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Abstract In this paper, we study the existence of nodal solutions for the following problem:

− (φp(x
′))′ = α(t)φp(x

+) + β(t)φp(x
−) + ra(t)f(x), 0 < t < 1,

x(0) = x(1) = 0,

where φp(s) = |s|p−2s, a ∈ C([0, 1], (0,∞)), x+ = max{x, 0}, x− = −min{x, 0}, α(t), β(t) ∈
C[0, 1]; f ∈ C(R,R), sf(s) > 0 for s ̸= 0, and f0, f∞ ̸∈ (0,∞), where

f0 = lim
|s|→0

f(s)/φp(s), f∞ = lim
|s|→+∞

f(s)/φp(s).

We use bifurcation techniques and the approximation of connected components to prove our

main results.
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1. Introduction

Let E be a real Banach space with the norm ∥ · ∥. Consider the operator equation

u = λBu+H(λ, u), (1.1)

where B is a compact linear operator and H : R×E → E is compact with H = o(∥u∥) at u = 0

uniformly on bounded λ intervals. Krasnoselskii [1] has shown that all characteristic values of B

which are of odd multiplicity are bifurcation points. Rabinowitz [2] has extended this result by

showing that bifurcation has global consequences. Furthermore, if the characteristic value µ of

B has multiplicity 1 and

S = {(λ, u) : (λ, u) satisfies (1.1) andu ̸≡ 0}
R×E

.

Dancer [3] has shown that there are two distinct unbounded continua C+
µ and C−

µ , consisting of

the bifurcation branch Cµ of S emanating from (µ, 0), which satisfy either C+
µ and C−

µ are both

unbounded or C+
µ ∩ C−

µ ̸= {(µ, 0)}.
In the past ten years, some authors [4–9] studied the existence of Nodal solutions for the

problems by applying Rabinowitz bifurcation techniques [2]. By using bifurcation techniques of
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Dancer [3], Dai [10,11] also considered the p-Laplacian problems. Recently, the problem involving

non-differentiable nonlinearities have also been investigated by applying bifurcation techniques,

see [12–16] and references therein. Meanwhile, Half-linear or Half-quasilinear problems have

attracted the attention of many specialists in different equations because of their interesting

applications [12,14–17]. Especially, Dai [16] considered the existence of nodal solutions for the

following half-quasilinear eigenvalue problem

− (φp(x
′))′ = α(t)φp(x

+) + β(t)φp(x
−) + ra(t)f(x), 0 < t < 1,

x(0) = x(1) = 0,
(1.2)

where φp(s) = |s|p−2s, x+ = max{x, 0}, x− = −min{x, 0}, α(t), β(t) ∈ C[0, 1] and f ∈ C(R,R).
Under the following assumptions:

(A1) a ∈ C([0, 1], (0,∞)).

(A2) sf(s) > 0 for s ̸= 0.

(A3) f0, f∞ ∈ (0,+∞),

where

f0 = lim
|s|→0

f(s)

φp(s)
, f∞ = lim

|s|→+∞

f(s)

φp(s)
,

they obtained the following result:

Theorem 1.1 Let (A1), (A2), and (A3) hold. For some k ∈ N and ν = +,−, either
λν
k

f∞
< r <

λν
k

f0

or
λν
k

f0
< r <

λν
k

f∞
. Then the problem (1.2) possesses two solutions x+

k and x−
k such that x+

k has

exactly k− 1 zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is

negative near 0. Where λν
k be given in Lemma 2.1.

Of course, the natural question is what would happen if f0 ̸∈ (0,+∞) or f∞ ̸∈ (0,+∞).

Obviously, the previous results cannot deal with this case. The purpose of this work is to estab-

lish several results similar to those of [16]. The main methods used in this work are unilateral

global bifurcation techniques and the approximation of connected components. Moreover, we

consider the cases of f0, f∞ ̸∈ (0,∞), while the authors of [14–16] only studied the cases of

f0, f∞ ∈ (0,∞).

Remark 1.2 We also note that, in high-dimensional case, there are also a lot of fundamental

papers on the global bifurcation for p-Laplacian [18–21].

Remark 1.3 For the abstract unilateral global bifurcation theory, we refer the reader to

[3,10,14,16,22,23] and the references therein.

The rest of this paper is arranged as follows. In Section 2, we give some preliminaries.

In Section 3, we investigate the existence of nodal solutions for a class of the half-quasilinear

p-Laplacian problems under the conditions (H1)–(H8), respectively.

2. Preliminaries

Let Y = C[0, 1] with the norm ∥x∥∞ = maxt∈[0,1] |x(t)|. Let E = {x ∈ C1[0, 1]|x(0) =

x(1) = 0} with the norm ∥x∥ = maxt∈[0,1] |x(t)| + maxt∈[0,1] |x′(t)|. Let E = R × E under the
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product topology. Let S+
k denote the set of functions in E which have exactly k − 1 interior

nodal (i.e., nondegenerate) zeros in (0, 1) and are positive near t = 0. Set S−
k = −S+

k , and

Sk = S+
k ∪ S−

k . They are disjoint and open in E. Finally, let Φ±
k = R × S±

k and Φk = R × Sk.

Let S denote the closure of the set of nontrivial solutions of (1.2) in R×E, and S ν
k denote the

subset of with u ∈ S±
k and Sk = S +

k ∪ S −
k .

In [16], Dai established an important global bifurcation theorem from intervals for a class of

second-order p-Laplacian problems involving non-differentiable nonlinearity. Furthermore, Dai

established the spectrum for the following Half-quasilinear problem

− (φp(x
′))′ = λa(t)φp(x) + α(t)φp(x

+) + β(t)φp(x
−), 0 < t < 1,

x(0) = x(1) = 0,
(2.1)

and obtained the following result.

Lemma 2.1 ([16]) Let (A1) hold. There exist two sequences of simple half-eigenvalues for (2.1)

λ+
1 < λ+

2 < · · · < λ+
k < · · · , lim

k→∞
λ+
k = +∞

and

λ−
1 < λ−

2 < · · · < λ−
k < · · · , lim

k→∞
λ−
k = +∞.

The corresponding Half-quasilinear solutions are in {λ+
k } × S+

k and {λ−
k } × S−

k . Further, aside

from these solutions and the trivial ones, there are no other solutions of (2.1).

In order to prove our main results, by [16], we have

Lemma 2.2 ([16]) If (λ, x) is a nontrivial solution of (1.2) under assumptions (A1), (A2), and

(A3) and x has a double zero, then x ≡ 0.

Lemma 2.3 ([16]) Let b2(t) ≥ max{b1(t), b1(t) + α(t) + β(t), b1(t) − α(t) − β(t)} for t ∈ (0, 1)

and bi(t) ∈ C(0, 1), i = 1, 2. Also let u1, u2 be solutions of the following differential equations

(φp(u
′))′ + bi(t)φp(u) + α(t)φp(u

+) + β(t)φp(u
−), 0 < t < 1,

u(0) = u(1) = 0,

respectively. If (c, d) ⊆ (0, 1), and u1(c) = u1(d) = 0, u1(t) ̸= 0 in (c, d), then either there exists

τ ∈ (c, d) such that u2(τ) = 0 or b2 = b1 or b2 = b1+α+β or b2 = b1−α−β and u2(t) = µu1(t)

for some constant µ ̸= 0.

Lemma 2.4 ([16]) Let I = (a, b) be such that I ⊂ (0, 1) and

meas(I) > 0.

Let gn ∈ C((0, 1),R) be such that

lim
n→+∞

gn(t) = +∞ uniformly on I.

Let yn ∈ E be a solution of the equation{
(φp(y

′
n))

′ + bi(t)φp(yn) + α(t)φp(y
+
n ) + β(t)φp(y

−
n ) = 0, 0 < t < 1,

yn(0) = yn(1) = 0.
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Then yn must change sign on I as n → +∞.

In this section, we need the following topological lemma.

Lemma 2.5 ([24]) Let X be a Banach space and {Cn|n = 1, 2, . . .} be a family of closed

connected subsets of X. Assume that

(i) There exist zn ∈ Cn, n = 1, 2, . . . and z∗ ∈ X, such that zn → z∗;

(ii) rn = sup{∥x∥|x ∈ Cn} = ∞;

(iii) For all R > 0, (∪∞
n=1Cn) ∩BR is a relative compact set of X, where

BR = {x ∈ X|∥x∥ ≤ R}.

Then there exists an unbounded component C in D and z∗ ∈ C, where

D := lim sup
n→∞

Cn = {x ∈ X|∃{ni} ⊂ N and xni ∈ Cni , such that xni → x} (see [25]).

3. Nodal solutions for half–quasilinear p-Laplacian problems

In the section, we shall investigate the existence of nodal solutions for the problem (1.2),

where a satisfies the condition (A1). Throughout this paper, we assume that f satisfies (A2)

and the following assumptions:

(H1) f0 ∈ (0,∞) and f∞ = 0;

(H2) f0 = 0 and f∞ ∈ (0,∞);

(H3) f0 = ∞ and f∞ ∈ (0,∞);

(H4) f0 ∈ (0,∞) and f∞ = ∞;

(H5) f0 = ∞ and f∞ = 0;

(H6) f0 = 0 and f∞ = ∞;

(H7) f0 = 0 and f∞ = 0;

(H8) f0 = ∞ and f∞ = ∞.

We start this section by studying the following eigenvalue problem

− (φp(x
′))′ = α(t)φp(x

+) + β(t)φp(x
−) + λra(t)f(x), 0 < t < 1,

x(0) = x(1) = 0,
(3.1)

where λ > 0 is a parameter. Let ζ ∈ C(R,R) be such that

f(x) = f0φp(x) + ζ(x)

with lim|x|→0
ζ(x)
φp(x)

= 0. Let us consider

− (φp(x
′))′ = λra(t)f0φp(x) + α(t)φp(x

+) + β(t)φp(x
−) + λra(t)ζ(x), 0 < t < 1,

x(0) = x(1) = 0,
(3.2)

as a bifurcation problem from the trivial solution x ≡ 0. Dai [16] obtained the following Lemma.

Lemma 3.1 ([16, Lemma 4.1]) Let (A1), (A2), and (A3) hold. For some k ∈ N and ν ∈ {+,−},
(
λν
k

rf0
, 0) is a bifurcation point for problem ((3.2). Moreover, there exists an unbounded continuum
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Dν
k of solutions of problem (3.2), such that Dν

k ⊂ (Φν
k ∪ {( λν

k

rf0
, 0)}).

Remark 3.2 Any solution of (3.1) of the form (1, x) yields a solution x of (1.2). In order to

prove our main results, one will only show that Dν
k crosses the hyperplane {1} × E in R× E.

Clearly, (A2) implies f(0) = 0. Hence, x = 0 is always the solution of (1.2). Applying

Lemma 3.1 (or [16, Lemma 4.1]), we establish the existence of nodal solutions of (1.2) as follows.

Theorem 3.3 Let (A1), (A2), and (H1) hold. For some k ∈ N and ν ∈ {+,−}, assume that

one of the following conditions holds

(i) r ∈ (
λν
k

f0
,+∞) for λν

k > 0;

(ii) r ∈ (−∞,
λ−
k

f0
) ∪ (

λ+
k

f0
,+∞) for νλν

k > 0;

(iii) r ∈ (−∞,
λ+
k

f0
) ∪ (

λ−
k

f0
,+∞) for νλν

k < 0;

(iv) r ∈ (−∞,
λν
k

f0
) for λν

k < 0.

Then the problem (1.2) possesses two solutions x+
k and x−

k such that x+
k has exactly k − 1

zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is negative near

0.

Proof We only prove the case of (i) since the proofs of the cases for (ii), (iii) and (iv) can be

given similarly.

In view of the proof to prove [16, Theorem 1.3], we only need to show that Dν
k joins (

λν
k

rf0
, 0)

to (∞,∞). To do this, it is enough to prove that [
λν
k

rf0
,+∞) ⊂ ProjRDν

k .

Assume on the contrary that sup{λ|(λ, u) ∈ Dν
k } < +∞, then there exists a sequence

(µn, xn) ∈ Dν
k such that

lim
n→∞

∥xn∥ = +∞, µn ≤ c0

for some positive constant c0 independent of n.

By (H1), let f(x) = max0≤|s|≤x |f(s)|. Then f is nondecreasing and

lim
x→+∞

f(x)

xp−1
= 0. (3.3)

We consider the equation

− (φp(x
′
n))

′ = α(t)φp(x
+
n ) + β(t)φp(x

−
n ) + λra(t)f(xn), 0 < t < 1,

xn(0) = xn(1) = 0,

Dividing the above problem by ∥xn∥p−1, let yn = xn

∥xn∥ , yn should be the solutions of problem

− (φp(y
′
n))

′ = α(t)φp(y
+
n ) + β(t)φp(y

−
n ) + µnra(t)

f(xn)

∥xn∥p−1
,

yn(0) = yn(1) = 0.

(3.4)

Since yn is bounded in C2[0, 1], choosing a subsequence and relabeling if necessary, we have

that yn → y for some y ∈ E and ∥y∥ = 1.
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Furthermore, from (3.3) and the fact that f is nondecreasing, we have that

lim
x→+∞

f(x)

∥x∥p−1
= 0. (3.5)

Since
f(x)

∥x∥p−1
≤ f(|x|)

∥x∥p−1
≤ f(∥x∥∞)

∥x∥p−1
≤ f(∥x∥)

∥x∥p−1
→ 0, ∥x∥ → +∞,

by (3.4), (3.5) and the compactness of L−1, we obtain that

− (φp(y
′))′ = α(t)φp(y

+) + β(t)φp(y
−), t ∈ (0, 1),

y(0) = y(1) = 0.

By y(0) = y(1), there exists ξ ∈ (0, 1) such that y′(ξ) = 0. Furthermore, applying the similar

method to prove [16, Lemma 2.2] with obvious changes, we may obtain |y(t)| ≡ 0, ∀t ∈ [0, 1].

This contradicts ∥y(t)∥ = 1. �

Theorem 3.4 Let (A1), (A2) and (H2) hold. For some k ∈ N and ν ∈ {+,−}, assume that one

of the following conditions holds

(i) r ∈ (
λν
k

f∞
,+∞) for λν

k > 0;

(ii) r ∈ (
λ+
k

f∞
,+∞) ∪ (−∞,

λ−
k

f∞
) for νλν

k > 0;

(iii) r ∈ (
λ−
k

f∞
,+∞) ∪ (−∞,

λ+
k

f∞
) for νλν

k < 0;

(iv) r ∈ (−∞,
λν
k

f∞
) for λν

k < 0.

Then the problem (1.2) possesses two solutions x+
k and x−

k such that x+
k has exactly k − 1

zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is negative near

0.

Proof We only prove the case of (i) since the proof of (ii)–(iv) can be given similarly.

If (λ, x) is any nontrivial solution of problem (1.2), dividing problem (1.2) by ∥x∥2(p−1) and

setting y = x
∥x∥2 yields

− (φp(y
′))′ = α(t)φp(y

+) + β(t)φp(y
−) + λra(t)

f(x)

∥x∥2(p−1)
, 0 < t < 1,

y(0) = y(1) = 0.

(3.6)

Define

f̃(y) :=

{
∥y∥2(p−1)f( y

∥y∥2 ), if y ̸= 0,

0, if y = 0.

Evidently, problem (3.6) is equivalent to

− (φp(y
′))′ = α(t)φp(y

+) + β(t)φp(y
−) + λra(t)f̃(y), 0 < t < 1,

y(0) = y(1) = 0.
(3.7)

It is obvious that (λ, 0) is always the solution of problem (3.7). By simple computation, we

can show that f̃0 = f∞ and f̃∞ = f0. Now, applying Theorem 3.3, there exists an unbounded

continuum C ν
k of solutions of the problem (3.7) emanating from (0, 0), such that C ν

k ⊂ (Φν
k ∪

{(0, 0)}), and C ν
k joins (0, 0) to ( λν

rf̃∞
,∞).
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Under the inversion y → y
∥y∥2 = x, we obtain C ν

k → Dν
k being solutions of the problem (1.2)

such that Dν
k joins ( λν

rf0
, 0) to (0,∞). �

Theorem 3.5 Let (A1), (A2) and (H3) hold. For some k ∈ N and ν ∈ {+,−}, assume that one

of the following conditions holds

(i) r ∈ (0,
λν
k

f∞
) for λν

k > 0;

(ii) r ∈ (0,
λ+
k

f∞
) ∪ (

λ−
k

f∞
, 0) for νλν

k > 0;

(iii) r ∈ (0,
λ−
k

f∞
) ∪ (

λ+
k

f∞
, 0) for νλν

k < 0;

(iv) r ∈ (
λν
k

f∞
, 0) for λν

k < 0.

Then the problem (1.2) possesses two solutions x+
k and x−

k such that x+
k has exactly k − 1

zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is negative near

0.

Proof Inspired by the idea of [26] or see [11], we define the cut-off function of f as follows

f [n](s) :=


nφp(s), s ∈ [− 1

n ,
1
n ],[

f( 2n )−
1
np

]
(ns− 2) + f( 2n ), s ∈ ( 1n ,

2
n ),

−
[
f(− 2

n ) +
1
np

]
(ns+ 2) + f(− 2

n ), s ∈ (− 2
n ,

1
n ),

f(s), s ∈ (−∞,− 2
n ] ∪ [ 2n ,+∞).

We consider the following problem

− (φp(x
′))′ = α(t)φp(x

+) + β(t)φp(x
−) + λra(t)f [n](x), 0 < t < 1,

x(0) = x(1) = 0.
(3.8)

Clearly, we can see that limn→+∞ f [n](s) = f(s), (f [n])0 = n and (f [n])∞ = f∞.

Similarly to the proof of [16, Theorem 1.3], by Lemma 3.1 and Remark 3.2, there exists an

unbounded continuum D
ν[n]
k of solutions of the problem (3.8) emanating from (

λν
k

rn , 0), such that

D
ν[n]
k ⊂ (Φν

k ∪ {(λ
ν
k

rn , 0)}), and D
ν[n]
k joins (

λν
k

rn , 0) to (
λν
k

rf∞
,∞).

Taking zn = (
λν
k

rn , 0) and z∗ = (0, 0), we have that zn → z∗.

So condition (i) in Lemma 2.5 is satisfied with z∗ = (0, 0).

Obviously

rn = sup{λ+ ∥x∥|(λ, x) ∈ D
ν[n]
k } = ∞,

and accordingly, (ii) in Lemma 2.5 holds. (iii) in Lemma 2.5 can be deduced directly from the

Arezela-Ascoli Theorem and the definition of f [n].

Therefore, by Lemma 2.5, lim supn→∞ D
ν[n]
k contains an unbounded connected component

Dν
k with (0, 0) ∈ Dν

k .

From limn→+∞ f [n](s) = f(s), (3.8) can be converted to the equivalent equation (3.1). Since

D
ν[n]
k ⊂ Φν

k, we conclude Dν
k ⊂ Φν

k. Moreover, Dν
k ⊂ S ν

k by (1.2).

Similarly to the method of the proof of case 2 of [16, Theorem 1.3], we can obtain that

(
λν
k

rf∞
,∞) ∈ Dν

k . �

Theorem 3.6 Let (A1), (A2) and (H4) hold. For some k ∈ N and ν ∈ {+,−}, assume that one
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of the following conditions holds

(i) r ∈ (0,
λν
k

f0
) for λν

k > 0;

(ii) r ∈ (0,
λ+
k

f0
) ∪ (

λ−
k

f0
, 0) for νλν

k > 0;

(iii) r ∈ (0,
λ−
k

f0
) ∪ (

λ+
k

f0
, 0) for νλν

k < 0;

(iv) r ∈ (
λν
k

f0
, 0) for λν

k < 0.

Then the problem (1.2) possesses two solutions x+
k and x−

k such that x+
k has exactly k − 1

zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is negative near

0.

Proof By the method similar to the proofs of Theorems 3.4 and 3.5 with obvious changes, we

can obtain the result. �

Theorem 3.7 Let (A1), (A2) and (H5) hold. For some k ∈ N and ν ∈ {+,−}, assume that one

of the following conditions holds

(i) r ∈ (0,+∞) for λν
k > 0 or

(ii) r ∈ (0,+∞) ∪ (−∞, 0) for νλν
k > 0, or νλν

k < 0;

(iii) r ∈ (−∞, 0) for λν
k < 0.

Then the problem (1.2) possesses two solutions x+
k and x−

k such that x+
k has exactly k − 1

zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is negative near

0.

Proof Define

f [n](s) :=



1
nφp(s), s ∈ (−∞,−2n] ∪ [2n,+∞),
nφp(2n)+f(−n)

n (s+ n) + f(−n), s ∈ (−2n,−n),
nφp(2n)−f(n)

n (s− n) + f(n), s ∈ (n, 2n),

f(s), s ∈ [−n,− 2
n ] ∪ [ 2n , n],

−
[
f(− 2

n ) +
1
np

]
(ns+ 2) + f(− 2

n ), s ∈ (− 2
n ,−

1
n ),[

f( 2n )−
1
np

]
(ns− 2) + f( 2n ), s ∈ ( 1n ,

2
n ),

nφp(s), s ∈ [− 1
n ,

1
n ].

We consider the following problem

− (φp(x
′))′ = α(t)φp(x

+) + β(t)φp(x
−) + λra(t)f [n](x), 0 < t < 1,

x(0) = x(1) = 0.

Clearly, we can see that limn→+∞ f [n](s) = f(s), (f [n])0 = n and (f [n])∞ = 1
n .

Applying the similar method used in the proof of Theorem 3.5, we obtain an unbounded

connected component Dν
k ⊂ S ν

k with (0, 0) ∈ Dν
k .

Similarly to the proof of Theorem 3.3, we get (∞,∞) ∈ Dν
k , and the result is obtained. �

Theorem 3.8 Let (A1), (A2) and (H6) hold. For some k ∈ N and ν ∈ {+,−}, assume that one

of the following conditions holds

(i) r ∈ (0,+∞) for λν
k > 0;
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(ii) r ∈ (0,+∞) ∪ (−∞, 0) for νλν
k > 0, or νλν

k < 0;

(iii) r ∈ (−∞, 0) for λν
k < 0.

Then the problem (1.2) possesses two solutions x+
k and x−

k such that x+
k has exactly k − 1

zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is negative near

0.

Proof By the method similar to the proofs of Theorems 3.4 and 3.7 with obvious changes, we

can obtain the result. �

Theorem 3.9 Let (A1), (A2) and (H7) hold. For some k ∈ N and ν ∈ {+,−}, assume that one

of the following conditions holds

(i) There exists a λν
νk > 0 for λν

k > 0, such that r ∈ (λν
νk,+∞);

(ii) There exists a νλν
νk > 0 for νλν

k > 0, such that r ∈ (−∞, λ−
−k) ∪ (λ+

+k,+∞);

(iii) There exists a νλν
νk < 0 for νλν

k < 0, such that r ∈ (−∞, λ+
+k) ∪ (λ−

−k,+∞);

(iv) There exists a λν
νk < 0 for λν

k < 0, such that r ∈ (−∞, λν
νk).

Then the problem (1.2) possesses two solutions x+
k and x−

k such that x+
k has exactly k − 1

zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is negative near

0.

Proof Define

f [n](s) :=



1
nφp(s), s ∈ (−∞,−2n] ∪ [2n,+∞),
nφp(2n)+f(−n)

n (s+ n) + f(−n), s ∈ (−2n,−n),
nφp(2n)−f(n)

n (s− n) + f(n), s ∈ (n, 2n),

f(s), s ∈ [−n,− 2
n ] ∪ [ 2n , n],

−
[
f(− 2

n ) +
1
np

]
(ns+ 2) + f(− 2

n ), s ∈ (− 2
n ,−

1
n ),[

f( 2n )−
1
np

]
(ns− 2) + f( 2n ), s ∈ ( 1n ,

2
n ),

1
nφp(s), s ∈ [− 1

n ,
1
n ].

We consider the following problem

− (φp(x
′))′ = α(t)φp(x

+) + β(t)φp(x
−) + λra(t)f [n](x), 0 < t < 1,

x(0) = x(1) = 0.

Clearly, we can see that limn→+∞ f [n](s) = f(s), (f [n])0 = 1
n and (f [n])∞ = 1

n .

Applying the similar method used in the proof of Theorem 3.4, we obtain an unbounded

connected component Dν
k ⊂ S ν

k with (∞, 0) ∈ Dν
k .

Similarly to the proof of Theorem 3.3, we can show that (∞,∞) ∈ Dν
k . �

Theorem 3.10 Let (A1), (A2) and (H8) hold. For some k ∈ N and ν ∈ {+,−}, assume that

one of the following conditions holds

(i) There exists a λν
νk > 0 for λν

k > 0, such that r ∈ (λν
νk,+∞);

(ii) There exists a νλν
νk > 0 for νλν

k > 0, such that r ∈ (−∞, λ−
−k) ∪ (λ+

+k,+∞);

(iii) There exists a νλν
νk < 0 for νλν

k < 0, such that r ∈ (−∞, λ+
+k) ∪ (λ−

−k,+∞);
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(iv) There exists a λν
νk < 0 for λν

k < 0, such that r ∈ (−∞, λν
νk).

Then the problem (1.2) possesses two solutions x+
k and x−

k such that x+
k has exactly k − 1

zeros in (0, 1) and is positive near 0 and x−
k has exactly k− 1 zeros in (0, 1) and is negative near

0.

Proof Define

f [n](s) :=



nφp(s), s ∈ (−∞,−2n] ∪ [2n,+∞),
nφp(2n)+f(−n)

n (s+ n) + f(−n), s ∈ (−2n,−n),
nφp(2n)−f(n)

n (s− n) + f(n), s ∈ (n, 2n),

f(s), s ∈ [−n,− 2
n ] ∪ [ 2n , n],

−
[
f(− 2

n ) +
1
np

]
(ns+ 2) + f(− 2

n ), s ∈ (− 2
n ,−

1
n ),[

f( 2n )−
1
np

]
(ns− 2) + f( 2n ), s ∈ ( 1n ,

2
n ),

nφp(s), s ∈ [− 1
n ,

1
n ].

We consider the following problem

− (φp(x
′))′ = α(t)φp(x

+) + β(t)φp(x
−) + λra(t)f [n](x), 0 < t < 1,

x(0) = x(1) = 0.

Clearly, we can see that limn→+∞ f [n](s) = f(s), (f [n])0 = n and (f [n])∞ = n.

Applying the similar method used in the proof of Theorem 3.5, we obtain an unbounded

connected component Dν
k ⊂ Φν

k with (0, 0) ∈ Dν
k .

By Theorem 3.6, we can show that (0,∞) ∈ Dν
k . �

Remark 3.11 Clearly, if p = 2, α = β = 0, the problem (1.2) was studied in [6,7] under the

conditions (A2) and (H5) or (H6), and the results of Theorems 3.6 and 3.10 improve those of

Theorems 1.1 and 1.2 in [6] or [7].

Remark 3.12 Note that if α = β ≡ 0, the results of Theorems 3.3–3.10 are equivalent to those

of Theorems 2.1–2.8 of [11], respectively. Hence, Theorems 3.1–3.8 extend the corresponding

results of [11].

Remark 3.13 The nonlinear term of (1.2) is not necessarily homogeneous linearizable at the

origin and infinity because of the influence of the term αx+ + βx−. So the bifurcation results of

[1–3,10,11] cannot be applied directly to obtain our results.

Remark 3.14 We consider the cases of f0, f∞ ̸∈ (0,∞), while the authors of [16] only studied

the cases of f0, f∞ ∈ (0,∞). Hence, Theorems 3.3–3.10 extend the Theorem 4.1 of [16].

References

[1] M. A. KRASNOSELSKII. Topological Methods in the Theory of Nonlinear Integral Equations. The Macmil-

lan Co., New York, 1964.

[2] P. H. RABINOWITZ. Some global results for nonlinear eigenvalue problems. J. Functional Analysis, 1971,

7: 487–513.



252 Wenguo SHEN

[3] E. N. DANCER. On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. J.,

1974, 23: 1069–1076.

[4] Ruyun MA, B. THOMPSON. Nodal solutions for nonlinear eigenvalue problems. Nonlinear Anal., 2004,

59(5): 707–718.

[5] B. P. RYNNE. Global bifurcation for 2mth-order boundary value problems and infinitely many solutions of

superlinear problems. J. Differential Equations, 2003, 188: 461–472.

[6] Ruyun MA, B. THOMPSON. Multiplicity results for second-order two-point boundary value problems with

superlinear or sublinear nonlinearities. J. Math. Anal. Appl., 2005, 303(2): 726–735.

[7] Ruyun MA. Nodal solutions of second-order boundary value problems with superlinear or sublinear nonlin-

earities. Nonlinear Anal., 2007, 66(4): 950–961.

[8] Junping SHI, Xuefeng WANG. On global bifurcation for quasilinear elliptic systems on bounded domains.

J. Differential Equations, 2009, 246(7): 2788–2812.

[9] Y. H. LEE, I. SIM. Global bifurcation phenomena for singular one-dimensional p-Laplacian. J. Differential

Equations, 2006, 229(1): 229–256.

[10] Guowei DAI, Ruyun MA. Unilateral global bifurcation phenomena and nodal solutions for p-Laplacian. J.

Differential Equations, 2012, 252(3): 2448–2468.

[11] Guowei DAI. Bifurcation and nodal solutions for p-Laplacian problems with non-asymptotic nonlinearity at

0 or ∞. Appl. Math. Lett., 2013, 26(1): 46–50.

[12] H. BERESTYCKI. On some nonlinear Sturm-Liouville problems. J. Differential Equations, 1977, 26(3):

375–390.

[13] K. SCHMITT, H. L. SMITH. On eigenvalue problems for nondifferentiable mappings. J. Differential Equa-

tions, 1979, 33(3): 294–319.

[14] Ruyun MA, Guowei DAI. Global bifurcation and nodal solutions for a Sturm-Liouville problem with a

nonsmooth nonlinearity. J. Funct. Anal., 2013, 265(8): 1443–1459.

[15] Guowei DAI, Ruyun MA. Global bifurcation, Berestycki’s conjecture and one-sign solutions for p-Laplacian.

Nonlinear Anal., 2013, 91: 51–59.

[16] Guowei DAI, Ruyun MA. Unilateral global bifurcation for p-Laplacian with non-p-1-linearization nonlinear-

ity. Discrete Contin. Dyn. Syst., 2015, 35(1): 99–116.

[17] P. BINDING, B. RYNNE. Half-eigenvalues of periodic Sturm-Liouville problems. J. Differential Equations,

2004, 206(2): 280–305.
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[23] J. LÓPEZ-GÓMEZ. Spectral Theory and Nonlinear Functional Analysis. Chapman & Hall/CRC, Boca

Raton, FL, 2001.

[24] Ruyun MA, Yulian AN. Global structure of positive solutions for nonlocal boundary value problems involving

integral conditions. Nonlinear Anal., 2009, 71(10): 4364–4376.

[25] G. T. WHYBURN. Topological Analysis. Princeton University Press, Princeton, 1958.

[26] A. AMBROSETTI, R. M. CALAHORRANO, F. R. DOBARRO. Global branching for discontinuous prob-

lems. Comment. Math. Univ. Carolin., 1990, 31(2): 213–222.


