under appropriate parameters, i.e., t = cτ . So in the optimization model (6), we

assume ∥A∥F = 1. In this section, we also consider the case ∥A∥F = 1.

If we denote by Ã the matrix computed by our algorithm, then the reconstructed differential
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system can be represented as {
dX(τ)
dτ = ÃX(τ),

X(0) = X0.
(10)

In this section, we analyze the error between A and Ã, and the error between the solutions

of Eqs. (1) and (10).

3.1. The analysis of A

In Section 2, we have known that the model (6) and the model (7) is equivalent. We analyze

the model (6) in this section.

3.1.1. The uniqueness of A obtained by the model (6)

Definition 3.1 We call A and B are equivalent, if there is a nonzero constant c such that

A = cB and the solutions of the differential systems determined by A and B can represent the

same curve.

In this paper, A is said to be unique in the sense of equivalence.

Definition 3.2 The set composed of discrete data points Xi ∈ R3, i = 0, 1, 2, . . . , n, is called

degenerate if these discrete data points satisfy one of the following cases.

(i) Xi lies on no more than three straight lines or a plane which passes through the origin;

(ii) Xi lies on a straight line and a plane which passes through the origin;

(iii) Xi lies on a straight line which does not pass through the origin;

(iv) Xi lies on a plane which does not pass through the origin and tangent vectors of these

points lie on the same plane with Xi −X0.

Theorem 3.3 Suppose that all data points Xi ∈ R3, i = 0, 1, 2, . . . , n, are taken from an

exponential curve without singularities, Ni ∈ R3 and Ñi ∈ R3 are exact and data points Xi ∈ R3

are different from each other, and the set composed of discrete data points Xi ∈ R3, i =

0, 1, 2, . . . , n, is not degenerate, then the A ∈ R3×3 obtained by the model (6) is unique.

Proof Assume that there is a nonzero matrix B which is obtained by the model (6) and B ̸= A,

f(B) = 0. We have

NT
i AXi = 0, ÑT

i AXi = 0,

NT
i BXi = 0, ÑT

i BXi = 0,
(11)

for all i = 0, 1, 2, . . . , n. Therefore,

AXi ∈ span(Ni, Ñi)
⊥, (12)

BXi ∈ span(Ni, Ñi)
⊥. (13)

From (12) and (13), AXi = λiBXi, i.e.,

(A− λiB)Xi = 0. (14)

Clearly, Eq. (14) has the non-zero solution if and only if det(A − λiB) = 0. Denote p(λ) =

det(A− λB).
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(i) If p(λ) = 0 and det(A) ̸= 0, then p(λ) is a cubic polynomial at most. So there are at

most three real roots λ̃1, λ̃2 and λ̃3 for p(λ) = 0.

(a) When λ̃1 = λ̃2 = λ̃3 = λ

• If rank (A− λB) = 0, we have A = λB, i.e., A is unique.

• If rank (A − λB) = 1 and (A − λB)Xi = 0, Xi lies in a plane which passes through the

origin, i.e., the degenerate case (i). This contradicts the fact that {Xi} is not degenerate.

• If rank (A−λB) = 2 and (A−λB)Xi = 0, Xi lies on a straight line which passes through

the origin, i.e., the degenerate case (i). This contradicts the fact that {Xi} is not degenerate.

(b) When λ̃1 = λ̃2 ̸= λ̃3

• If rank (A− λ̃1B) = 1 and rank (A− λ̃3B) = 2, we have (A− λ̃1B)Xj = 0 for j such that

λj = λ̃1 and (A− λ̃3B)Xk = 0 for k such that λk = λ̃3. So Xi lies on a straight line and a plane

intersecting at the orign, i.e., the degenerate case (ii). This contradicts the fact that {Xi} is not

degenerate.

• If rank (A − λ̃1B) = 2 and rank (A − λ̃3B) = 2, we have (A − λ̃1B)Xj = 0 for j such

that λj = λ̃1 and (A − λ̃3B)Xk = 0 for k such that λk = λ̃3. So Xi lies on two straight lines

intersecting at the orign, i.e., the degenerate case (i). This contradicts the fact that {Xi} is not

degenerate.

(c) When λ̃1 ̸= λ̃2 ̸= λ̃3, rank(A− λ̃1B) = rank(A− λ̃2B) = rank(A− λ̃3B) = 2, we have

(A − λ̃1B)Xj = 0 for j such that λj = λ̃1, (A − λ̃2B)Xk = 0 for k such that λk = λ̃2 and

(A − λ̃3B)Xm = 0 for m such that λm = λ̃3. So Xi lies on three straight lines intersecting at

the origin, i.e., the degenerate case (i). This contradicts the fact that {Xi} is not degenerate.

(ii) If det(A) = 0, there are two cases based on the rank of A.

(a) If rank(A) = 1, then X(t) = eAtX0 is a straight line. In fact, if rank(A) = 1, there are

two column vectors a, b such that A = abT . For each parameterization t, the tangent vector

AX(t) = abTX(t) = bTX(t)a = ϕ(t)a, where ϕ(t) = bTX(t), i.e., the tangent vectors AX(t) are

collinear. For arbitrary ti, from
dX(t)
dt = AX(t), we have Xi−X0 =

∫ ti
0
AX(τ)dτ =

∫ ti
0
ϕ(τ)dτa,

i.e., the discrete data point Xi is collinear. Since the exponential curve without singularities, X0

is a nonzero vector. This is the degenerate case (iii). It contradicts the fact that {Xi} is not

degenerate.

(b) If rank(A) = 2, denote Ti,j,k = [AX(ti) AX(tj) AX(tk)] for arbitrary ti, tj , tk.

Since det(A) = 0, we have det(Ti,j,k) = det(A) · det([X(ti) X(tj) X(tk)]) = 0. It means

that the tangent vectors of X(t) for arbitrary t are coplanar. It will show that the plane S1

in which Xi − X0 lie is coplanar with the plane S2 in which AXi lie. Suppose that there

are two linearly independent vectors a,b on the plane S2. Then there are φ(t) and ψ(t) such

that the tangent vector AX(t) = φ(t)a + ψ(t)b. For arbitrary ti, from
dX(t)
dt = AX we have

Xi −X0 =
∫ ti
0
AX(τ)dτ =

∫ ti
0
φ(τ)dτa+

∫ ti
0
ψ(τ)dτb, which means that Xi −X0 is also on the

plane S2, i.e., the degenerate case (iv). This contradicts the fact that {Xi} is not degenerate.

To sum up, the proposition has been proved.

For the inverse case of Theorem 3.3, we present the following remark.

Remark 3.4 Suppose that all data points Xi ∈ R3, i = 0, 1, 2, . . . , n, are taken from an
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exponential curve without singularities, Ni ∈ R3 and Ñi ∈ R3 are exact and data points Xi ∈ R3

are different from each other. We can prove that the matrix A is not unique by the model (7) in

the following case.

In fact, the vector Y is composed of all the entries of A, which is an eigenvector corresponding

to the zero eigenvalue of the matrix F ∈ R9×9 in the model (7). If the rank(F ) < 8, then the

eigenvector Y is not unique, i.e., A is not unique.

(i) If Xi lies on a straight line which passes through the origin, then A is not unique.

In fact, assume Xi lies on the straight line X(t) = ta and Xi = tia, where a is a vec-

tor. Denote the principal normal vector and binormal vector of this straight line as N1, N2,

respectively.

Bi =N
T
1 ⊗XT

i , Ci = NT
2 ⊗XT

i ,

BT
i Bi =(NT

1 ⊗XT
i )

T (NT
1 ⊗XT

i ) = (N1N
T
1 )⊗ (XiX

T
i )

=(N1N
T
1 )⊗ [(tia)(tia)

T = t2i (N1N
T
1 )⊗ (aaT )

and
n∑

i=0

BT
i Bi = ζ(N1N

T
1 )⊗ (aaT ),

where ζ =
∑n

i=0 t
2
i .

In the same way, we obtain
∑n

i=0 C
T
i Ci = ζ(N2N

T
2 )⊗ (aaT ). Then

F = (1− ω)

n∑
i=0

BT
i Bi + ω

n∑
i=0

CT
i Ci = ζ((1− ω)N1N

T
1 + ωN2N

T
2 )⊗ (aaT ).

Since rank(N1N
T
1 ) = 1, rank(N2N

T
2 ) = 1 and rank(aaT ) = 1, then rank(F ) = rank((1 −

ω)N1N
T
1 + ωN2N

T
2 )× rank(aaT ) ≤ 2 < 8. Thus A is not unique.

(ii) If Xi lies on a straight line which does not pass through the origin, then A is not unique.

In fact, assume Xi lies on the straight line X(t) = X0 + tb and Xi = X0 + tib，where b

is a vector. Denote the principal normal vector and binormal vector of this straight line as N1,

N2, respectively.

Bi =N
T
1 ⊗XT

i , Ci = NT
2 ⊗XT

i ,

BT
i Bi =(NT

1 ⊗XT
i )

T (NT
1 ⊗XT

i ) = (N1N
T
1 )⊗ (XiX

T
i )

=(N1N
T
1 )⊗ [(X0 + tib)(X0 + tib)

T ]

=(N1N
T
1 )⊗ (X0X

T
0 ) + ti(N1N

T
1 )⊗ (bXT

0 ) + ti(N1N
T
1 )⊗ (X0b

T ) + t2i (N1N
T
1 )⊗ (bbT ),

and
n∑

i=0

BT
i Bi = (n+1)(N1N

T
1 )⊗(X0X

T
0 )+η(N1N

T
1 )⊗(bXT

0 )+η(N1N
T
1 )⊗(X0b

T )+ζ(N1N
T
1 )⊗(bbT ),

where η =
∑n

i=0 ti and ζ =
∑n

i=0 t
2
i .

In the same way, we obtain
n∑

i=0

CT
i Ci = (n+1)(N2N

T
2 )⊗(X0X

T
0 )+η(N2N

T
2 )⊗(bXT

0 )+η(N2N
T
2 )⊗(X0b

T )+ζ(N2N
T
2 )⊗(bbT ).
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Then

F = (1− ω)
n∑

i=0

BT
i Bi + ω

n∑
i=0

CT
i Ci

= ((1− ω)N1N
T
1 + ωN2N

T
2 )⊗ ((n+ 1)(X0X

T
0 )) + η(bXT

0 ) + η(X0b
T ) + ζ(bbT ))

= ((1− ω)N1N
T
1 + ωN2N

T
2 )⊗

(
[X0 b]

[
n+ 1 η

η ζ

][
XT

0

bT

])
.

Since rank(N1N
T
1 ) = 1, rank(N2N

T
2 ) = 1 and rank([X0 b]

[
n+ 1 η

η ζ

][
XT

0

bT

]
) ≤ 2, then

rank(F ) ≤ 4 < 8. Thus A is not unique.

(iii) If Xi lies on two straight lines which pass through the origin, then A is not unique.

In fact, assume Xj , j ∈ I1, lies on the straight line X1(t) = ta and Xj = tja, Xk, k ∈ I2,

lies on the straight line X2(s) = sb and Xk = skb, where a and b are two vectors, I1 ∪ I2 =

{0, 1, 2, . . . , n}. Denote the principal normal vector and binormal vector of the straight line X1(t)

as N1, Ñ1, respectively, and the principal normal vector and binormal vector of the straight line

X2(s) as N2, Ñ2, respectively.

Bj = NT
1 ⊗XT

j , Cj = ÑT
1 ⊗XT

j ,

Bk = NT
2 ⊗XT

k , Ck = ÑT
2 ⊗XT

k ,

BT
j Bj = (NT

1 ⊗XT
j )

T (NT
1 ⊗XT

j ) = (N1N
T
1 )⊗ (XjX

T
j )

= (N1N
T
1 )⊗ [(tja)(tja)

T ] = t2j (N1N
T
1 )⊗ (aaT ),

and ∑
j∈I1

BT
j Bj = ξ(N1N

T
1 )⊗ (aaT ),

where ξ =
∑

j∈I1
t2j .

In the same way, we obtain∑
j∈I1

CT
j Cj = ξ(Ñ1Ñ

T
1 )⊗(aaT ),

∑
k∈I2

BT
k Bk = ε(N2N

T
2 )⊗(bbT ),

∑
k∈I2

CT
k Ck = ε(Ñ2Ñ

T
2 )⊗(bbT ),

where ε =
∑

k∈I2
s2k. Then

F =(1− ω)
∑
j∈I1

BT
j Bj + ω

∑
j∈I1

CT
j Cj + (1− ω)

∑
k∈I2

BT
k Bk + ω

∑
k∈I2

CT
k Ck

=ξ((1− ω)N1N
T
1 + ωÑ1Ñ

T
1 )⊗ (aaT ) + ε((1− ω)N2N

T
2 + ωÑ2Ñ

T
2 )⊗ (bbT ).

Since rank(N1N
T
1 ) = 1, rank(N2N

T
2 ) = 1, rank(Ñ1Ñ

T
1 ) = 1, rank(Ñ2Ñ

T
2 ) = 1, rank(aaT ) = 1

and rank(bbT ) = 1, rank(F ) ≤ 4 < 8. Thus A is not unique.

(iv) If Xi lies on three straight lines which pass through the origin, then A is not unique.

In fact, assume Xj , j ∈ I1, lies on the straight line X1(t) = ta and Xj = tja, Xk, k ∈ I2,

lies on the straight line X2(s) = sb and Xk = skb, and Xm,m ∈ I3, lies on the straight line

X3(v) = vc and Xm = vmc, where a, b and c are three vectors and I1∪ I2∪ I3 = {0, 1, 2, . . . , n}.
Denote the principal normal vector and binormal vector of the straight line X1(t) as N1, Ñ1,
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respectively, the principal normal vector and binormal vector of the straight line X2(s) as N2,

Ñ2, respectively, and the principal normal vector and binormal vector of the straight line X3(v)

as N3, Ñ3, respectively.

Bj = NT
1 ⊗XT

j , Cj = ÑT
1 ⊗XT

j ,

Bk = NT
2 ⊗XT

k , Ck = ÑT
2 ⊗XT

k ,

Bm = NT
3 ⊗XT

m, Cm = ÑT
3 ⊗XT

m,

BT
j Bj = (NT

1 ⊗XT
j )

T (NT
1 ⊗XT

j ) = (N1N
T
1 )⊗ (XjX

T
j ) =

(N1N
T
1 )⊗ [(tja)(tja)

T ] = t2j (N1N
T
1 )⊗ (aaT ),

and ∑
j∈I1

BT
j Bj = ϖ(N1N

T
1 )⊗ (aaT ),

where ϖ =
∑

j∈I1
t2j .

In the same way, we obtain∑
j∈I1

CT
j Cj = ϖ(Ñ1Ñ

T
1 )⊗ (aaT ),

∑
k∈I2

BT
k Bk = ϱ(N2N

T
2 )⊗ (bbT ),

∑
k∈I2

CT
k Ck = ϱ(Ñ2Ñ

T
2 )⊗ (bbT ),

∑
k∈I3

BT
mBm = σ(N3N

T
3 )⊗ (ccT ),

∑
m∈I3

CT
mCm = σ(Ñ3Ñ

T
3 )⊗ (ccT ),

where ϱ =
∑

k∈I2
s2k and σ =

∑
m∈I3

v2m. Then

F =(1− ω)
∑
j∈I1

BT
j Bj + ω

∑
j∈I1

CT
j Cj + (1− ω)

∑
k∈I2

BT
k Bk+

ω
∑
k∈I2

CT
k Ck + (1− ω)

∑
m∈I3

BT
mBm + ω

∑
m∈I3

CT
mCm

=ϖ((1− ω)N1N
T
1 + ωÑ1Ñ

T
1 )⊗ (aaT ) + ϱ((1− ω)N2N

T
2 + ωÑ2Ñ

T
2 )⊗ (bbT )+

σ((1− ω)N3N
T
3 + ωÑ3Ñ

T
3 )⊗ (ccT ).

Since rank(N1N
T
1 ) = 1, rank(N2N

T
2 ) = 1, rank(N3N

T
3 ) = 1, rank(Ñ1Ñ

T
1 ) = 1, rank(Ñ2Ñ

T
2 ) = 1,

rank(Ñ3Ñ
T
3 ) = 1, rank(aaT ) = 1, rank(bbT ) = 1 and rank(ccT ) = 1, rank(F ) ≤ 6 < 8. Thus A

is not unique.

(v) If Xi lies on a plane which passes through the origin, then A is not unique.

In fact, assume Xi lies on the plane S. For arbitrary i1, i2, i3, since Xi is coplanar, i.e.,

det([Xi1 Xi2 Xi3 ]) = 0, [Ti1 Ti2 Ti3 ] = A[Xi1 Xi2 Xi3 ] = 0, i.e., Ti are coplanar. Assume

Ti lies on the plane S1 (may be not S) and the intersection line of the plane S and the plane S1

is l, and the unit tangent vector of l is b. There is a vector a on S such that a is perpendicular

to b, and there is a vector c on S1 such that c is perpendicular to b. Then there are two real

numbers αi and θi for each Xi such that Xi = αia + θib, and there are two real numbers βi

and γi for each Ti such that Ti = βib + γic. Assume that the normal vector of the plane S1
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is Ñ = b × c, i.e., the binormal vectors of all Xi are the same. The principal vector of Xi is

Ni = −Ti × Ñ = −(βib+ γic)× Ñ = βic− γib.

From Ci = ÑT ⊗XT
i and

CT
i Ci = (ÑT⊗XT

i )
T (ÑT⊗XT

i ) = (ÑÑT )⊗(XiX
T
i ) = (ÑÑT )⊗

(
[a b]

[
αi

θi

]
[αi θi]

[
aT

bT

])
,

we obtain
∑n

i=0 C
T
i Ci = (ÑÑT )⊗([a b]

[
α θ

θ θ̃

][
aT

bT

]
), where

[
α θ

θ θ̃

]
=
∑n

i=0

[
αi

θi

]
[αi θi].

From Bi = NT
i ⊗XT

i and

BT
i Bi =(NT

i ⊗XT
i )

T (NT
i ⊗XT

i ) = ((βic− γib)⊗ (αia+ θib))((βic− γib)
T ⊗ (αia+ θib)

T )

=β2
i α

2
i (c⊗ a)(c⊗ a)T + β2

i αiθi(c⊗ a)(c⊗ b)T − βiγiα
2
i (c⊗ a)(b⊗ a)T−

βiγiαiθi(c⊗ a)(b⊗ b)T + β2
i θiαi(c⊗ b)(c⊗ a)T + β2

i θ
2
i (c⊗ b)(c⊗ b)T−

βiγiαiθi(c⊗ b)(b⊗ a)T − βiγiθ
2
i (c⊗ b)(b⊗ b)T − βiγiα

2
i (b⊗ a)(c⊗ a)T−

βiγiαiθi(b⊗ a)(c⊗ b)T + γ2i α
2
i (b⊗ a)(b⊗ a)T + γ2i αiθi(b⊗ a)(b⊗ b)T−

βiγiαiθi(b⊗ b)(c⊗ a)T − βiγiθ
2
i (b⊗ b)(c⊗ b)T + γ2i αiθi(b⊗ b)(b⊗ a)T+

γ2i θ
2
i (b⊗ b)(b⊗ b)T ,

it follows
n∑

i=0

BT
i Bi =δ1(c⊗ a)(c⊗ a)T + δ5(c⊗ a)(c⊗ b)T + δ6(c⊗ a)(b⊗ a)T+

δ7(c⊗ a)(b⊗ b)T + δ5(c⊗ b)(c⊗ a)T + δ2(c⊗ b)(c⊗ b)T+

δ8(c⊗ b)(b⊗ a)T + δ9(c⊗ b)(b⊗ b)T + δ6(b⊗ a)(c⊗ a)T+

δ8(b⊗ a)(c⊗ b)T + δ3(b⊗ a)(b⊗ a)T + δ10(b⊗ a)(b⊗ b)T+

δ7(b⊗ b)(c⊗ a)T + δ9(b⊗ b)(c⊗ b)T + δ10(b⊗ b)(b⊗ a)T+

δ4(b⊗ b)(b⊗ b)T

=(ccT )⊗ (δ1aa
T + δ5ab

T + δ5ba
T + δ2bb

T )+

(cbT )⊗ (δ6aa
T + δ7ab

T + δ8ba
T + δ9bb

T )+

(bcT )⊗ (δ6aa
T + δ8ab

T + δ7ba
T + δ9bb

T )+

(bbT )⊗ (δ3aa
T + δ10ab

T + δ10ba
T + δ4bb

T )

= (ccT )⊗

(
[a b]

[
δ1 δ5

δ5 δ2

][
aT

bT

])
+ (cbT )⊗

(
[a b]

[
δ6 δ7

δ7 δ9

][
aT

bT

])
+

(bcT )⊗

(
[a b]

[
δ6 δ7

δ7 δ9

][
aT

bT

])
+ (bbT )⊗

(
[a b]

[
δ3 δ10

δ10 δ9

][
aT

bT

])

= (c⊗ [a b])

{
cT ⊗

([
δ1 δ5

δ5 δ2

][
aT

bT

])
+ bT ⊗

([
δ6 δ7

δ7 δ9

][
aT

bT

])}
+
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(b⊗ [a b])

{
cT ⊗

([
δ6 δ7

δ7 δ9

][
aT

bT

])
+ bT ⊗

([
δ3 δ10

δ10 δ9

][
aT

bT

])}
,

where δ1 =
∑n

i=0 β
2
i α

2
i , δ2 =

∑n
i=0 β

2
i θ

2
i , δ3 =

∑n
i=0 γ

2
i α

2
i , δ4 =

∑n
i=0 γ

2
i θ

2
i , δ5 =

∑n
i=0 β

2
i αiθi,

δ6 = −
∑n

i=0 βiγiα
2
i , δ7 = −

∑n
i=0 βiγiαiθi, δ8 = δ7, δ9 = −

∑n
i=0 βiγiθ

2
i , δ10 = −

∑n
i=0 γ

2
i αiθi.

Since F = (1 − ω)
∑n

i=0B
T
i Bi + ω

∑n
i=0 C

T
i Ci, rank(c ⊗ [a b]) ≤ 2, rank(b ⊗ [a b]) ≤ 2,

rank([a b]

[
α θ

θ θ̃

][
aT

bT

]
) ≤ 2, rank(F ) ≤ 6 < 8. Thus A is not unique.

Remark 3.5 In the 2-dimensional case, the set composed of discrete data points Xi ∈ R2,

i = 0, 1, 2, . . . , n, is called degenerate if these discrete data points satisfy one of the following

cases:

(i) Xi lies on no more than two straight lines which pass through the origin;

(ii) Xi lies on a straight line which does not pass through the origin.

Remark 3.6 If Xi ∈ R2, i = 0, 1, 2, . . . , n, Theorem 3.3 is also true.

So in this paper, we consider that the set of discrete data points is not degenerate, in order

to guarantee the uniqueness of A.

3.1.2. The discussion of the error of A

In this section, we analyze the error between A and Ã. The error ∥Ã − A∥F can be trans-

formed to the distance between eigenvectors corresponding to the smallest eigenvalues F and

Fε, where Fε is computed from data points containing noise Xη
i = Xi + ηi, N

δ
i = Ni + δi,

Ñξ
i = Ñi + ξi based on the definitions in the model (7).

Denote ∆F = Fε − F . Since F is a symmetric positive semidefinite matrix, there exists an

invertible matrix T such that F can be diagonalized, i.e., T−1FT = D. We denote the invariant

subspace of F corresponding to the smallest eigenvalue as T1 and the invariant subspace of F

corresponding to rest of eigenvalues as T2. Let the columns of T1 form a basis for T1 and the

columns of T2 form a basis for T2. Then, let (S1 S2)
H = (T1 T2)

−1. We have

(S1 S2)
HF (T1 T2) =

(
D1 0

0 D2

)
, (15)

where D1 is a diagonal matrix the diagonal entries of which are the smallest eigenvalues of F ,

D2 is a diagonal matrix the diagonal entries of which are the rest eigenvalues of F . Then we can

get the basis T ε
1 and T ε

2 of invariant subspaces Tε
1 and Tε

2 of Fε from T1 and T2, where Tε
1 and

Tε
2 are respectively invariant subspaces of Fε.

Theorem 3.7 ([16]) Let F have the spectral resolution (15) and set

(S1 S2)
H∆F (T1 T2) =

(
M1,1 M1,2

M2,1 M2,2

)
.

Let ∥ · ∥ represent a consistent family of norms, and set

γ̃ = ∥M2,1∥, η̃ = ∥M1,2∥, δ̃ = sep(D1, D2)− ∥M1,1∥ − ∥M2,2∥.
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If δ̃ > 0 and
γ̃η̃

δ̃2
<

1

4
, (16)

there is a unique matrix P satisfying

∥P∥ ≤ 2γ̃

δ̃ +

√
δ̃2 − 4γ̃η̃

< 2
γ̃

δ̃
,

such that the columns of T ε
1 = T1 + T2P and Sε

2 = S2 − S1P
H form bases for simple right and

left invariant subspace of Fε = F + ∆F . The representation of Fε with respect to T ε
1 is Dε

1 =

D1 +M1,1 +M1,2P and the representation of Fε with respect to Sε
2 is Dε

2 = D2 +M2,2 +PM1,2.

Remark 3.8 In Theorem 3.3,

sep(D1, D2)
def
= inf

∥P∥=1
∥T(P )∥ > 0

and T := P 7→ PD1 −D2P .

For Algorithm 1, we want to obtain the unit eigenvector Y corresponding to the smallest

eigenvalue λ of the 9 × 9 matrix F . When the assumptions of Theorem 3.3 are satisfied, the

smallest eigenvalue λ = 0 is a simple root. That is, the submatrix D1 in Eq. (15) is D1 = λ = 0

and D2 is a 8 × 8 submatrix. T1 = Y is the corresponding unit eigenvector. In this case, the

operator T in Remark 3.7 becomes the matrix T = −D2. Further, if the condition (16) is also

satisfied, there is a unique matrix P , s.t. Y ε = Y + T2P . Since the necessary and sufficient

condition that T ε
1 and Sε

2 are the invariant subspaces respectively is (Sε
2)

H(F +∆F )T ε
1 = 0, i.e.,

D2P +M2,1 +M2,2P − PM1,1 − PM1,2P = 0. The matrix PM1,1, M2,2P are of order ∥∆F∥2

and PM1,2P is of order ∥∆F∥3, we have

P ∼= D−1
2 SH

2 ∆FT1, Y ε ∼= Y + S2D
−1
2 SH

2 ∆FY.

Therefore, ∥Y ε − Y ∥2 . ∥S2D
−1
2 SH

2 ∥2∥∆F∥2. Hence, ∥Ã−A∥F . ∥S2D
−1
2 SH

2 ∥2∥∆F∥2.

3.2. The analysis of solution X(t)

In this section, we consider the case ∥A∥F = 1. The absolute value of the eigenvalue of A is

no bigger than 1. In fact, ∥A∥2F = trace(ATA) =
∑d

i=1 |λi|2=1, where λi is eigenvalue of A, and

d is the row number of A, so that |λi| ≤ 1.

Theorem 3.9 Assume that∥A∥F = 1 and E = Ã − A, the solution of differential system (1)

is X(t) and the solution of differential system (10) is X̃(t), t ∈ [0, t1], then ∥X̃(t) − X(t)∥ ≤
c∥E∥t1ec∥E∥(t−t0).

Proof Assume that the basic solution matrix of differential system (1) is Φ(t) = eAt. Then

X(t) = Φ(t)Φ−1(0)X0 = eAtX0

is the solution of the differential system (1).

Assume

X̃(t) = Φ(t)c(t) (17)
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is the solution of differential system (10).

Now applying Eq. (16) to Eq. (10) gives

dΦ(t)

dt
c(t) + Φ(t)

dc(t)

dt
= ÃΦ(t)c(t) = (A+ E)Φ(t)c(t). (18)

Since Φ(t) is the basic solution matrix of differential system (1), we have

dΦ(t)

dt
= AΦ(t). (19)

Applying Eq. (19) to Eq. (18) yields

Φ(t)
dc(t)

dt
= EΦ(t)c(t). (20)

From (20), we have

c(t) =

∫ t

0

Φ(s)−1EΦ(s)c(s)ds+ c(0). (21)

Due to initial condition,

c(0) = Φ(0)−1X0. (22)

From Eqs.(17), (21) and (22), the solution of differential system (10) can be expressed as

X̃(t) = Φ(t)Φ−1(0)X0 +

∫ t

0

Φ(t)Φ−1(s)EX̃(s)ds.

Then

∥X̃(t)−X(t)∥ =∥
∫ t

0

Φ(t)Φ−1(s)EX̃(s)ds∥

=∥
∫ t

0

Φ(t)Φ−1(s)E(X̃(s)−X(s))ds+

∫ t

0

Φ(t)Φ−1(s)EX(s)ds∥

≤
∫ t

0

∥Φ(t)Φ−1(s)E∥∥X̃(s)−X(s)∥ds+
∫ t

0

∥Φ(t)Φ−1(s)E∥∥X(s)∥ds

≤∥E∥
∫ t

0

∥Φ(t)Φ−1(s)∥(∥X̃(s)−X(s)∥+ ∥X(s)∥)ds

≤∥E∥
∫ t

0

∥eA(t−s)∥(∥X̃(s)−X(s)∥+ ∥eAsX0∥)ds

≤c∥E∥
∫ t

0

(∥X̃(s)−X(s)∥+ cX0∥)ds

where c = eRe(λ(A))maxt1 and Re(λ(A))max ≤ 1. Applying the Gronwall inequality to the last

inequality, we have ∥X̃(t)−X(t)∥ ≤ c2∥E∥∥X0∥t1ec∥E∥t.

4. Numerical experiment

In order to demonstrate the effectiveness of the Algorithm 1, we give some numerical ex-

amples as follows. In each example, we take points from the differential system, then use our

algorithm and the difference method to reconstruct the curves. In Figures, we show the recon-

structed curves by our algorithm with accurate normal vectors and discrete normal vectors and
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the difference method. We also give the errors of our algorithm and difference method from noise-

free data and noisy data in Tables. In the following tables, h is the step size, δX is the noise level

of noise data, the error(A) represents ∥Ã−A∥F , error(X(t)) represents maxt∈R ∥X̃(t)−X(t)∥.

Examples 4.1 Given the homogeneous linear differential system(LDS) with an initial condition

as follows {
dX(t)
dt = AX(t),

X(0) = X0,

where A =

(
2.84 −5.01

11.88 −4.72

)
, X0 =

(
1

1

)
.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.5

0

0.5

1

1.5

 

 
sampled data
normal vector method with accurate normal
normal vector method with local normal
difference method

Figure 1 Reconstructions of the curve in Example 4.1 by our algorithm and difference method with

h = 0.01

h
exact normal vectors approximate

normal vectors

difference method

error(A) error(X(t)) error(A) error(X(t)) error(A) error(X(t))

0.05 5.27E(−15) 1.74E(−15) 5.12E(−2) 2.37E(−2) 2.24E(0) 4.88E(−1)

0.01 7.11E(−15) 3.05E(−15) 2.02E(−3) 9.39E(−4) 1.07E(0) 1.74E(−1)

0.005 1.13E(−14) 3.21E(−15) 5.09E(−4) 2.35E(−4) 9.71E(−1) 1.16E(−1)

Table 1 The errors of our algorithm and difference method in Example 4.1 from noisefree data

δX
normal vectors method difference method

error(A) error(X(t)) error(A) error(X(t))

1.0E(−2) 7.04E(−1) 9.72E(−2) 7.80E(−1) 1.64E(−1)

1.0E(−3) 9.02E(−3) 3.61E(−3) 9.08E(−1) 6.66E(−2)

1.0E(−4) 2.56E(−4) 1.60E(−4) 9.07E(−1) 6.54E(−2)

Table 2 The errors of our algorithm and difference method in Example 4.1 from noisy data
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Examples 4.2 Given the homogeneous linear differential system(LDS) with an initial condition

as follows {
dX(t)
dt = AX(t),

X(0) = X0,

where A =

 0 −1 0

1 0 0

0 0 0.05

, X0 =

 1

1

1

.

−1.5 −1 −0.5 0 0.5 1 1.5
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1
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1.15

1.2

1.25
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1.35

1.4

 

 

sampled data
normal vector method with accurate normal
normal vector method with local normal
difference method

Figure 2 Reconstructions of the curve in Example 4.2 by our algorithm and difference method with

h = 0.05

h
exact normal vectors approximate normal

vectors

difference method

error(A) error(X(t)) error(A) error(X(t)) error(A) error(X(t))

0.1 4.41E(−16) 5.83E(−15) 8.36E(−5) 1.60E(−3) 7.08E(−2) 9.38E(−1)

0.05 9.01E(−16) 1.18E(−14) 2.09E(−5) 4.02E(−4) 3.54E(−2) 4.99E(−1)

0.01 4.28E(−16) 8.80E(−15) 8.35E(−7) 1.61E(−5) 7.10E(−3) 1.05E(−1)

Table 3 The errors of our algorithm and difference method in Example 4.2 from noisefree data

δX
normal vectors method difference method

error(A) error(X(t)) error(A) error(X(t))

1.0E(−3) 6.29E(−2) 1.85E(−1) 8.5E(−3) 4.96E(−2)

1.0E(−4) 6.29E(−4) 2.50E(−3) 7.73E(−4) 1.03E(−2)

1.0E(−5) 5.66E(−6) 5.59E(−5) 7.69E(−4) 1.06E(−2)

Table 4 The errors of our algorithm and difference method in Example 4.2 from noisy data
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Examples 4.3 Given the homogeneous linear differential system(LDS) with an initial condition

as follows {
dX(t)
dt = AX(t),

X(0) = X0,

where A =

 −0.96 0.91 0.86

0.44 −2.55 −5.7

−0.52 1.64 1.12

, X0 =

 1

1

1

.
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1

2

−1.5
−1

−0.5
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0.5
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sampled data
normal vector method with accurate normal
normal vector method with local normal
difference method

Figure 3 Reconstructions of the curve in Example 4.3 by our algorithm and difference method with

h = 0.05

h
exact normal vectors approximate normal

vectors

difference method

error(A) error(X(t)) error(A) error(X(t)) error(A) error(X(t))

0.1 4.71E(−14) 4.34E(−14) 3.21E(−2) 6.76E(−2) 4.332E(0) 1.96E(0)

0.05 7.29E(−14) 5.90E(−14) 8.01E(−3) 1.67E(−2) 4.326E(0) 1.38E(0)

0.01 4.07E(−14) 3.65E(−14) 3.20E(−4) 6.86E(−4) 4.334E(0) 1.42E(0)

Table 5 The errors of our algorithm and difference method in Example 4.3 from noisefree data

δX
normal vectors method difference method

error(A) error(X(t)) error(A) error(X(t))

1.0E(−3) 7.99E(−1) 1.01E(−1) 4.34E(0) 1.53E(0)

1.0E(−4) 7.70E(−3) 4.30E(−3) 4.34E(0) 1.53E(0)

1.0E(−5) 7.583E(−5) 9.91E(−5) 4.34E(0) 1.53E(0)

Table 6 The errors of our algorithm and difference method in Example 4.3 from noisy data

From the figures and tables, we come to the conclusion that our method can get better

results than the difference method from the data with or without noise.
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5. Conclusion

In this paper, we propose an algorithm to reconstruct the differential system based on the

normal vector from the given discrete points in order to avoid the problem of parameterization

in curve fitting and approximation. We also carry out some theoretical analysis about our

algorithm. We point out that when the data points are taken from the solution curve and the set

composed of these data points is not degenerate, the coefficient matrix A reconstructed by our

algorithm is unique from the given discrete noisefree data. And we discuss the error bounds for

the approximate coefficient matrix and the solution which are reconstructed by our algorithm.

Finally, the numerical experiments show the effectiveness of our algorithm.
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