
Journal of Mathematical Research with Applications

Jan., 2017, Vol. 37, No. 1, pp. 97–106

DOI:10.3770/j.issn:2095-2651.2017.01.009

Http://jmre.dlut.edu.cn

A Cost-Efficient Variant of the Incremental Newton
Iteration for the Matrix pth Root

Fuminori TATSUOKA∗, Tomohiro SOGABE, Yuto MIYATAKE,

Shaoliang ZHANG
Department of Computational Science and Engineering, Graduate School of Engineering,

Nagoya University, Nagoya 464-8603, Japan

Dedicated to Professor Renhong WANG on the Occasion of His Eightieth Birthday

Abstract Incremental Newton (IN) iteration, proposed by Iannazzo, is stable for computing

the matrix pth root, and its computational cost is O(n3p) flops per iteration. In this paper, a

cost-efficient variant of IN iteration is presented. The computational cost of the variant well

agrees with O(n3 log p) flops per iteration, if p is up to at least 100.

Keywords matrix pth root; matrix polynomial

MR(2010) Subject Classification 65F30; 65F60; 65H04

1. Introduction

A matrix pth root (p ∈ N) of A ∈ Cn×n is defined as a solution of the following matrix

equation:

Xp = A.

While this matrix equation might have infinitely many solutions, the target of this paper is

a solution whose eigenvalues lie in the set {z ∈ C \ {0} : −π/p < arg z < π/p}. If A has no

nonpositive real eigenvalues, the target solution is unique [1, Theorem 7.2] and is referred to

as the principal matrix pth root of A, denoted by the symbol A1/p. Throughout this paper,

A is assumed to have no nonpositive real eigenvalues. The principal matrix pth root arises in

lattice quantum chromodynamics (QCD) calculations [2] and in the computation of the matrix

logarithm [1] that corresponds to the inverse function of the matrix exponential. Therefore,

numerical algorithms for computing the principal matrix pth root have been developed during

the past decade.

Numerical algorithms for the principal matrix pth root can be classified roughly into direct

methods and iterative methods. Direct methods include, for example, the Schur method [3], the

matrix sign method [4], and a method based on repeated eigenvalues of A (see [5]). The Schur

Received October 31, 2016; Accepted December 7, 2016

Supported by JSPS KAKENHI (Grant No. 26286088).

* Corresponding author

E-mail address: f-tatsuoka@na.nuap.nagoya-u.ac.jp (Fuminori TATSUOKA); sogabe@na.nuap.nagoya-u.ac.jp

(Tomohiro SOGABE); miyatake@na.nuap.nagoya-u.ac.jp (Yuto MIYATAKE); zhang@na.nuap.nagoya-u.ac.jp

(Shaoliang ZHANG)

98 Fuminori TATSUOKA, Tomohiro SOGABE, Yuto MIYATAKE and et al.

method can be performed in O(n3p) flops, the matrix sign method can be performed in at least

O(n3p log p) flops, and the computational cost of the method based on repeated eigenvalues is

not explicitly stated in [5]. Therefore, in terms of computational cost, the Schur method is likely

the method of choice for large-scale problems. Iterative methods include Newton’s method and

Halley’s method for A1/p, proposed by Iannazzo [6,7], and Newton’s method for A−1/p, proposed

by Guo [8]. In this paper, we consider Newton’s method for A1/p, since that method is the most

fundamental iterative method. In addition, it has been reported that Newton’s method for A1/p

gives a more accurate solution than the Schur method for some ill-conditioned matrices [6].

Now, let us recall several results for Newton’s method by Iannazzo [6]. It is known that

Newton’s method for a matrix pth root can be written as

Xk+1 =
(p− 1)Xk +AX1−p

k

p
, k = 0, 1, 2, . . . , (1.1)

with an initial guess X0 satisfying AX0 = X0A. However, it is not always guaranteed that

this method converges to the principal pth root. Iannazzo showed that if both of the following

conditions, {
all eigenvalues of A lie in the set {z ∈ C : Re z > 0, |z| ≤ 1}, (1.2)

X0 = I, (1.3)

are satisfied, then Newton’s method (1.1) converges to A1/p. Next, Iannazzo proposed a pre-

conditioning step, computing Ã = A1/2/
∥∥A1/2

∥∥ with a consistent norm (say, p-norm, Frobenius

norm), because then Ã satisfies the condition (1.2) for any A. Even if the matrix A is precondi-

tioned, Newton’s iteration (1.1) could be unstable in the neighborhood of A1/p (see [3]). Then,

Iannazzo proposed three stable iterations:
Xk+1 = Xk +Hk, Fk = XkX

−1
k+1,

Hk+1 = −1

p
Hk

(p−2∑
i=0

(i+ 1)X−1
k+1F

i
k

)
Hk,

(
X0 = I, H0 =

A− I
p

)
(1.4)


Xk+1 = Xk +Hk, Fk = XkX

−1
k+1,

Hk+1 = −Xk

(I − F p
k

p
+ F p−1

k (Fk − I)
)
,

(
X0 = I, H0 =

A− I
p

)
(1.5)

and 
Xk+1 = Xk

((p− 1)I +Nk

p

)
,

Nk+1 =
((p− 1)I +Nk

p

)−p
Nk.

(X0 = I, N0 = A) (1.6)

In particular, iteration (1.4) is called incremental Newton (IN) iteration, and iteration (1.6) is

called coupled Newton iteration.

It is known that Newton’s method converges quadratically in a neighborhood of the solution,

but global convergence of that method is not guaranteed. One way to globalize the convergence

A cost-efficient variant of the incremental Newton iteration for the matrix pth root 99

of Newton’s method is by using damping.1 From this point of view, it might be possible to

apply damping to IN iteration (1.4) and iteration (1.5). Comparing these two iterations, the

cost of IN iteration (1.4) is O(n3p) flops per iteration, higher than O(n3 log p) flops for iteration

(1.5). On the other hand, the incremental part of IN iteration (1.4) is computed in the form

of Hk+1 = fk(Hk), in contrast to iteration (1.5). This characteristic of IN iteration (1.4) might

provide a new viewpoint for convergence analysis to confirm that Hk converges to O. That is to

say, if Hk+1 explicitly includes Hk, then Hk+1 is represented as Hk+1 = (fk ◦ fk−1 ◦ · · · ◦ f0)(H0),

and its convergence behavior might be analyzed using composite mapping (fk ◦ fk−1 ◦ · · · ◦ f0)

and initial matrix H0. Thus, IN iteration (1.4) is worth considering.

The purpose of this paper is to provide a cost-efficient variant of IN iteration (1.4) whose

increment part is computed in the form Hk+1 = fk(Hk). In this paper, we reduce the cost of

IN iteration (1.4) by finding a specific matrix polynomial in IN iteration (1.4) and proposing a

decomposition of the matrix polynomial.

The remainder of this paper is organized as follows. In Section 2, a variant of IN iteration

is shown, and we numerically estimate its cost at O(n3 log p) flops per iteration. In Section 3,

we present the results of numerical experiments. We conclude in Section 4.

2. Variant of IN iteration

The computational cost for computing the increment part

Hk+1 = −1

p
Hk

(p−2∑
i=0

(i+ 1)X−1
k+1F

i
k

)
Hk (2.1)

is the highest in IN iteration (1.4), because (2p+ 2/3)n3 +O(n2) flops are required for Eq. (2.1),

and (2p + 10/3)n3 + O(n2) flops for IN iteration (1.4). In this section, without losing the

previous matrix Hk, Eq. (2.1) is rewritten to reduce the number of matrix multiplications whose

computational costs are O(n3) flops.

2.1. Rewriting the increment

From the definition of IN iteration (1.4), the increment Hk is equivalent to Xk+1−Xk, and

thus

HkX
−1
k+1 = (Xk+1 −Xk)X−1

k+1 = I − Fk.

Substituting this relation into Eq. (2.1) yields

Hk+1 = −1

p
HkX

−1
k+1

(p−2∑
i=0

(i+ 1)F i
k

)
Hk = −1

p
(I − Fk)

(p−2∑
i=0

(i+ 1)F i
k

)
Hk

= −1

p
[I + Fk + F 2

k + · · ·+ F p−2
k − (p− 1)F p−1

k]Hk

= −1

p

{
[−(p− 1)Fk + pI][I + Fk + F 2

k + · · ·+ F p−2
k]− (p− 1)I

}
Hk.

1 A damped Newton iteration is represented as Xk+1 = Xk +αkHk (αk ∈ (0, 1]), where αk is a relaxation factor

chosen to reduce residuals.

100 Fuminori TATSUOKA, Tomohiro SOGABE, Yuto MIYATAKE and et al.

Introducing the matrix polynomial Pd(X) := I + X + X2 + · · · + Xd, enables Eq. (2.1) to be

simplified further to

Hk+1 = −1

p
{[−(p− 1)Fk + pI]Pp−2(Fk)− (p− 1)I}Hk. (2.2)

The number of matrix multiplications for Eq. (2.2) is equal to the number of matrix multiplica-

tions for Pp−2(Fk) plus two. We now define a variant of IN iteration as
Xk+1 = Xk +Hk, Fk = XkX

−1
k+1,

Hk+1 = −1

p
{[−(p− 1)Fk + pI]Pp−2(Fk)− (p− 1)I}Hk.

(2.3)

This new expression motivates us to reduce the number of matrix multiplications for computing

Pp−2(Fk).

Furthermore, this variant (2.3) is as stable as original IN iteration (1.4). We use the following

definition of stability to analyze the variant (2.3).

Definition 2.1 ([1, Definition 4.17]) Consider an iteration Xk+1 = g(Xk) with a fixed point X.

Assume that g is Fréchet differentiable at X. The iteration is stable in a neighborhood of X if

the Fréchet derivative Lg(X) has bounded powers, that is, there exists a constant c such that

‖Li
g(X)‖ ≤ c for all i > 0.

In Definition 2.1, Li
g(X) is ith power of the Fréchet derivative L at X. For more details

of definitions of Li
g(X), ‖Li

g(X)‖, and other notations used for stability analysis, see Appendix.

Then, we show that the variant (2.3) is stable.

Proposition 2.2 The variant (2.3) is stable.

Proof The iteration function for the variant (2.3) is

G

([
X

H

])
=

[
X +H

− 1
p{[−(p− 1)F + pI]Pp−2(F)− (p− 1)I}H

]
(F = X(X +H)−1), (2.4)

and the fixed point is
[
A1/p

O

]
. In order to calculate the Fréchet derivative of G at

[
A1/p

O

]
, we calcu-

late G
([

A1/p

O

])
and G

([
A1/p+EX

O+EH

])
, where ‖EX‖ and ‖EH‖ are sufficiently small. Substituting

X = A1/p and H = O into Eq. (2.4),

G

([
A1/p

O

])
=

[
A1/p

− 1
p{[−(p− 1)I + pI][

∑p−2
n=0 I]− (p− 1)I}O

]
=

[
A1/p

O

]
, (2.5)

and substituting X = A1/p + EX and H = O + EH into Eq. (2.4),

G

([
A1/p + EX

O + EH

])
=

[
A1/p + EX + EH

− 1
p{[−(p− 1)F∆ + pI][

∑p−2
i=0 F

i
∆]− (p− 1)I}EH

]
(F∆ = (A1/p + EX)(A1/p + EX + EH)−1)

=

[
A1/p + EX + EH

− 1
p [I + F∆ + F 2

∆ + · · ·+ F p−2
∆ − (p− 1)F p−1

∆]EH

]
. (2.6)

Since ‖EX‖ and ‖EH‖ are sufficiently small, F∆ becomes

F∆ = (A1/p + EX)(A1/p + EX + EH)−1

A cost-efficient variant of the incremental Newton iteration for the matrix pth root 101

= [A1/p + EX][A−1/p −A−1/p(EX + EH)A−1/p +O(‖EX + EH‖2)]

= I − EHA
−1/p +O(‖EX‖2) +O(‖EH‖2) +O(‖EX‖‖EH‖). (2.7)

Using Eq. (2.7), F i
∆ becomes

F i
∆ = (I − EHA

−1/p +O(‖EX‖2) +O(‖EH‖2) +O(‖EX‖‖EH‖))i

= I − iEHA
−1/p +O(‖EX‖2) +O(‖EH‖2) +O(‖EX‖‖EH‖).

Therefore, the lower part of (2.6) can be rewritten as

− 1

p
[I + F∆ + F 2

∆ + · · ·+ F p−2
∆ − (p− 1)F p−1

∆]EH

= −1

p

[
I + (I − EHA

−1/p) + (I − 2EHA
−1/p) + · · ·+ (I − (p− 2)EHA

−1/p)−

(p− 1)(I − (p− 1)EHA
−1/p) +O(‖EX‖2) +O(‖EH‖2) +O(‖EX‖‖EH‖)

]
EH

= −1

p
[
p(p− 1)

2
EHA

−1/p +O(‖EX‖2) +O(‖EH‖2) +O(‖EX‖‖EH‖)]EH

= O(‖EX‖2) +O(‖EH‖2),

and we have

G

([
A1/p + EX

O + EH

])
=

[
A1/p + EX + EH

O(‖EX‖2) +O(‖EH‖2)

]
. (2.8)

From Eqs. (2.5) and (2.8), it holds that

G

([
A1/p + EX

O + EH

])
−G

([
A1/p

O

])
−
[
I I

O O

][
EX

EH

]
=

[
O

O(‖EX‖2) +O(‖EH‖2)

]
= o

(∥∥∥∥[EX

EH

]∥∥∥∥),
and we obtain

LG

([
A1/p

O

]
,

[
EX

EH

])
=

[
I I

O O

][
EX

EH

]
.

The matrix [I I
O O] is idempotent because[

I I

O O

]2

=

[
I I

O O

]
.

Then, for all i > 0,
∥∥Li

G

([
A1/p

O

])∥∥ is bounded. From the above, the variant (2.3) is stable.2 �

In the next subsection, we provide a means of reducing matrix multiplications of Pp−2(Fk).

2.2. Decomposition of the polynomial

If d ≥ 3, the matrix polynomial Pd(X) can be rewritten in a more efficient form:

Pd(X) =

{
P d−1

2
(X2) · (X + I) (d is odd)

P d−2
2

(X2) · (X2 +X) + I (d is even).
(2.9)

On the right-hand side of Eq. (2.9), there is a new matrix polynomial whose variable is

X2 and degree is approximately half of d. This decomposition reduces the number of matrix

2 The stability of IN iteration (1.4) can be proved in a similar manner.

102 Fuminori TATSUOKA, Tomohiro SOGABE, Yuto MIYATAKE and et al.

multiplications by almost a factor of two. Thus, the number of matrix multiplications of Pd(X)

is reduced by applying the decomposition (2.9) to Pd(X), repeatedly.

Let us show the example of d = 57.3

P57(X) = I +X +X2 + · · ·+X57 (2.10)

= {P28(X2)}{X + I}

= {P13(X4)(X4 +X2) + I}{X + I}

= {P6(X8)(X4 + I)(X4 +X2) + I}{X + I}
...

= {[(X32 +X16 + I)(X16 +X8) + I][X4 + I][X4 +X2] + I}{X + I}. (2.11)

In this example, P57(X) of Eq. (2.10) is computed using 56 matrix multiplications by naive imple-

mentation. On the other hand, after applying the decomposition (2.9) to Eq. (2.10) four times,

Eq. (2.11) can be computed with nine matrix multiplications. In detail, five matrix multiplica-

tions are required for constructing five intermediate matrices, X2, X4, X8, X16, and X32, and

another four matrix multiplications are required for multiplication of the subpolynomials.

Finally, we combine variant (2.3) with decomposition (2.9) into Algorithm 1 for practice.

Algorithm 1 Newton’s method with the variant of IN iteration

Input: A ∈ Cn×n (Satisfying condition (1.2) in section 1), p ∈ N
Output: X ≈ A1/p

1: Decompose Pp−2 by applying the decomposition (2.9), repeatedly.

2: X0 ← I (∵ Condition (1.3)), H0 ← A−I
p

3: for k = 0, 1, 2, . . . until convergence do

4: Xk+1 = Xk +Hk

5: Fk = XkX
−1
k+1

6: Compute Pp−2(Fk)

7: Hk+1 = − 1
p{[−(p− 1)Fk + pI]Pp−2(Fk)− (p− 1)I}Hk

8: X ← Xk

2.3. Estimation of the computational cost of the variant

We calculated the computational cost of the variant (2.3) for p ∈ [5, 100] numerically and

found that cost to be consistent with (2b2 log2(p − 1)c + 8/3)n3. Here, the computational cost

8/3n3 results from the computation of Fk(= XkX
−1
k+1) by using the LU decomposition of Xk+1.

While a proof that the cost of variant (2.3) is O(n3 log p) flops per iteration is left for future

work, this numerical result agrees with that expectation. In addition, we calculated the costs of

IN iteration (1.4) and the iteration (1.5) for p ∈ [5, 100] to compare them with that of variant

(2.3). The result is shown in Figure 1.

3 The polynomial P57(Fk) appears when calculating the matrix 59th root.

A cost-efficient variant of the incremental Newton iteration for the matrix pth root 103

0 20 40 60 80 100
0

20

40

60

80

100

p

T
h

e
co

st
of

it
er

at
io

n
s

(/
n
3
fl

o
p

s)

IN iteration (1.4)

variant (2.3)

iteration (1.5)

Figure 1 The computational costs per iteration for the three iterations

It is clear from the figure that the computational cost of the variant (2.3) is lower than that of

IN iteration (1.4) and competitive with that of iteration (1.5). For example, when d = 59, the

computational cost of variant (2.3) is approximately a quarter of that of IN iteration (1.4) and

slightly higher than that of iteration (1.5).

3. Numerical experiment

This section describes a numerical experiment in which the principal 59th roots of test

matrices are calculated. The test matrices are described in Table 1.

Test matrix A (Matrix ID) Size Non-zero elements cond(A) Symmetry Property

msc01440 [9] (1) 1440 44998 3.3× 106 Symmetric positive define

Random matrix (2) 1500 2250000 3.8× 102 Symmetric positive define

NNC1374 [10] (3) 1374 8606 3.7× 1014 Unsymmetric

Table 1 Test matrices

First, we preconditioned the test matrices to satisfy the sufficient condition (1.2) of global con-

vergence in Section 1: all eigenvalues of A lie in the set {z ∈ C : Re z > 0, |z| ≤ 1}. Thus, we

computed Ã = A1/2/‖A1/2‖F . Then, we computed Ã1/59 by IN iteration (1.4), variant (2.3) of

Algorithm 1, and iteration (1.5). The computational costs of these three iterations are shown in

Table 2.

Iteration Computational costs per iteration(flops)

IN iteration (1.4) (118 + 10/3)n3 +O(n2)

variant (2.3) (22 + 8/3)n3 +O(n2)

iteration (1.5) (20 + 8/3)n3 +O(n2)

Table 2 Computational costs for computing the principal 59th root

104 Fuminori TATSUOKA, Tomohiro SOGABE, Yuto MIYATAKE and et al.

For this experiment, Python 3.5 was used for programming, and Intel(R) CoreTM i7 2.8GHz CPU

and 8GB RAM were used for computation.

First, Figure 2 shows the ratios of computation time of these three iterations. From Figure

2, the computation time of variant (2.3) is approximately one fourth of that of IN iteration (1.4)

and slightly longer than that of (1.5) in all cases. Here it can be seen that both the computation

time and the computational cost decreased.

1 2 3
0

0.5

1

Matrix ID

R
at
io

o
f
co
m
p
u
ta
ti
o
n
ti
m
e

IN iteration (1.4)

variant (2.3)

iteration (1.5)

Figure 2 Time comparison of the three iterations

Next, Figure 3 shows the relative residual defined as R(X) = ‖Xp −A‖F /‖A‖F for these three

iterations. The figure shows that the convergence behavior of variant (2.3) differs little from that

of IN iteration (1.4) and iteration (1.5). Since there is some possibility of numerical cancellation

of variant (2.3), IN iteration (1.4) is slightly better than variant (2.3) in terms of accuracy.

4. Conclusion and future work

In this paper, a variant of IN iteration is proposed whose computational cost well agreed

with O(n3 log p) flops per iteration if p is up to at least 100, and whose increment part still has

the form Hk+1 = fk(Hk). We have learned from the results of the numerical experiment that

the variant is competitive with iteration (1.5) in terms of accuracy and computation time. The

proposed variant therefore becomes a choice for practical application.

The most important future work is to prove that the computational cost of the variant is

O(n3 log p). Other future work includes reducing the computation time of Newton’s method for

the principal matrix pth root by reducing the number of iterations. However, it is not clear how

to choose a better initial guess than the conventional initial guess I (the identity matrix). It

might be easier to find a good initial guess, when considering the damped Newton method.

Acknowledgements The authors are grateful to the reviewer for the careful reading and the

comments that substantially enhanced the quality of the manuscript.

A cost-efficient variant of the incremental Newton iteration for the matrix pth root 105

0 5 10 15 20 25
−15

−10

−5

0

5

The number of iterations

L
og

1
0
o
f
re
la
ti
ve

re
si
d
u
al

F
-n
or
m

IN iteration (1.4)

variant (2.3)

iteration (1.5)

(a) Residual Plot of msc01440 (1)

0 5 10 15 20
−15

−10

−5

0

5

The number of iterations

L
o
g
1
0
of

re
la
ti
ve

re
si
d
u
a
l
F
-n
or
m

IN iteration (1.4)

variant (2.3)

iteration (1.5)

(b) Residual plot of the random matrix (2)

0 10 20 30
−15

−10

−5

0

5

The number of iterations

L
og

1
0
of

re
la
ti
ve

re
si
d
u
al

F
-n
or
m

IN iteration (1.4)

variant (2.3)

iteration (1.5)

(c) Residual plot of NNC1374 (3)

Figure 3 Residual comparison of the three iterations

Appendix

In this section, we recall some definitions and notations which were given in [1], where we

consider the matrix norm is consistent.

1. The notation X = O(‖E‖) denotes that ‖X‖ ≤ c‖E‖ for some constant c for all sufficiently

small ‖E‖, while X = o(‖E‖) means that ‖X‖/‖E‖ → 0 as E → O (see [1, p. 321]).

2. The Fréchet derivative of a matrix function f : Cn×n → Cn×n at a point X ∈ Cn×n is a

linear mapping

Cn×n L→ Cn×n

E 7→ L(X,E)

such that for all E ∈ Cn×n

f(X + E)− f(X)− L(X,E) = o(‖E‖).

106 Fuminori TATSUOKA, Tomohiro SOGABE, Yuto MIYATAKE and et al.

If we need to show the dependence on f we will write Lf (X,E). When we want to refer

to the mapping at X and not its value in a particular direction we will write L(X) (see [1,

p. 56]).

3. The norm of L(X) is defined by‖L(X)‖ := max
Z 6=O

‖L(X,Z)‖
‖Z‖ (see [1, p. 56]).

4. We write Li(X) to denote the ith power of the Fréchet derivative L at X, defined as i-fold

composition; thus L3(X,E) ≡ L
(
X,L(X,L(X,E))

)
(see [1, p. 97]).

References

[1] N. J. HIGHAM. Functions of Matrices: Theory and Computation. SIAM, Philadelphia, 2008.

[2] M. A. CLARK, A. D. KENNEDY. Accelerating dynamical-fermion computations using the rational hybrid

Monte Carlo algorithm with multiple pseudofermion fields. Phys. Rev. Lett., 2007, 98(1): (051601) 1–4.

[3] M. I. SMITH. A Schur algorithm for computing matrix pth roots. SIAM J. Matrix Anal. Appl., 2003, 24(4):

971–989.

[4] D. A. BINI, N. J. HIGHAM, B. MEINI. Algorithms for the matrix pth root. Numer. Algorithms, 2005,

39(4): 349–378.

[5] A. SADEGHI, A. I. M. ISMAIL, A. AHMAD. Computing the pth roots of a matrix with repeated eigenvalues.

Appl. Math. Sci., 2011, 5(53): 2645–2661.

[6] B. IANNAZZO. On the Newton method for the matrix pth root. SIAM J. Matrix Anal. Appl., 2006, 28(2):

503–523.

[7] B. IANNAZZO. A family of rational iterations and its application to the computation of the matrix pth root.

SIAM J. Matrix Anal. Appl., 2008, 30(4): 1445–1462.

[8] Chunhua GUO, N. J. HIGHAM. A Schur-Newton method for the matrix pth root and its inverse. SIAM J.

Matrix Anal. Appl., 2006, 28(3): 788–804.

[9] T. A. DAVIS, Yifan HU. The University of Florida sparse matrix collection. ACM Trans. Math. Software,

2011, 38(1): 1–25.

[10] R. F. BOISVERT, R. POZO, K. REMINGTON, et al. Matrix Market: A Web Resource for Test Matrix

Collections. Springer US, Boston, MA, 1997.

