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Abstract The Q-index of a graph G is the largest eigenvalue q(G) of its signless Laplacian

matrix Q(G). In this paper, we prove that the wheel graph Wn = K1 ∨ Cn−1 is the unique

graph with maximal Q-index among all Halin graphs of order n. Also we obtain the unique

graph with second maximal Q-index among all Halin graphs of order n.
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1. Introduction

As usual, let G = (V (G), E(G)) be a finite, undirected and simple graph with order n. Let

A(G) be the adjacency matrix of G and D(G) = diag(d1, d2, . . . , dn) be the diagonal matrix of

vertex degrees of G, or simply A, D and Q, respectively. The matrix Q(G) = D(G) + A(G)

is called the signless Laplacian matrix of G. The largest eigenvalue of A(G) or Q(G) is called

the spectral radius or signless Laplacian spectral radius of G, and denoted by ρ(G) or q(G),

respectively. By Perron-Frobenius Theorem, we know that if G is a simple connected graph,

then q(G) is nonnegative and simple, and there is a unique positive unit eigenvector x = x(G)

(called Perron eigenvector) of Q(G) corresponding to q(G). In recent years, the study of the

spectral properties of the signless Laplacian spectral radius has attracted much attention, and

the reader may consult [1–4].

Set ΓG(v) = {u|uv ∈ E(G)}, and dG(v) = |ΓG(v)|; or simply Γ(v) and d(v), respectively.

Let δ = δ(G) and ∆ = ∆(G) denote the minimum degree and maximum degree of the graph

G. And T (v) =
∑

uv∈E(G) d(u) denotes the sum of degrees of neighbours of v. Further, for a

matrix M , denote the v-th row sum of M by sv(M). Denote by Kn, Cn, Pn a complete graph, a

cycle and a path of order n, respectively. The join of G ∨H of disjoint graphs G and H is the

graph obtained from G ∪ H by joining each vertex of G to each vertex of H . For terminology

and notations of graphs undefined here, we refer the reader to [5].

Let T be a tree with n ≥ 4 vertices and without vertices of degree two. If T is embeded in

the plane with the leaves v1, v2, . . . , vt arranged in clockwise direction, then T , together with the
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new edges vivi+1 (where vt+1 = v1) that induce a cycle on the set of leaves, forms a 3-connected

planar graph G called a Halin graph. The leaves vi of T are called the outer vertices, while the

remaining vertices are called inner vertices.

Obviously, the wheel graph Wn = K1 ∨ Cn−1 (as shown in Figure 1) is the unique Halin

graph with one inner vertex. The graph G3 = G(s, t) (as shown in Figure 2) is the Halin graph

with order n = s + t + 2 ≥ 6 and two inner vertices. For G3 = G(s, t), when t = 2 or s = 2,

G3
∼= G2 (as shown in Figure 1). Graphs G4 and G5 (as shown in Figure 3) are the Halin graphs

with order n ≥ 8 and three inner vertices.
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Figure 1 The wheel Wn with order n ≥ 4 and the graph G2 with order n ≥ 6
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Figure 2 The graph G3 = G(s, t) with order n = s+ t+ 2 ≥ 6
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Figure 3 The graphs G4 and G5 with order n ≥ 8, where 0 ≤ r ≤ n− 7

In 1969, Halin [6] introduced Halin graphs when they researched the minimum 3-connected

planar graphs. Later, Li, Zhang and Wang et al. [7,8] have done a lot of work for the chromatic

number, the edge chromatic number and the total chromatic number of Halin graphs. Next Shu

and Hong [9] studied the spectral radius of outerplanar graphs and Halin graphs, and gave the

upper bound for the spectral radius of Halin graphs and the corresponding extremal graphs.

Furthermore, Yuan and Shu [10] gave a new upper bound for the spectral radius of Halin graphs

and the corresponding extremal graphs. Recently, Lin [11] obtained the upper bound on the

signless Laplacian spectral radius of Halin graphs in terms of its genus and the maximum degree.
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Then in 2013, Feng et al. [12] obtained the upper bound on the signless Laplacian spectral radius

of Halin graphs in terms of its genus and the order of the graph, with further improvements in

the case that the graph is Halin graphs. In 2015, Yu et al. [13] presented a better upper bound

on the signless Laplacian spectral radius of Halin graphs in terms of order and maximum degree.

In this paper, we prove that the wheel graph Wn is the unique graph with maximal Q-index

among all Halin graphs of order n. Also we prove that G2 (as shown in Figure 1) is the unique

graph with second maximal Q-index among all Halin graphs of order n. We also obtain a lower

bound of the Q-index q(G) of the graph G = K1 ∨ Pn−1.

2. Main lemmas

Before our proofs we give some lemmas which are used in the proofs.

Lemma 2.1 ([12]) Let G be a Halin graph of order n ≥ 7. If G has t ≥ 1 inner vertices. Then

q(G) ≤ 1

2
(n− 2t+ 6 +

√

(n− 2t+ 2)2 + 24).

Lemma 2.2 ([14]) Let Q be the signless Laplacian matrix of a graph G and let P (x) be an

arbitrary real-valued polynomial in x. Then

min
v∈V (G)

sv(P (Q)) ≤ q(P (Q)) ≤ max
v∈V (G)

sv(P (Q)).

Moreover, if the row sums of P (Q) are not all equal then both inequalities are strict.

Lemma 2.3 ([3]) Let G be a connected graph containing at least one edge. Then

q(G) ≥ ∆+ 1

with equality if and only if G ∼= K1,n−1.

Lemma 2.4 ([15]) Let G be a connected graph of order n and q(G) be the signless Laplacian

spectral radius of G. Let u, v be two vertices of G and d(v) be the degree of vertex v. Assume

v1, v2, . . . , vs(1 ≤ s ≤ d(v)) are some vertices of Γ(v) \ (Γ(u) ∪ {u}) and X = (x1, x2, . . . , xn)
T

is the Perron vector of Q(G), where xi corresponds to the vertex vi (1 ≤ i ≤ n). Let G∗ =

G−{vv1, vv2, . . . , vvs}+ {uv1, uv2, . . . , uvs} be the graph obtained from G by deleting the edges

vvi and adding the edges uvi (1 ≤ i ≤ s), If xu ≥ xv, then q(G) < q(G∗).

Lemma 2.5 ([1]) Let G be a graph on n vertices with vertex degrees d1, d2, . . . , dn and largest

Q-eigenvalue q1. Then

min(di + dj) ≤ q1 ≤ max(di + dj),

where (i, j) runs over all pairs of adjacent vertices of G. For a connected graph G, equality holds

in either of these inequalities if and only if G is regular or semi-regular bipartite.

3. Main results

First we give a lower bound of the Q-index q(G) of the graph G = K1 ∨Pn−1. Then we will
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prove some basic results.

Lemma 3.1 Let G = K1 ∨ Pn−1 and n ≥ 3. Then

q(G) ≥ n+ 1 +
√

(n− 7)2 + 32

2
.

Proof G = K1 ∨ Pn−1 is shown in Figure 4. Let q = q(G) be the signless Laplacian spectral

radius of G. For Q = D +A, then we have sv(Q) = 2d(v) and

sv(D
2) = sv(DA) = d2(v), sv(AD) = sv(A

2) = T (v).
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Figure 4 G = K1 ∨ Pn−1

Therefore,

sv(Q
2)− (n+ 1)sv(Q) = sv(D

2 +DA+AD +A2)− (n+ 1)sv(Q)

= 2d2(v) + 2T (v)− 2(n+ 1)d(v).

From the graph G, we obtain the following equations






















2d2(v1) + 2T (v1)− 2(n+ 1)d(v1) = 2n− 6,

2d2(vi) + 2T (vi)− 2(n+ 1)d(vi) = −2n+ 8, i = 2, 3,

2d2(vj) + 2T (vj)− 2(n+ 1)d(vj) = −4n+ 20, j = 4, 5,

2d2(vk) + 2T (vk)− 2(n+ 1)d(vk) = −4n+ 22, k = 6, 7, . . . , n.

So for i = 1, 2, . . . , n, we have svi(Q
2)−(n+1)svi(Q) = 2d2(vi)+2T (vi)−2(n+1)d(vi) ≥ −4n+20.

From Lemma 2.2, it follows that

q2 − (n+ 1)q = q(Q2 − (n+ 1)Q) ≥ min
v∈V (G)

sv(Q
2 − (n+ 1)Q)

= min
v∈V (G)

[sv(Q
2)− (n+ 1)sv(Q)].

So we have q2 − (n+ 1)q + 4n− 20 ≥ 0, which implies q(G) ≥ n+1+
√

(n−7)2+32

2 . �

Lemma 3.2 Let G be a Halin graph with order n ≥ 6 and two inner vertices. Then

q(G) ≤ q(G2),

where G2 is shown in Figure 1.

Proof Because the Halin graph G has two inner vertices, then G ∼= G3 (as shown in Figure 2).
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If s = 2 or t = 2, then G3
∼= G2.

If s ≥ 3 and t ≥ 3, let x = x(G3) be the Perron eigenvector corresponding to q(G3). Without

loss of generality, suppose that xu ≥ xv, let G
′ = G3 − {vv3, vv4, . . . , vvt}+ {uv3, uv4, . . . , uvt}.

By Lemma 2.4, we have q(G) < q(G′) = q(G2).

This completes the proof. �

Lemma 3.3 Let G be a Halin graph with order n ≥ 8 and three inner vertices. Then

q(G) ≤ max{q(Gi)|i = 4, 5},

where Gi (i = 4, 5) are shown in Figure 3.
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Figure 5 Halin graphs G′, H ′ and H∗

Proof Let G be a Halin graph with three inner vertices. Then G ∼= G′ (G′ is shown in Figure

5), where n = l+ s+ t+ p+3. Let x = x(G′) be the Perron eigenvector corresponding to q(G′).

If xv > xw, let H
′ = G′ − {ww3, . . . , wwp} + {vw3, . . . , vwp}, by Lemma 2.4, then we have

q(G′) ≤ q(H ′). If xv ≤ xw, let H
∗ = G′ − {vv2, . . . , vvs+t} + {wv2, . . . , wvs+t}, by Lemma 2.4,

then we have q(G′) ≤ q(H∗).

Then let x′ = x(H ′) be the Perron eigenvector corresponding to q(H ′). When x′

u ≤ x′

v,

let H1 = H ′ − {uu3, . . . , uul} + {vu3, . . . , vul}. By Lemma 2.4, we have q(H ′) ≤ q(H1). Also

we know that H1
∼= G4, where r = s + p − 2 for G4. So q(H ′) ≤ q(G4). When x′

u > x′

v, let

H2 = H ′ − {vv1, . . . , vvs+t, vw4, . . . , vwp} + {uv1, . . . , uvs+t, uw4, . . . , uwp}. By Lemma 2.4, we

have q(H ′) ≤ q(H2). Also we know that H2
∼= G5. So q(H ′) ≤ q(G5).

Then let x∗ = x(H∗) be the Perron eigenvector corresponding to q(H∗). Without loss of

generality, suppose that x∗

w ≥ x∗

u, let H3 = H∗ − {uu3, . . . , uul} + {wu3, . . . , wul}. By Lemma

2.4, we have q(H∗) ≤ q(H3). Also we know that H3
∼= G5. So q(H∗) ≤ q(G5).

From the above all, we obtain q(G) ≤ max{q(Gi)|i = 4, 5}. �

Lemma 3.4 Let G4 and G5 (as shown in Figure 3) be Halin graphs with order n ≥ 8 and three
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inner vertices. Then q(Gi) < q(G2) for i = 4, 5.

Proof Method 1 of the proof of Lemma 3.4:

We will prove the results in the following two cases.

1) First we will prove that q(G4) < q(G2).

Because ∆(G4) = n − 5, by Lemma 2.3, we know that q(G4) > n− 4 ≥ 4. Let x = x(G4)

be the Perron eigenvector corresponding to q(G4).

Note that G2 = G4 − {w1w2}+ {vw1, vw2}. Then

q(G2)− q(G4) ≥ xTQ(G2)x− xTQ(G4)x

= (xv + xw1
)2 + (xv + xw2

)2 − (xw2
+ xw1

)2

= 2x2
v + 2xvxw1

+ 2xvxw2
− 2xw1

xw2
.

Next we will prove that 2xvxw1
> 2xw1

xw2
, i.e., xv > xw2

. By the symmetry of G4, we have

xw1
= xu1

, xw2
= xu2

, xu = xw , xv1 = xvr , xvr+1
= xvn−7

.

Let q = q(G4). From the eigenequations for Q(G4) we see that






















qxv = (n− 5)xv + 2xw +
∑n−7

i=1 xvi ,

qxw2
= 3xw2

+ xvn−7
+ xw1

+ xw,

qxw = 3xw + xw1
+ xw2

+ xv,

qxw1
= 3xw1

+ xw + xw2
+ xv1 .

Then

qxv − qxw2
= (n− 5)xv + xw +

n−8
∑

i=1

xvi − 3xw2
− xw1

,

(q − 3)(xv − xw2
) = (n− 8)xv + xw +

n−8
∑

i=1

xvi − xw1
.

When n ≥ 9, we have (q − 3)(xv − xw2
) ≥ xv + xw − xw1

.

Next we will prove that xv + xw − xw1
> 0,

qxv + qxw − qxw1
= (n− 4)xv + 4xw +

n−7
∑

i=2

xvi − 2xw1
,

(q − 2)(xv + xw − xw1
) = (n− 6)xv + 2xw +

n−7
∑

i=2

xvi > 0.

It follows immediately that xv > xw2
. So when n ≥ 9, we prove q(G4) < q(G2). When n = 8,

by careful calculation, we obtain 6.000 = q(G4) < q(G2) = 7.1078.

Hence we have q(G4) < q(G2).

2) Next we will prove that q(G5) < q(G2).

Because ∆(G5) = n − 5, by Lemma 2.3, we know that q(G5) > n− 4 ≥ 4. Let x = x(G5)

be the Perron eigenvector corresponding to q(G5). Let G
′ = G5 − {w1w2}+ {uw1, vw2}. Then

q(G′)− q(G5) ≥ xTQ(G′)x − xTQ(G5)x
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= (xu + xw1
)2 + (xv + xw2

)2 − (xw2
+ xw1

)2

= x2
u + x2

v + 2xuxw1
+ 2xvxw2

− 2xw1
xw2

.

Let B = 2xuxw1
+ 2xvxw2

− 2xw1
xw2

. Next we will prove that B > 0.

Let q = q(G5). From the eigenequations for Q(G5), we see that






















qxu = (n− 5)xu + xv +
∑n−6

i=1 xui
,

qxv = 3xv + xu + xv1 + xw,

qxw1
= 3xw1

+ xu1
+ xw2

+ xw,

qxw2
= 3xw2

+ xv1 + xw1
+ xw.

(1) Let xw1
≥ xw2

. Then

B ≥ 2xuxw2
+ 2xvxw2

− 2xw1
xw2

= 2xw2
(xu + xv − xw1

).

Next we will prove xu + xv − xw1
> 0. Note that

q(xu + xv − xw1
) = (n− 4)xu + 4xv +

n−6
∑

i=2

xui
+ xv1 − 3xw1

− xw2

≥ (n− 4)xu + 4xv +
n−6
∑

i=2

xui
+ xv1 − 4xw1

,

(q − 4)(xu + xv − xw1
) ≥ (n− 8)xu +

n−6
∑

i=2

xui
+ xv1 > 0.

It follows immediately that xu + xv − xw1
> 0, then q(G′)− q(G5) > 0.

(2) Let xw1
< xw2

. Then

B ≥ 2xuxw1
+ 2xvxw1

− 2xw1
xw2

= 2xw1
(xu + xv − xw2

).

Next we will prove xu + xv − xw2
> 0. Note that

q(xu + xv − xw2
) = (n− 4)xu + 4xv +

n−6
∑

i=1

xui
− 3xw2

− xw1

≥ (n− 4)xu + 4xv +
n−6
∑

i=1

xui
− 4xw2

,

(q − 4)(xu + xv − xw2
) ≥ (n− 8)xu +

n−6
∑

i=1

xui
> 0.

It follows immediately that xu + xv − xw2
> 0, then q(G′)− q(G5) > 0.

Hence we have q(G5) < q(G′). From Lemma 3.2, we have q(G5) < q(G2).

From the above two cases, we prove that q(Gi) < q(G2) (i = 4, 5).

Method 2 of the proof of Lemma 3.4:

By Lemma 2.3, we have q(G2) ≥ ∆+1 = n−2. By Lemma 2.5, we have q(Gi) ≤ n−5+3 =

n− 2 (i = 4, 5). Therefore, we have that q(Gi) < q(G2) (i = 4, 5). �

Theorem 3.5 Let G be a Halin graph with order n ≥ 6 and t ≥ 2 inner vertices. Then
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q(G) ≤ q(G2) with equality if and only if G ∼= G2, where G2 is shown in Figure 1.

Proof Because the Halin graph G has t ≥ 2 inner vertices, we have

1) When t = 2 or t = 3, by Lemmas 3.2–3.4, we have q(G) ≤ q(G2).

2) When t ≥ 4, by Lemma 2.1, q(G) ≤ 1
2 (n− 2 +

√

(n− 6)2 + 24). The Halin graph G has

t ≥ 4 inner vertices, then n ≥ 10. So we obtain

q(G) ≤ 1

2
(n− 2 +

√

(n− 6)2 + 24) =
1

2
(n− 2 +

√

n2 − 12n+ 60)

≤ 1

2
(n− 2 +

√

n2 − 6n) ≤ 1

2
(n− 2 + n− 3))

≤ n− 5

2
.

Also from Lemma 2.3, we have q(G2) ≥ ∆ + 1 = n − 2 > n − 5
2 ≥ q(G). When t ≥ 4, then

q(G) < q(G2).

From all above, we obtain when a Halin graph G has t ≥ 2 inner vertices, q(G) ≤ q(G2)

with equality if and only if G ∼= G2. �

Theorem 3.6 Let G be a Halin graph with order n (≥ 4). Then q(G) ≤ q(Wn) with equality

if and only if G ∼= Wn.

Proof Method 1 of the proof of Theorem 3.6:

It is easy to check that when n = 4, 5, then G ∼= Wn. Next we assume n ≥ 6. The graph

G2 is shown in Figure 1. Because ∆(G2) = n − 3, by Lemma 2.3, we know that q(G2) >

n − 2 ≥ 4. Let x = x(G2) be the Perron eigenvector corresponding to q(G2). Also we have

Wn = G2 − {v1v2}+ {uv1, uv2}. Then

q(Wn)− q(G2) ≥ xTQ(Wn)x− xTQ(G2)x

= (xu + xv1)
2 + (xu + xv2)

2 − (xv2 + xv1)
2

= 2x2
u + 2xuxv1 + 2xuxv2 − 2xv1xv2 .

Next we will prove that 2xuxv2 > 2xv1xv2 , i.e., xu > xv1 . By the symmetry of G2, we have

xu1
= xun−4

, xv1 = xv2 .

Let q = q(G2). From the eigenequations for Q(G2), we see that










qxu = (n− 3)xu + xv +
n−4
∑

i=1

xui
,

qxv1 = 3xv1 + xv1 + xv + xu1
.

Then

qxu − qxv1 = (n− 3)xu +

n−4
∑

i=2

xui
− 4xv1 ,

(q − 4)(xu − xv1 ) = (n− 7)xu +
n−4
∑

i=2

xui
.
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When n ≥ 7, it follows immediately that xu > xv1 . Then when n = 6, by careful calculation, we

obtain 6.000 = q(G2) < q(Wn) = 7.2361. So q(G2) < q(Wn).

When G is a Halin graph with order n, from Theorem 3.5, we obtain that q(G) ≤ q(Wn)

with equality if and only if G ∼= Wn.

Method 2 of the proof of Theorem 3.6:

It is easy to check that when n = 4, 5, then G ∼= Wn. Next we assume n ≥ 6. By Lemma

2.3, we have q(G1) ≥ ∆+ 1 = n. By Lemma 2.5, we have q(G2) ≤ n− 3 + 3 = n. Therefore, we

have that q(G2) < q(G1).

When G is a Halin graph with order n, from Theorem 3.5, we obtain that q(G) ≤ q(Wn)

with equality if and only if G ∼= Wn. This completes the proof. �
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