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1. Introduction

For given integers ai (1 ≤ i ≤ n) and positive integers mi (1 ≤ i ≤ n) that are pairwise

relatively prime, the Chinese Remainder Problem (CRP) for integers may be stated as follows:

Find an integer m satisfying the congruences

m ≡ ai (modmi), i = 1, 2, . . . , n. (1)

Note that if we have found one solution x, then all solutions of (1) belong to its residue class

modulo M = m1m2 . . .mn. This result is known as the Chinese Remainder Theorem (CRT)

for integers. There are numerous results on the solution of CRP, for instance, see Andrews [1],

Grosswald [2], Nagasaka, Shiue, and Ho [3], etc. Particularly, an interpolation approach to the

solutions can be found in Stewart [4] and surveyed in Schoenberg [5].

In this paper, we will view the solution of a CRP shown in (1) equivalently to a Lagrange

interpolation or Newton interpolation, which can be used to extend the CRP for integers to the

CRP for polynomials.

2. Main results
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We now establish the following theorem on the CRP for polynomials and view them as

interpolation problems.

Theorem 2.1 Let F be a field, and let a1(x), a2(x), . . . , an(x) be arbitrary polynomials and

m1(x),m2(x), . . . ,mn(x) pairwise relatively prime polynomials in F [x]. Then there exists a

unique polynomial f(x) such that

f(x) ≡ ai(x) (modmi(x)), i = 1, 2, . . . , (2)

and deg f(x) < degM(x), where M(x) = Πn
i=1mi(x).

Proof Since gcd(mi(x),mj(x)) = 1 for all i ̸= j, mi(x) is relatively prime to

pi(x) :=
M(x)

mi(x)
.

Then we can solve

hi(x)mi(x) + ki(x)pi(x) = 1

for hi(x) and ki(x). Therefore, ki(x)pi(x) satisfies

ki(x)pi(x) ≡ 0 (modmj(x)) for all j ̸= i,

ki(x)pi(x) ≡ 1 (modmi(x)),

or equivalently,

ki(x)pi(x) ≡ δi,j (modmj(x)), (3)

where δ is the Kronecker symbol. We can use {ki(x)pi(x)}ni=1 as the Lagrange interpolation basis

and construct f(x) as

f(x) =

n∑
i=1

ai(x)ki(x)pi(x). (4)

Note that if deg f(x) ≥ degM(x), then we can use the division algorithm to replace f(x) by

r(x) = f(x)− q(x)M(x). �

Remark 2.2 A constructive proof of Theorem 2.1 can be found in Schroeder [6] and Bach and

Shallit [7].

The proof of Theorem 2.1 gives the following algorithm based on Lagrange interpolation to

solve CRP (2): (i) Set M(x) = m1(x)m2(x) · · ·mn(x); (ii) Solve ki(x)pi(x) ≡ 1 (modmi(x)),

where pi(x) = M(x)/mi(x); and (iii) Write the solution of (2) as (4).

Example 2.3 As an example, we consider the CRP (A):

f(x) ≡ 3 (modx− 1),

f(x) ≡ 2 (modx− 2),

f(x) ≡ −1 (modx− 3).

First, M(x) = (x− 1)(x− 2)(x− 3). Then we solve k1(x) from

k1(x)
M(x)

(x− 1)
≡ 1 (modx− 1),
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or equivalently,

k1(x)(x− 2)(x− 3) + h1(x)(x− 1) = 1

for some polynomial hi(x) ∈ F [x]. Since

(x− 2)(x− 3) = (x− 4)(x− 1) + 2,

we have
1

2
(x− 2)(x− 3)− 1

2
(x− 4)(x− 1) = 1,

which implies k1(x) = 1/2. Similarly, from

k2(x)
M(x)

(x− 2)
≡ 1 (modx− 2), k3(x)

M(x)

(x− 3)
≡ 1 (modx− 3),

we solve

k2(x) = −1, k3(x) =
1

2
,

respectively. Finally, we obtain the solution of (2)

f(x) = 3
1

2
(x− 2)(x− 3)− 2(x− 1)(x− 3)− 1

2
(x− 1)(x− 2) = −x2 + 2x+ 2.

It is obvious that the above algorithm based on Lagrange interpolation becomes inconvenient

if an extra congruence relation were included in the set of congruences that f(x) must satisfy.

The reason is that all ki(x) (i = 1, 2, . . . , n) have to be recalculated. To overcome the difficulty,

we present the second method, an algorithm based on Newton interpolation, which will give an

equivalent result obtained from the first method and allow to add in one more term in f(x) for

an extra congruence relation.

Denote by f [xj , xj+1, . . . , xk] the divided difference of f at knots {xj , xj+1, . . . , xk} defined

by

f [xj , xj+1, . . . , xk] :=
f [xj+1, xj+2, . . . , xk]− f [xj , xj+1, . . . , xk−1]

xk − xj

and f [xj ] = f(xj) (1 ≤ j < k ≤ n). Then by denoting x1 = 1, x2 = 2, and x3 = 3, the solution

of CRP (A) can be written as

f(x) = f [x1] + f [x1, x2](x− x1) + f [x1, x2, x3](x− x1)(x− x2), (5)

where the divided difference can be found in the following chart:

x1 = 1 f [x1] = 3

x2 = 2 f [x2] = 2 f [x1, x2] =
2−3
2−1

= −1

x3 = 3 f [x3] = −1 f [x2, x3] =
−1−2
3−2

= −3 f [x1, x2, x3] =
f [x2,x3]−f [x1,x2]

x3−x1
= −1

(6)

Thus

f(x) = f [x1] + f [x1, x2](x− x1) + f [x1, x2, x3](x− x1)(x− x2)

= 3 + (−1)(x− 1) + (−1)(x− 1)(x− 2) = −x2 + 2x+ 2.

Remark 2.4 We now compare Newton interpolation and Lagrange interpolation in the solution

of CRP (A). For the view of Lagrange interpolation, we write CRP (A) as finding f(x) so that

f(x) ≡ 3 (modx− 1),
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f(x) ≡ 2 (modx− 2),

f(x) ≡ −1 (modx− 3),

which is equivalent to the interpolation problem of finding f(x) so that f(xi) = yi, where x0 = 1,

x1 = 2, x2 = 3, y0 = 3, y1 = 2, and y2 = −1. Thus, using Lagrange interpolation, we obtain

f(x) = y0
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
+ y1

(x− x0)(x− x2)

(x1 − x0)(x1 − x2)
+ y2

(x− x0)(x− x1)

(x2 − x0)(x2 − x1)

=
3

2
(x− 2)(x− 3)− 2(x− 1)(x− 3)− 1

2
(x− 1)(x− 2)

= −x2 + 2x+ 2.

From this example, one may see if an extra congruence relation, say f(x) ≡ 1 (modx−4), is

given, then to solve the corresponding CRP using Lagrange interpolation, each term of Lagrange

interpolation needs to be reconstructed. However, Newton interpolation gives the following

solution of the CRP by adding one more term in (5)

f(x) =f [x1] + f [x1, x2](x− x1) + f [x1, x2, x3](x− x1)(x− x2)+

f [x1, x2, x3, x4](x− x1)(x− x2)(x− x3),

where the divided difference can be found from chart (7) by adding in one more row:

x1 = 1 f [x1] = 3

x2 = 2 f [x2] = 2 f [x1, x2] = −1

x3 = 3 f [x3] = −1 f [x2, x3] = −3 f [x1, x2, x3] = −1

x4 = 4 f [x4] = 1 f [x3, x4] = 2 f [x2, x3, x4] = 5/2 f [x1, x2, x3, x4] = 7/6

(7)

Thus,

f(x) =3 + (−1)(x− 1) + (−1)(x− 1)(x− 2) +
7

6
(x− 1)(x− 2)(x− 3)

=
7

6
x3 − 8x2 +

89

6
x− 5.

Example 2.5 To show the convenience of the second method, we assume an extra congruence

relation is added in CRP (A) to give the following CRP (B):

f(x) ≡ 3 (modx− 1),

f(x) ≡ 2 (modx− 2),

f(x) ≡ −1 (modx− 3),

f(x) ≡ 5 (modx).

Since the Newton method is independent of the order of the congruence relations, we simply input

the extra relation below the congruence relations of CRP (A) and calculate the corresponding

divided difference table of CRP (B) as

x1 = 1 f [x1] = 3

x2 = 2 f [x2] = 2 f [x1, x2] = −1

x3 = 3 f [x3] = −1 f [x2, x3] = −3 f [x1, x2, x3] = −1

x4 = 0 f [x4] = 5 f [x3, x4] = −2 f [x2, x3, x4] = − 1
2

f [x1, x2x3x4] = − 1
2
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Thus the solution of CRP (B) is

f(x) =f [x1] + f [x1, x2](x− x1) + f [x1, x2, x3](x− x1)(x− x2)+

f [x1, x2, x3, x4](x− x1)(x− x2)(x− x3)

=3 + (−1)(x− 1) + (−1)(x− 1)(x− 2) +
(
− 1

2

)
(x− 1)(x− 2)(x− 3)

=− 1

2
x3 + 2x2 − 7

2
x+ 5.

We now survey the Newton interpolation method for CRP as follows.

Theorem 2.6 Let F be a field, and let {ai}ni=1 ∈ F and distinct {bi}ni=1 ∈ F . Then there exists

a unique polynomial f(x) ∈ F [x] with degree < n such that

f(bi) = ai (8)

for i = 1, 2, . . . , n, which is equivalent to

f(x) ≡ ai (modx− bi) (9)

for i = 1, 2, . . . , n.

Proof Denote mi(x) = x − bi and ai(x) = ai. Then Theorem 2.1 guarantees the unique

existence of f(x) that satisfies (9). The equivalence between (9) and (8) from the fact that

f(x) ≡ ai (modx− bi) is equivalent to f(bi) = ai for i = 1, 2, . . . , n. �
Besides the convenience to treat extra congruence relations, from the following examples we

shall see the computation derived from Theorem 2.6 is simpler than the method from 2.1 usually.

As an example, one may see Example 2.7 below.

The above example works for linear congruence relations. We now give a general description

of the algorithm based on Newton interpolation for arbitrary congruence relations of the CRP

(2), that is, to find f1 ≡ f1(x), f2 ≡ f2(x), . . . successively from the following congruence system:

f1 ≡ a1(x) (modm1(x)),

f1 + f2m1 ≡ a2(x) (modm2(x)),

f1 + f2m1 + f3m1m2 ≡ a3(x) (modm3(x)),

· · · ,

f1 + f2m1 + · · ·+ fnm1m2 · · ·mn−1 ≡ an(x) (modmn(x)).

Then the solution f(x) of CRP (2) is

f(x) = f1 + f2m1 + · · ·+ fnm1m2 · · ·mn−1.

Indeed, for each i = 1, 2, . . . , n,

f(x) = f1 + f2m1 + · · ·+ fim1m2 · · ·mi−1 (modmi) = ai(x) (modmi),

which is from the congruence system.
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Example 2.7 Consider the following CRP (C) with nonlinear congruence relations

f(x) ≡ x− 1 (modx2 − x+ 1),

f(x) ≡ x (modx− 1).

Solving the corresponding congruence system:

f1 ≡x− 1 (modx2 − x+ 1),

f1 + f2(x
2 − x+ 1) ≡x (modx− 1),

we may obtain f1(x) = x− 1 and f2(x) = 1. Thus the solution of CRP (C) is

f(x) = x− 1 + 1 · (x2 − x+ 1) = x2.

Using Theorem 2.6, we may find f(x) more easily. In fact, from f1(x) = x− 1, we have

x− 1 + f2(x
2 − x+ 1) ≡ x (modx− 1),

or equivalently,

−1 + f2(x
2 − x+ 1) ≡ 0 (modx− 1),

which, from Theorem 2.6, is equivalent to

−1 + f2(x
2 − x+ 1)

∣∣
x=1

= 0.

Hence, f2(x) = 1 and f(x) = x− 1 + (x2 − x+ 1) = x2.

Sometimes, we may find the mixed method derived from Theorems 2.1 and 2.6 might be

more convenient in solving division problems. We use the following example to demonstrate this

mixed method.

Example 2.8 ([8, P.124]) Let p(x) be a polynomial satisfying the conditions that if it is divided

by (x − 2)2 and 2x − 1, then remainders 56x − 42 and 5 are obtained. To find the remainder

when p(x) is divided by (x− 2)2(2x− 1), we denote

p(x) = q1(x)(x− 2)2 + 56x− 42, p(x) = q2(x)(2x− 1) + 5

for some q1(x) and q2(x). Then, we obtain the following CRP:

p(x) ≡ 56x− 42 (mod (x− 2)2), p(x) ≡ 5 (mod 2x− 1).

From Theorem 2.1, we have

f1(x) ≡ 56x− 42 (mod (x− 2)2), f1(x) + f2(x− 2)2 ≡ 5 (mod 2x− 1),

which implies

56x− 42 + f2(x− 2)2 ≡ 5 (mod 2x− 1).

From Theorem 2.6, we have

56
(1
2

)
− 42 + f2

(1
2

)(1
2
− 2

)2
= 5,
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which implies f2 = 76/9 and

p(x) = 56x− 42 +
76

9
(x− 2)2 =

1

9
(76x2 + 200x− 74).
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