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Abstract In this paper, we study the multiplicity of positive solutions for multi-point bound-

ary value problem of Riemann-Liouville fractional differential equation with multi-terms frac-

tional derivative in the boundary conditions. By using the properties of the Green function

and a generalization of the Leggett-Williams fixed point theorem due to the work of Bai and

Ge, the sufficient conditions to guarantee the existence of at least three positive solutions are

established. In the end of this paper, we have also given out the example to illustrate the wide

range of potential application of our main results.
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1. Introduction

In this paper, we consider the following m-point boundary value problem of fractional

differential equation 
Dαu(t) + f(t, u(t), Dβu(t)) = 0, t ∈ (0, 1),

u(0) = u′(0) = 0,

Dβu(1) =
m−2∑
i=1

λiD
ηiu(ti),

(1.1)

where Dα, Dβ and Dηi are the Riemann-Liouville fractional derivative operators of order α, β

and ηi, respectively, 1 < β < 2 < α < 3 with α − β > 1, 0 ≤ ηi ≤ 1, λi > 0, 0 < ti < 1,

i = 1, 2, . . . ,m− 2, f ∈ C([0, 1]× [0,+∞)× [0,+∞), [0,+∞)).

In the past decades, the fractional differential equation theory has gained considerable pop-

ularity and importance due to its demonstrated applications in numerous widespread fields of
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science and engineering [1–4]. Driven by the wide range of the applications, the boundary val-

ue problems for fractional order differential equations have been studied by more and more

researchers [5–15].

On the other hand, although the boundary value problems of fractional differential equations

have been investigated by many authors, the multi-point boundary value problem for fractional

differential equation involving the fractional derivative in both the nonlinearities and boundary

conditions are seldom studied and only limited research papers have been considered [16–18].

The purpose of this paper is to establish the multiplicity of positive solutions of boundary

value problem (1.1). Our paper is organized as follows. In Section 2, we give out some basic

definitions and lemmas to prove our main results. In Section 3, by using a generalization of the

Leggett-Williams fixed point theorem due to the work of Bai and Ge, we establish the existence

of at least three positive solutions of boundary value problem (1.1). In Section 4, as applications,

some examples are presented to illustrate our main results. Finally, in Section 5, we give out the

conclusion of this paper.

2. Preliminary

For the convenience of reading, in this section, we provide the background knowledge on

the fractional calculus and fractional differential equations.

Definition 2.1 ([1,2]) The standard Riemann-Liouville fractional derivative of order α > 0 of

a continuous function u : [0,+∞) → R is given by

Dαu(t) =
1

Γ(n− α)
(
d

dt
)n

∫ t

0

u(s)

(t− s)α−n+1
ds,

where n is an integer with n − 1 < α < n, provided the right integral converges. And the

Riemann-Liouville fractional integral of order α > 0 is defined by

Iαu(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds,

provided the right integral converges.

Lemma 2.2 ([1,2]) Suppose α > 0, u ∈ C(0, 1) ∩ L[0, 1] and Dαu ∈ C(0, 1) ∩ L[0, 1]. Then

IαDαu(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n,

where cj ∈ R, j = 1, 2, . . . , n, n is the smallest integer greater than or equal to α.

Denote by χJi the characteristic function of the set Ji = [0, ti], for i = 1, 2, . . . ,m− 2, that

is

χJi(s) =

{
1, s ∈ Ji,

0, s ̸∈ Ji,

and denote

γ = Γ(α− β)

m−2∑
i=1

λit
α−ηi−1
i

Γ(α− ηi)
.

It is clear that γ > 0.
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Lemma 2.3 Suppose γ ̸= 1 and h ∈ C[0, 1]. Then the following problem
Dαu(t) + h(t) = 0, t ∈ [0, 1],

u(0) = u′(0) = 0,

Dβu(1) =

m−2∑
i=1

λiD
ηiu(ti)

(2.1)

has the unique solution u(t) =
∫ 1

0
G(t, s)h(s)ds, where

G(t, s) = G1(t, s) +G2(t, s), (2.2)

and

G1(t, s) =
1

Γ(α)

{
tα−1(1− s)α−β−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1,

G2(t, s) =
tα−1

(1− γ)Γ(α)

(
γ(1− s)α−β−1 − Γ(α− β)

m−2∑
i=1

λi
Γ(α− ηi)

(ti − s)α−ηi−1χJi(s)
)
.

Furthermore,

Dβu(t) =

∫ 1

0

H(t, s)h(s)ds,

where the function H is given by

H(t, s) = H1(t, s) +H2(t, s), (2.3)

and

H1(t, s) =
1

Γ(α− β)

{
tα−β−1(1− s)α−β−1 − (t− s)α−β−1, 0 ≤ s ≤ t ≤ 1,

tα−β−1(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1,

H2(t, s) =
tα−β−1

(1− γ)Γ(α− β)

(
γ(1− s)α−β−1 − Γ(α− β)

m−2∑
i=1

λi
Γ(α− ηi)

(ti − s)α−ηi−1χJi(s)
)
.

Proof It follows from Lemma 2.2 and Dαu(t) + h(t) = 0, we can get

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ c1t
α−1 + c2t

α−2 + c3t
α−3,

where cj ∈ R, for j = 1, 2, 3.

The boundary condition u(0) = u′(0) = 0 implies that c2 = c3 = 0. Thus,

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1h(s)ds+ c1t
α−1. (2.4)

We can obtain

Dβu(t) = − 1

Γ(α− β)

∫ t

0

(t− s)α−β−1h(s)ds+ c1
Γ(α)tα−β−1

Γ(α− β)
, (2.5)

and

Dηiu(t) = − 1

Γ(α− ηi)

∫ t

0

(t− s)α−ηi−1h(s)ds+ c1
Γ(α)tα−ηi−1

Γ(α− ηi)
.

By the boundary condition Dβu(1) =
∑m−2

i=1 λiD
ηiu(ti), we can get

c1 =
1

(1− γ)Γ(α)

(∫ 1

0

(1−s)α−β−1h(s)ds−Γ(α−β)
m−2∑
i=1

λi
Γ(α− ηi)

∫ 1

0

(ti−s)α−ηi−1h(s)χJi(s)ds
)
.
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Substituting c1 into (2.4), we can obtain that u(t) =
∫ 1

0
G(t, s)h(s)ds and substituting c1 into

(2.5), we can obtain Dβu(t) =
∫ 1

0
H(t, s)h(s)ds. �

Lemma 2.4 Assume that γ < 1. Then the functions G(t, s) and H(t, s) are continuous on

[0, 1]× [0, 1], and satisfy the following properties:

(i) 0 ≤ tα−1G(1, s) ≤ G(t, s) ≤ G(1, s), for (t, s) ∈ [0, 1]× [0, 1];

(ii) 0 ≤ tα−β−1H(1, s) ≤ H(t, s) ≤ tα−β−1

(1−γ)Γ(α−β) (1 − s)α−β−1 ≤ 1
(1−γ)Γ(α−β) (1 − s)α−β−1,

for (t, s) ∈ [0, 1]× [0, 1].

Proof (i) It is obvious that G1(t, s) is increasing on t ∈ [0, s], so G1(s, s) ≥ G1(t, s) ≥ 0, for

0 ≤ t ≤ s ≤ 1.

For 0 ≤ s < t ≤ 1,

∂G1

∂t
=
α− 1

Γ(α)
[tα−2(1− s)α−β−1 − (t− s)α−2] ≥ α− 1

Γ(α)
[tα−2(1− s)α−β−1 − (t− ts)α−2] ≥ 0.

Then G1(t, s) is increasing on t ∈ [s, 1], which implies that G1(1, s) ≥ G1(t, s) ≥ G1(s, s) ≥ 0,

for 0 ≤ s ≤ t ≤ 1.

Hence, G1(1, s) ≥ G1(t, s) ≥ 0, (t, s) ∈ [0, 1]× [0, 1].

On the other hand, for 0 ≤ s ≤ t ≤ 1,

G1(t, s) =
1

Γ(α)
(tα−1(1−s)α−β−1−(t−s)α−1) ≥ tα−1

Γ(α)
((1−s)α−β−1−(1−s)α−1) = tα−1G1(1, s).

Clearly, for 0 ≤ t ≤ s ≤ 1, G1(t, s) =
1

Γ(α) t
α−1(1− s)α−β−1 ≥ tα−1G1(1, s).

Thus, 0 ≤ tα−1G1(1, s) ≤ G1(t, s) ≤ G1(1, s), for (t, s) ∈ [0, 1]× [0, 1].

It follows from a direct application of the definition of G2(t, s) and the fact that

G2(t, s) =
Γ(α− β)tα−1

(1− γ)Γ(α)

m−2∑
i=1

λit
α−ηi−1
i

Γ(α− ηi)

(
(1− s)α−β−1 − (1− s

ti
)α−ηi−1χJi(s)

)
≥ 0

and G2(t, s) = tα−1G2(1, s) that

0 ≤ tα−β−1G(1, s) ≤ G(t, s) ≤ G(1, s), for (t, s) ∈ [0, 1]× [0, 1], that is (i).

(ii) It is easy to show that

H1(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1], and H1(1, s) = 0 for s ∈ [0, 1].

Then, for (t, s) ∈ [0, 1]× [0, 1], we have

H(t, s) = H1(t, s) +H2(t, s) ≥ H2(t, s) = tα−β−1H(1, s) = tα−β−1H2(1, s)

=
tα−β−1

1− γ

m−2∑
i=1

λi
Γ(α− ηi)

(
tα−ηi−1
i − (ti − s)α−ηi−1χJi(s)

)
≥ 0.

It is obvious that H1(t, s) ≤ 1
Γ(α−β) t

α−β−1(1− s)α−β−1 and H2(t, s) ≤ γtα−β−1

(1−γ)Γ(α−β) (1− s)
α−β−1.

As a result,

H(t, s) =H1(t, s) +H2(t, s) ≤
1

Γ(α− β)
tα−β−1(1− s)α−β−1 +

γtα−β−1

(1− γ)Γ(α− β)
(1− s)α−β−1

=
tα−β−1

(1− γ)Γ(α− β)
(1− s)α−β−1 ≤ 1

(1− γ)Γ(α− β)
(1− s)α−β−1. �
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In order to prove our main results, we need the following fixed point theory of cones in

ordered Banach spaces [19,20].

Let r > a > 0, L > 0 be constants, ψ be a nonnegative continuous concave functional and

P , φ, θ be nonnegative continuous convex functionals on the cone P . Define convex sets

P (φr, θL) = {x ∈ P : φ(x) < r, θ(x) < L}, P (φr, θL) = {x ∈ P : φ(x) ≤ r, θ(x) ≤ L},

P (φr, θL, ψa) = {x ∈ P : φ(x) < r, θ(x) < L, ψ(x) > a},

P (φr, θL, ψa) = {x ∈ P : φ(x) ≤ r, θ(x) ≤ L, ψ(x) ≥ a}.

The following assumptions about the nonnegative continuous convex functionals φ, θ will

be used:

(B1) There exists M > 0 such that ∥x∥ ≤M max{φ(x), θ(x)}, for all x ∈ P ;

(B2) P (φr, θL) ̸= ∅, for any r > 0, L > 0.

Lemma 2.5 (The fixed point theorem [19,20]) Let P be a cone in the real Banach space E and

constants 0 < r1 < b < d ≤ r2, 0 < L1 ≤ L2. Assume that φ, θ are nonnegative continuous

convex functionals satisfying (B1) and (B2), ψ is a nonnegative continuous concave functional

on P such that ψ(x) ≤ φ(x) for all x ∈ P (φr2 , θL2), and T : P (φr2 , θL2) → P (φr2 , θL2) is a

completely continuous operator. Suppose

(C1) {x ∈ P (φd, θL2 , ψb) : ψ(x) > b} ≠ ∅, ψ(Tx) > b for x ∈ P (φd, θL2 , ψb);

(C2) φ(Tx) < r1, θ(Tx) < L1 for all x ∈ P (φr1 , θL1);

(C3) ψ(Tx) > b for all x ∈ P (φr2 , θL2 , ψb) with φ(Tx) > d.

Then, T has at least three fixed points x1, x2, x3 ∈ P (φr2 , θL2) with x1 ∈ P (φr1 , θL1), x2 ∈
{P (φr2 , θL2 , ψb) : ψ(x) > b} and x3 ∈ P (φr2 , θL2) \ (P (φr2 , θL2 , ψb) ∪ P (φr1 , θL1)).

By Lemma 2.4, we can easily obtain following lemma.

Lemma 2.6 If h(t) ≥ 0, and u = u(t) is the solution of boundary value problem (2.1). Then

u(t) ≥ 0, and Dβu(t) ≥ 0 for t ∈ [0, 1].

Let E := {u : u ∈ C[0, 1], Dβu ∈ C[0, 1], u(0) = u′(0) = 0} be endowed with the norm

∥u∥β = ∥u∥∞ + ∥Dβu∥∞, where ∥u∥∞ = max0≤t≤1 |u(t)| and ∥Dβu∥∞ = max0≤t≤1 |Dβu(t)| .
Then (E, ∥ · ∥β) is a Banach space. Let

P = {u ∈ E : tα−1∥u∥∞ ≤ u(t), 0 ≤ Dβu(t), t ∈ [0, 1]}.

Then P ⊂ E is a cone on E. We define a operator Φ : P → E by

(Φu)(t) =

∫ 1

0

G(t, s)f(s, u(s), Dβu(s))ds. (2.6)

In view of Lemma 2.3, we can get that

Dβ(Φu)(t) =

∫ 1

0

H(t, s)f(s, u(s), Dβu(s))ds. (2.7)

Obviously, the function u is a positive solution of boundary value problem (1.1) if and only

if u is a fixed point of the operator Φ in P .
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Lemma 2.7 The operator Φ : P → P is completely continuous.

Proof For a given u ∈ P , by (2.6) and (i) of Lemma 2.4,

0 ≤ tα−1

∫ 1

0

G(1, s)f(s, u(s), Dβu(s))ds ≤ (Φu)(t) ≤
∫ 1

0

G(1, s)f(s, u(s), Dβu(s))ds.

We have

tα−1∥Φu∥∞ ≤ (Φu)(t), for t ∈ [0, 1].

By (2.7) and (ii) of Lemma 2.4,

Dβ(Φu)(t) ≥ tα−β−1

∫ 1

0

H(1, s)f(s, u(s), Dβu(s))ds ≥ 0.

Hence, Φu ∈ P , which implies that Φ : P → P .

Let {uj} ⊂ P and limj→∞ uj = u ∈ P . Since f ∈ C([0, 1] × [0,+∞) × [0,+∞), [0,+∞)),

then

lim
j→∞

f(t, uj(t), D
βuj(t)) = f(t, u(t), Dβu(t)) for t ∈ [0, 1].

By Lemma 2.4, we can get

|(Φuj)(t)− (Φu)(t)| ≤
∫ 1

0

G(1, s)|f(s, uj(s), Dβuj(s))− f(s, u(s), Dβu(s))|ds

and

|Dβ(Φuj)(t)−Dβ(Φu)(t)|

≤ 1

(1− γ)Γ(α− β)

∫ 1

0

(1− s)α−β−1|f(s, uj(s), Dβuj(s))− f(s, u(s), Dβu(s))|ds.

It follows from the Lebesgue dominated convergence theorem limj→∞(Φuj)(t) = (Φu)(t) uni-

formly on [0, 1]. Hence, Φ is continuous.

Assume A ⊂ P is any bounded set, then there exists a constant M1 such that ∥u∥β ≤ M1

for each u ∈ A. So |u(t)| ≤ M1 and |Dβu(t)| ≤ M1 for t ∈ [0, 1]. Because f is continuous, there

exists M0 > 0 such that 0 ≤ f(t, u(t), Dβ(t)) ≤M0 for t ∈ [0, 1]. Then

0 ≤ (Φu)(t) =

∫ 1

0

G(t, s)f(s, u(s), Dβu(s))ds ≤M0

∫ 1

0

G(1, s)ds,

and

0 ≤ Dβ(Φu)(t) =

∫ 1

0

H(t, s)f(s, u(s), Dβu(s))ds ≤ M0

(1− γ)Γ(α− β + 1)
,

which implies that Φ(A) is uniformly bounded in P .

Because G(t, s) and H(t, s) are continuous on [0, 1] × [0, 1], we can obtain that they are

uniformly continuous. Hence, for any ε > 0, there exists δ > 0, whenever t1, t2 ∈ [0, 1], s ∈ [0, 1]

and |t2 − t1| < δ,

|G(t2, s)−G(t1, s)| <
ε

2M0 + 1
and |H(t2, s)−H(t1, s)| <

ε

2M0 + 1
.

For any u ∈ P , we have

|(Φu)(t2)− (Φu)(t1)| ≤
∫ 1

0

|G(t2, s)−G(t1, s)| · |f(s, u(s), Dβu(s))|ds
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≤M0

∫ 1

0

|G(t2, s)−G(t1, s)|ds <
ε

2
,

and

|Dβ(Φu)(t2)−Dβ(Φu)(t1)| ≤
∫ 1

0

|H(t2, s)−H(t1, s)| · |f(s, u(s), Dβu(s))|ds

≤M0

∫ 1

0

|H(t2, s)−H(t1, s)|ds <
ε

2
.

Thus, Φ(A) is equicontinuous.

By Arzela-Ascoli theorem, we can show that Φ is relatively compact.

Therefore, Φ is completely continuous. �

3. The existence of at least three positive solutions

In this section, we are going to prove the existence of multiple positive solution for the

m-point boundary value problem (1.1).

Theorem 3.1 Assume δ ∈ (0, 12 ), there exist constants r1, r2, L1, L2, b with 0 < r1 < δα−β−1b <

b < b
δβ

< b
δα−1 := d <

∫ 1
0
G(1,s)ds

δα−1
∫ 1−δ
δ

G(1,s)ds
b < r2, 0 < L1 ≤ L2, and b < L2δ

α−1(1 − γ)Γ(α − β +

1)
∫ 1−δ

δ
G(1, s)ds, such that the following assumptions hold:

(A1) f(t, x, y) ≤ min{ r2∫ 1
0
G(1,s)ds

, (1−γ)Γ(α−β+1)L2} for (t, x, y) ∈ [0, 1]× [0, r2]× [0, L2];

(A2) f(t, x, y) ≥ b
δα−1

∫ 1−δ
δ

G(1,s)ds
for (t, x, y) ∈ [δ, 1− δ]× [b, d]× [0, L2];

(A3) f(t, x, y) ≤ min{ r1∫ 1
0
G(1,s)ds

, (1−γ)Γ(α−β+1)L1} for (t, x, y) ∈ [0, 1]×[0, r1]×[0, L1].

Then boundary value problem (1.1) has at least three positive solutions u1, u2, u3 with

0 ≤ max
t∈[0,1]

u1(t) ≤ r1 and 0 ≤ max
t∈[0,1]

Dβu1(t) ≤ L1; (3.1)

b < min
t∈[δ,1−δ]

u2(t) ≤ max
t∈[0,1]

u2(t) ≤ r2 and 0 ≤ max
t∈[0,1]

Dβu2(t) ≤ L2; (3.2)

and

min
t∈[δ,1−δ]

u3(t) ≤ b, 0 ≤ max
t∈[0,1]

u3(t) ≤ r2 and 0 ≤ max
t∈[0,1]

Dβu3(t) ≤ L2. (3.3)

Proof In order to prove that boundary value problem (1.1) has at least three positive solutions

by using Lemma 2.5, we define three functionals as follows

φ(u) = max
t∈[0,1]

u(t), θ(u) = max
t∈[0,1]

Dβu(t) and ψ(u) = min
t∈[δ,1−δ]

u(t).

Then φ, θ are nonnegative continuous convex functionals, ψ is a nonnegative continuous concave

functional on P , and ψ(u) ≤ φ(u) for all u ∈ P .

Let M = 2. Then, for all u ∈ P ,

∥u∥β = max
t∈[0,1]

|u(t)|+ max
t∈[0,1]

|Dβu(t)| = φ(u) + θ(u) ≤M max{φ(u), θ(u)},

which implies that the condition (B1) is satisfied.
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For any r > 0 and L > 0, let x = k0t
β , where 0 < k0 < min{r, L

Γ(β+1)}. Then

φ(x) = max
t∈[0,1]

k0t
β = k0 < r, θ(x) = max

t∈[0,1]
Dβk0t

β = k0Γ(β + 1) < L.

So x = k0t
β ∈ P (φr, θL) ̸= ∅, which implies that the condition (B2) is satisfied.

Next, we prove that operator Φ satisfies all conditions in Lemma 2.5.

In view of Lemma 2.7, Φ : P → P is a completely continuous operator.

Let d = b
δα−1 . Then b < d.

For every u ∈ P (φr2 , θL2), φ(u) = maxt∈[0,1] u(t) ≤ r2 and θ(u) = maxt∈[0,1]D
βu(t) ≤ L2.

By condition (A1),

f(t, u(t), Dβu(t)) ≤ min{ r2∫ 1

0
G(1, s)ds

, (1− γ)Γ(α− β + 1)L2}.

And by Lemma 2.4, we get

φ(Φu) = max
t∈[0,1]

(Φu)(t) ≤
∫ 1

0

G(1, s)f(s, u(s), Dβu(s))ds ≤ r2,

and

θ(Φu) = max
t∈[0,1]

Dβ(Φu)(t) ≤
∫ 1

0

1

(1− γ)Γ(α− β)
(1− s)α−β−1f(s, u(s), Dβu(s))ds ≤ L2,

which imply that Φ : P (φr2 , θL2) → P (φr2 , θL2).

From condition (A3), in the same way, we can prove that Φ : P (φr1 , θL1) → P (φr1 , θL1).

Then the condition (C2) of Lemma 2.5 is satisfied.

Let y = k1t
β , where b

δβ
< k1 < min{d, L2

Γ(β+1)}. Then φ(y) = maxt∈[0,1] k1t
β = k1 < d,

θ(y) = maxt∈[0,1]D
βk1t

β = k1Γ(β + 1) < L2, and ψ(y) = mint∈[δ,1−δ] k1t
β = k1δ

β > b. So

y = k1t
β ∈ {x ∈ P (φd, θL2 , ψb) : ψ(x) > b} ≠ ∅.

From (A2) and Lemma 2.4, for u ∈ P (φd, θL2 , ψb)

ψ(Φu) = min
t∈[δ,1−δ]

(Φu)(t) ≥ min
t∈[δ,1−δ]

∫ 1−δ

δ

G(t, s)f(s, u(s), Dβu(s))ds

≥δα−1

∫ 1−δ

δ

G(1, s)f(s, u(s), Dβu(s))ds > b.

Hence the condition (C1) in Lemma 2.5 is satisfied.

By (A1), in the same way, we can show that ψ(Φu) > b, for all x ∈ P (φr2 , θL2 , ψb) with

φ(Φx) > d. Then the condition (C3) in Lemma 2.5 is satisfied.

Since all the conditions of Lemma 2.5 are satisfied, then Φ will have at least three fixed

points, which implies that boundary value problem (1.1) has at least three positive solutions

u1, u2, u3 ∈ P (φr2 , θL2). Furthermore,

u1 ∈ P (φr1 , θL1), u2 ∈ {P (φr2 , θL2 , ψb) : ψ(x) > b},

and

x3 ∈ P (φr2 , θL2) \ (P (φr2 , θL2 , ψb) ∪ P (φr1 , θL1)),

which imply that the inequalities (3.1), (3.2) and (3.3) hold. �
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4. Illustration

To illustrate our main results, we present an example in this section.

We examine the existence of solutions for the following three-point boundary value problem

of fractional differential equation
D

5
2u(t) + 80e

− 200
1+300u3(t) +

sin t

100
e

D
4
3 u(t)
100 = 0, t ∈ (0, 1),

u(0) = u′(0) = 0,

D
4
3u(1) =

1

20
D

1
2u(

1

2
),

(4.1)

where α = 5
2 , β = 4

3 , η1 = 1
2 , t1 = 1

2 , λ1 = 1
20 , δ = 1

4 , f(t, x, y) = 80e
− 200

1+300x3 + sin t
100 e

y
100 . Then

α− β = 7
6 > 1, and

γ = Γ(α− β)
m−2∑
i=1

λit
α−ηi−1
i

Γ(α− ηi)
= Γ(α− β)

λ1t
α−η1−1
1

Γ(α− η1)
=

1

40
Γ(

7

6
) ≈ 0.023193 < 1.

It is easy to check that f(t, x, y) is increasing with respect to t, x and y, respectively.

Let r1 = 1
2 , b = 1, r2 = 30, L1 = 2, L2 = 80. Then 0 < r1 = 1

2 < δα−β−1b = 1
3√2

< b = 1 <

b
δβ
<

∫ 1
0
G(1,s)ds

δα−1
∫ 1−δ
δ

G(1,s)ds
b ≈ 14.0056 < r2 = 15, 0 < L1 ≤ L2, and b = 1 < δα−1(1 − γ)Γ(α − β +

1)
∫ 1−δ

δ
G(1, s)dsL2 ≈ 2.1422, and d = b

δα−1 = 8.

We can easily show that

0 < f(0, 0, 0) ≤ f(t, x, y) ≤ f(1, 15, 80) ≈ 80.0029 ≤ min{ r2∫ 1
0
G(1,s)ds

, (1 − γ)Γ(α − β +

1)L2} ≈ min{84.5711, 84.5789} = 84.5711 on (t, x, y) ∈ [0, 1]× [0, r2]× [0, L2] = [0, 1]× [0, 30]×
[0, 80];

f( 34 , 8, 80) ≈ 79.9111 ≥ f(t, x, y) ≥ f( 14 , 1, 0) ≈ 41.1669 ≥ b
δα−1

∫ 1−δ
δ

G(1,s)ds
≈ 39.4823 for

(t, x, y) ∈ [δ, 1− δ]× [b, d]× [0, L2] = [ 14 ,
3
4 ]× [1, 8]× [0, 80];

f(t, x, y) ≤ f(1,
1

2
, 2) ≈ 0.452208 ≤ min{ r1∫ 1

0
G(1, s)ds

, (1− γ)Γ(α− β + 1)L1}

≈ min{1.40952, 2.11447} for (t, x, y) ∈ [0, 1]× [0, r1]× [0, L1] = [0, 1]× [0,
1

2
]× [0, 2].

Thus, all the conditions of Theorem 3.1 are satisfied. By using Theorem 3.1, boundary value

problem (4.1) has at least three positive solutions u1, u2, u3, and

0 ≤ max
t∈[0,1]

u1(t) ≤ r1 =
1

2
, and 0 ≤ max

t∈[0,1]
Dβu1(t) ≤ L1 = 2;

1 = b < min
t∈[ 14 ,

3
4 ]
u2(t) ≤ max

t∈[0,1]
u2(t) ≤ r2 = 30 and 0 ≤ max

t∈[0,1]
Dβu2(t) ≤ L2 = 80;

and

min
t∈[ 14 ,

3
4 ]
u3(t) ≤ b = 1, 0 ≤ max

t∈[0,1]
u3(t) ≤ r2 = 30, and 0 ≤ max

t∈[0,1]
Dβu3(t) ≤ L2 = 80.
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5. Conclusions

In this paper, we have studied a class of the fractional differential equation multi-point

boundary value problem. The aim of our study is to provide an analytical approach which

can be used to determine the multiplicity of positive solutions of this boundary value problem.

By using the fixed point theorem which is due to the work of Bai and Ge, we have presented

the sufficient conditions such that this class of fractional differential equation with multi-point

boundary conditions has at least three positive solutions. In the end of this paper, an example

is presented to illustrate the main results.
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