The Signless Dirichlet Spectral Radius of Unicyclic Graphs

Guangjun ZHANG ${ }^{1, *}$, Weixia $\mathbf{L I}^{2}$
1. School of Mathematics and Physics, Qingdao University of Science and Technology, Shandong 266061, P. R. China;
2. School of Mathematics and Statistics, Qingdao University, Shandong 266071, P. R. China

Abstract

Let G be a simple connected graph with pendant vertex set ∂V and nonpendant vertex set V_{0}. The signless Laplacian matrix of G is denoted by $Q(G)$. The signless Dirichlet eigenvalue is a real number λ such that there exists a function $f \neq 0$ on $V(G)$ such that $Q(G) f(u)=\lambda f(u)$ for $u \in V_{0}$ and $f(u)=0$ for $u \in \partial V$. The signless Dirichlet spectral radius $\lambda(G)$ is the largest signless Dirichlet eigenvalue. In this paper, the unicyclic graphs with the largest signless Dirichlet spectral radius among all unicyclic graphs with a given degree sequence are characterized.

Keywords signless Dirichlet spectral radius; unicyclic graph; degree sequence
MR(2010) Subject Classification 05C50

1. Introduction

Let $G=(V(G), E(G))$ be a simple connected graph with vertex set $V(G)$ and edge set $E(G)$. Let $d(x)$ denote the degree of a vertex x. A non-increasing positive integers sequence $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ is called a unicyclic graphic degree sequence if there exists at least a unicyclic graph with degree sequence π. Denote by $A(G)$ the adjacency matrix of G. The Laplacian matrix and signless Laplacian matrix of G is defined as $L(G)=D(G)-A(G)$ and $Q(G)=D(G)+A(G)$, respectively, where $D(G)$ is the diagonal matrix of vertex degrees of G. For a long time, most scholars have been interested in the spectra of adjacency matrix and Laplacian matrix of the graphs with a prescribed graphic degree sequence. For example, Biyikoğlu et al. [1] determined the graphs with the maximal spectral radius among all trees with a given degree sequence. Zhang [2,3] determined the graphs with the largest signless Laplacian spectral radius among all trees and unicyclic graphs with a given degree sequence, respectively. Belardo et al. [4] determined the graphs with the largest spectral radius in the set of unicyclic graphs with a given degree sequence. Huang et al. [5] determined the graphs with the largest signless Laplacian spectral radius in the set of bicyclic graphs with a given degree sequence.

Recently there is an increasing interest in the Dirichlet eigenvalue of graphs. Friedman in [6] introduced the idea of a graph with boundary and formulated the Dirichlet eigenvalue problem

[^0]for graphs involving Laplacian. Biyikoğlu and Leydold [7] determined the trees with the smallest first Dirichlet eigenvalue among all the trees with the same degree sequence. Zhang et al. [8] determined the graphs with the smallest first Dirichlet eigenvalue among the unicyclic graphs with a given degree sequence under minor conditions. Let ∂V be the set of pendant vertices of G and $V_{0}=V(G) \backslash \partial V$. In this paper, we always assume that ∂V is a nonempty set. A real number λ is called a signless Dirichlet eigenvalue of G if there exists a function $f \neq 0$ on $V(G)$ such that for $u \in V(G)$,
\[

$$
\begin{cases}Q(G) f(u)=\lambda f(u), & u \in V_{0} \\ f(u)=0, & u \in \partial V\end{cases}
$$
\]

The largest signless Dirichlet eigenvalue of $Q(G)$, denoted by $\lambda(G)$, is called the signless Dirichlet spectral radius [9]. Zhang et al. [9] determined the graphs with the largest signless Dirichlet spectral radius among the trees with a given degree sequence. Let Γ_{π} be the set of unicyclic graphs with a given degree sequence π. In this paper, we will characterize the graphs with the largest signless Dirichlet spectral radius in Γ_{π}. The main result of this paper is as follows:

Theorem 1.1 For a given unicyclic degree sequence π, Γ_{π}^{*} (see in Section 3) is the unique graph with the largest signless Dirichlet spectral radius in Γ_{π}.

2. The signless Dirichlet spectral radius

The Rayleigh quotient of signless Laplacian matrix $Q(G)$ is denoted by

$$
\Delta_{G}(f)=\frac{\langle Q f, f\rangle}{\langle f, f\rangle}=\frac{\sum_{u v \in E}(f(u)+f(v))^{2}}{\sum_{v \in V} f^{2}(v)}
$$

Then we have
Proposition 2.1 ([9]) Let G be a graph such that ∂V is not empty. Then

$$
\lambda(G)=\max _{f \in \mathcal{S}} \Delta_{G}(f)=\max _{f \in \mathcal{S}} \frac{\langle Q f, f\rangle}{\langle f, f\rangle}
$$

Moreover, if $\Delta_{G}(f)=\lambda(G)$ for a function $f \in \mathcal{S}$, then f is an eigenfunction of $\lambda(G)$, where \mathcal{S} denote the set of all real-valued functions f on $V(G)$ with $f(u)=0$ for any $u \in \partial V$.

Lemma 2.2 ([9]) Let G be a graph such that ∂V is not empty. Then the signless Dirichlet spectral radius $\lambda(G)$ of G is positive. Moreover, if f is an eigenfunction of $\lambda(G)$, then $f(v)>0$ for all $v \in V_{0}(G)$ or $f(v)<0$ for all $v \in V_{0}(G)$.

In [9], the unit eigenvector f of $\lambda(G)$ is called a Dirichlet Perron vector of G if $f(v)>0$ for all $v \in V_{0}(G)$.

3. Main result

Let $G-u v$ denote the graph obtained from G by deleting an edge $u v$ in G and $G+u v$ denote the graph obtained from G by adding an edge $u v$.

Lemma 3.1 ([9]) Let G be a graph such that ∂V is not empty. Assume $u, v, x \in V_{0}$ and $y \in V(G)$ such that $u v, x y \in E(G)$ and $u x, y v \notin E(G)$. Let f be the Dirichlet Perron vector of G and $G^{\prime}=G-u v-x y+u x+y v$. Then $\lambda\left(G^{\prime}\right) \geq \lambda(G)$ if $f(u) \geq f(y)$ and $f(x) \geq f(v)$. Moreover, $\lambda\left(G^{\prime}\right)>\lambda(G)$ if one of the two inequalities is strict.

Lemma 3.2 ([9]) Let G be a graph such that ∂V is not empty, and P be a path from a nonpendant vertex v_{1} to another non-pendant vertex v_{2}. Suppose that $v_{1} u_{i} \in E(G), v_{2} u_{i} \notin E(G)$ and u_{i} is not on the path P for $i=1,2, \ldots, t$ with $t \leq d\left(v_{1}\right)-2$. By deleting the t edges $v_{1} u_{1}, v_{1} u_{2}, \ldots, v_{1} u_{t}$ and adding the t edges $v_{2} u_{1}, v_{2} u_{2}, \ldots, v_{2} u_{t}$ we get a new graph G^{\prime}. Let f be the Dirichlet Perron vector of G. Then if $f\left(v_{1}\right) \leq f\left(v_{2}\right)$, we have $\lambda\left(G^{\prime}\right)>\lambda(G)$.

Corollary 3.3 Let G be a graph with the largest signless Dirichlet spectral radius in Γ_{π} and f be the Dirichlet Perron vector of G. If $f(x) \geq f(y)$ for any $x, y \in V(G)$, then $d(x) \geq d(y)$.

Proof Clearly, the assertion holds for $d(y)=1$. If $d(y)=2$, then $f(x) \geq f(y)>0$. So x is not a pendant vertex and $d(x) \geq d(y)=2$. In the following we prove that the assertion holds for $d(y) \geq 3$. Assume $d(x)<d(y)$. Let $t=d(y)-d(x)$ and $u_{1}, u_{2}, \ldots, u_{t}$ be the vertices which are adjacent to y and not in any path from x to y. Let $G_{1}=G-\bigcup_{s=1}^{t} y u_{s}+\bigcup_{s=1}^{t} x u_{s}$. By Lemma 3.2, we have $\lambda\left(G_{1}\right)>\lambda(G)$. It is a contradiction to our assumption. So $d(x) \geq d(y)$. The proof is completed.

Lemma 3.4 Let G be a graph with the largest signless Dirichlet spectral radius in Γ_{π} and f be the Dirichlet Perron vector of G. Then we have $f(u)>f(v)$ for any $u \in V(C)$ and $v \notin V(C)$.

Proof Let C be the cycle of G. Assume the assertion does not hold. Then there exist $x \in V(C)$ and $y \notin V(C)$ such that $f(x) \leq f(y)$. Clearly, y is not a pendant vertex. There exists a vertex $w \in V(C)$ such that $x w \in E(C)$ and $y w \notin E(G)$. There also exists a hanging path $y y_{1} y_{2} \cdots y_{p}$ such that $y_{1}, y_{2}, \ldots, y_{p-1} \notin V(C)$ and y_{p} is a pendant vertex. Since G is a unicyclic graph, we have $w y_{i} \notin E(G)$ and $x y_{i} \notin E(G)$ for all $1 \leq i \leq p$. Let $G_{1}=G-w x-y y_{1}+w y+x y_{1}$. Then $G_{1} \in \Gamma_{\pi}$. Furthermore, we have $f(w) \leq f\left(y_{1}\right)$. Otherwise, we have $\lambda\left(G_{1}\right)>\lambda(G)$ by Lemma 3.1. It is a contradiction to our assumption that G is the graph with the largest signless Dirichlet spectral radius in Γ_{π}. Let $G_{2}=G-w x-y_{1} y_{2}+w y_{2}+x y_{1}$. Then $G_{2} \in \Gamma_{\pi}$. If $f(x)>f\left(y_{2}\right)$, we have $\lambda\left(G_{2}\right)>\lambda(G)$ by Lemma 3.1, a contradiction. So we have $f(x) \leq f\left(y_{2}\right)$. By repeating the similar discussion as above, we have $f(w) \leq f\left(y_{p}\right)$ or $f(x) \leq f\left(y_{p}\right)$. Then $f\left(y_{p}\right)>0$. It is a contradiction to our assumption that y_{p} is a pendant vertex. So $f(x)>f(y)$. The proof is completed.

Lemma 3.5 Let G be a graph with the largest signless Dirichlet spectral radius in Γ_{π} and f be the Dirichlet Perron vector of G. Let v_{0}, v_{1} and v_{2} be the three vertices such that $f\left(v_{0}\right) \geq$ $f\left(v_{1}\right) \geq f\left(v_{2}\right) \geq f(x)$ for any $x \in V(G)$. Then we have $v_{0} v_{1}, v_{1} v_{2}, v_{0} v_{2} \in E(G)$.

Proof Let C be the cycle of G. By Lemma 3.4, $v_{0}, v_{1}, v_{2} \in V(C)$. Since $d\left(v_{0}\right) \geq 3$, there exists $x \notin V(C)$ such that $x v_{0} \in E(G)$. If $v_{0} v_{1} \notin E(G)$, there exists $y \in V(C)$ such that $v_{1} y \in E(G)$.

Let $G_{1}=G-v_{0} x-v_{1} y+v_{0} v_{1}+x y$. Note $f\left(v_{0}\right) \geq f(y)$ and $f\left(v_{1}\right)>f(x)$ by Lemma 3.4. Then we have $G_{1} \in \Gamma_{\pi}$ and $\lambda\left(G_{1}\right)>\lambda(G)$ by Lemma 3.1. It is a contradiction to our assumption that G is the graph with the largest signless Dirichlet spectral radius in Γ_{π}. So $v_{0} v_{1} \in E(G)$. By similar proof, we have $v_{0} v_{2} \in E(G)$. Now assume $v_{1} v_{2} \notin E(G)$. There exists $z \in V(C)$ such that $v_{1} z \in E(C)$ and $z \neq v_{2}$. Let $G_{2}=G-v_{0} x-v_{1} z+v_{0} z+x v_{1}$. Note $f\left(v_{0}\right) \geq f\left(v_{1}\right)$ and $f(z)>f(x)$ by Lemma 3.4. Then we have $G_{2} \in \Gamma_{\pi}$ and $\lambda\left(G_{2}\right)>\lambda(G)$ by Lemma 3.1. It is also a contradiction to our assumption that G is the graph with the largest signless Dirichlet spectral radius in Γ_{π}. So $v_{1} v_{2} \in E(G)$. The proof is completed.

Let $\pi=\left(d_{0}, d_{1}, \ldots, d_{n-1}\right)$ be a unicyclic graphic degree sequence with $d_{0} \geq d_{1} \geq \cdots \geq d_{n-1}$. In the following we will construct a unicyclic graph Γ_{π}^{*} with degree sequence π by the recursion. Select n vertices $v_{0}, v_{1}, \ldots, v_{n-1}$ such that v_{0} is adjacent to $v_{1}, v_{2}, \ldots, v_{d_{0}}$, and v_{1} is adjacent to v_{2}. Let v_{1} be adjacent to v_{k} for $k=d_{0}+1, d_{0}+2, \ldots, d_{0}+d_{1}-2, v_{2}$ be adjacent to v_{l} for $l=d_{0}+d_{1}-1, d_{0}+d_{1}, \ldots, d_{0}+d_{1}+d_{2}-4$, and v_{3} be adjacent to v_{b} for $b=d_{0}+d_{1}+$ $d_{2}-3, d_{0}+d_{1}+d_{2}-2, \ldots, d_{0}+d_{1}+d_{2}+d_{3}-5$. Now assume that v_{k} is adjacent to v_{h} for $h=c_{k}+1, c_{k}+2, \ldots, c_{k}+d_{k}-1$, where $c_{k}=\sum_{m=0}^{k-1} d_{m}-k-1$ and $4 \leq k \leq i$. We let v_{i+1} be adjacent to v_{g} for $g=c_{i}+d_{i}, c_{i}+d_{i}+1, \ldots, c_{i}+d_{i}+d_{i+1}-2$. In this way we obtain a unicyclic graph Γ_{π}^{*} such that $V\left(\Gamma_{\pi}^{*}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ with $d\left(v_{i}\right)=d_{i}$ for $i=0,1, \ldots, n-1$.

Proof of Theorem 1.1 Let G be the graph with the largest signless Dirichlet spectral radius in Γ_{π}. We label the vertices of G as $V(G)=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ such that $f\left(v_{0}\right) \geq f\left(v_{1}\right) \geq \cdots \geq$ $f\left(v_{n-1}\right)$. Then we have $d\left(v_{0}\right) \geq d\left(v_{1}\right) \geq \cdots \geq d\left(v_{n-1}\right)$ by Corollary 3.3 and $v_{0} v_{1} v_{2}$ is the cycle of G by Lemma 3.5. If $v_{0} v_{3} \notin E(G)$, there exists $v_{0} v_{p} \in E(G)$ with $p>3$. Let P_{1} be the path from v_{0} to v_{3}. If $f\left(v_{3}\right)=f\left(v_{p}\right)$, we may exchange the labeling of v_{3} and v_{p}. In the following we assume that $f\left(v_{3}\right)>f\left(v_{p}\right)$. Then $d\left(v_{3}\right) \geq 2$. If $v_{p} \in V\left(P_{1}\right)$, there exists v_{q} such that $v_{3} v_{q} \in E(G)$ and $v_{q} \notin V\left(P_{1}\right)$. Let $G_{1}=G-v_{0} v_{p}-v_{3} v_{q}+v_{0} v_{3}+v_{p} v_{q}$. Then we have $G_{1} \in \Gamma_{\pi}$ and $\lambda\left(G_{1}\right)>\lambda(G)$ by Lemma 3.1, since $f\left(v_{3}\right)>f\left(v_{p}\right)$ and $f\left(v_{0}\right) \geq f\left(v_{q}\right)$, a contradiction. If $v_{p} \notin V\left(P_{1}\right)$, there exists $v_{q^{\prime}}$ such that $v_{3} v_{q^{\prime}} \in E\left(P_{1}\right)$. Let $G_{1}^{\prime}=G-v_{0} v_{p}-v_{3} v_{q^{\prime}}+v_{0} v_{3}+v_{p} v_{q^{\prime}}$. Note that $f\left(v_{3}\right)>f\left(v_{p}\right)$ and $f\left(v_{0}\right) \geq f\left(v_{q^{\prime}}\right)$. Then we have $G_{1}^{\prime} \in \Gamma_{\pi}$ and $\lambda\left(G_{1}^{\prime}\right)>\lambda(G)$ by Lemma 3.1, a contradiction. So $v_{0} v_{3} \in E(G)$. By the similar discussion as above, we have $v_{0} v_{m} \in E(G)$ for $m=4,5, \ldots, d_{0}$.

If $v_{1} v_{d_{0}+1} \notin E(G)$, there is a vertex v_{s} such that $v_{1} v_{s} \in E(G)$ and $s>d_{0}+1$. Let P_{2} be the path from v_{1} to $v_{d_{0}+1}$. Without loss of generality, assume that $f\left(v_{d_{0}+1}\right)>f\left(v_{s}\right)$. Then $d\left(v_{d_{0}+1}\right) \geq 2$. If $v_{s} \in V\left(P_{2}\right)$, there exists $v_{t} \notin V\left(P_{2}\right)$ such that $v_{d_{0}+1} v_{t} \in E(G)$. Let $G_{2}=G-v_{1} v_{s}-v_{d_{0}+1} v_{t}+v_{1} v_{d_{0}+1}+v_{s} v_{t}$. Note that $f\left(v_{d_{0}+1}\right)>f\left(v_{s}\right)$ and $f\left(v_{1}\right) \geq f\left(v_{t}\right)$. Then we have $G_{2} \in \Gamma_{\pi}$ and $\lambda\left(G_{2}\right)>\lambda(G)$ by Lemma 3.1, a contradiction. If $v_{s} \notin V\left(P_{2}\right)$, there exists $v_{t^{\prime}} \in V\left(P_{2}\right)$ such that $v_{d_{0}+1} v_{t^{\prime}} \in E(G)$. Let $G_{2}^{\prime}=G-v_{1} v_{s}-v_{d_{0}+1} v_{t^{\prime}}+v_{1} v_{d_{0}+1}+v_{s} v_{t^{\prime}}$. Since $f\left(v_{d_{0}+1}\right)>f\left(v_{s}\right)$ and $f\left(v_{1}\right) \geq f\left(v_{t^{\prime}}\right)$, we have $G_{2}^{\prime} \in \Gamma_{\pi}$ and $\lambda\left(G_{2}^{\prime}\right)>\lambda(G)$ by Lemma 3.1, a contradiction. So $v_{1} v_{d_{0}+1} \in E(G)$. By similar proof, we have $v_{1} v_{k} \in E(G)$ for $k=$ $d_{0}+2, d_{0}+3, \ldots, d_{0}+d_{1}-2, v_{2} v_{l} \in E(G)$ for $l=d_{0}+d_{1}-1, d_{0}+d_{1}, \ldots, d_{0}+d_{1}+d_{2}-4$, and $v_{3} v_{b} \in E(G)$ for $b=d_{0}+d_{1}+d_{2}-3, d_{0}+d_{1}+d_{2}-2, \ldots, d_{0}+d_{1}+d_{2}+d_{3}-5$.

Let $c_{k}=\sum_{m=0}^{k-1} d_{m}-k-1$. Now assume $v_{k} v_{h} \in E(G)$ for $h=c_{k}+1, c_{k}+2, \ldots, c_{k}+d_{k}-1$
for $4 \leq k \leq i$. If $v_{i+1} v_{c_{i}+d_{i}} \notin E(G)$, there is a vertex $v_{i+1} v_{r} \in E(G)$ such that $r>c_{i}+d_{i}$. Let P_{i+2} be the path from v_{i+1} to $v_{c_{i}+d_{i}}$. Without loss of generality, assume that $f\left(v_{c_{i}+d_{i}}\right)>f\left(v_{r}\right)$. Then $d\left(v_{c_{i}+d_{i}}\right) \geq 2$. If $v_{r} \in V\left(P_{i+2}\right)$, there exists $v_{j} \notin V\left(P_{i+2}\right)$ such that $v_{c_{i}+d_{i}} v_{j} \in E(G)$. Let $G_{i+2}=G-v_{i+1} v_{r}-v_{c_{i}+d_{i}} v_{j}+v_{i+1} v_{c_{i}+d_{i}}+v_{r} v_{j}$. Since $v_{c_{i}+d_{i}} v_{j} \in E(G)$ and $v_{0}, v_{1}, \ldots, v_{i}$ have already been adjacent to the proper vertex, we have $j>i+1$. So $f\left(v_{i+1}\right) \geq f\left(v_{j}\right)$. Note that $f\left(v_{c_{i}+d_{i}}\right)>f\left(v_{r}\right)$. Then $G_{i+2} \in \Gamma_{\pi}$ and $\lambda\left(G_{i+2}\right)>\lambda(G)$ by Lemma 3.1, a contradiction. If $v_{r} \notin V\left(P_{i+2}\right)$, there exists $v_{j^{\prime}} \in V\left(P_{i+2}\right)$ such that $v_{c_{i}+d_{i}} v_{j^{\prime}} \in E\left(P_{i+2}\right)$. Then we have $j^{\prime}>i+1$ by the same reason as above. Let $G_{i+2}^{\prime}=G-v_{i+1} v_{r}-v_{c_{i}+d_{i}} v_{j^{\prime}}+v_{i+1} v_{c_{i}+d_{i}}+v_{r} v_{j^{\prime}}$. Since $f\left(v_{c_{i}+d_{i}}\right)>f\left(v_{r}\right)$ and $f\left(v_{i+1}\right) \geq f\left(v_{j^{\prime}}\right)$, we have $G_{i+2}^{\prime} \in \Gamma_{\pi}$ and $\lambda\left(G_{i+2}^{\prime}\right)>\lambda(G)$ by Lemma 3.1, a contradiction. So $v_{i+1} v_{c_{i}+d_{i}} \in E(G)$. By similar proof, we have $v_{i+1} v_{g} \in E(G)$ for $g=c_{i}+d_{i}+1, c_{i}+d_{i}+2, \ldots, c_{i}+d_{i}+d_{i+1}-2$. So G is isomorphic to Γ_{π}^{*}. The proof is completed.

Acknowledgements The authors would like to thank the referees for giving valuable corrections, suggestions and comments.

References

[1] T. BIYIKOĞLU, J. LEYDOLD. Graphs with given degree sequence and maximal spectral radius. Electron. J. Combin., 2008, 15(1): 1-9.
[2] Xiaodong ZHANG. The Laplacian spectral radii of trees with degree sequences. Discrete Math., 2008, 308(15): 3143-3150.
[3] Xiaodong ZHANG. The signless Laplacian spectral radius of graphs with given degree sequences. Discrete Appl. Math., 2009, 157(13): 2928-2937.
[4] F. BELARDO, E. M. LI MARZI, S. K. SIMIĆ, et al. On the spectral radius of unicyclic graphs with prescribed degree sequence. Linear Algebra Appl., 2010, 432(9): 2323-2334.
[5] Yufei HUANG, Bolian LIU, Yingluan LIU. The signless Laplacian spectral radius of bicyclic graphs with prescribed degree sequences. Discrete Math., 2011, 311(6): 504-511.
[6] J. FRIEDMAN. Some geometric aspects of graphs and their eigenfunctions. Duke Math. J., 1993, 69(3): 487-525.
[7] T. BIYIKOGLU, J. LEYDOLD. Faber-Krahn type inequalities for trees. J. Combin. Theory Ser. B, 2007, 97(2): 159-174.
[8] Guangjun ZHANG, Jie ZHANG, Xiaodong ZHANG. Faber-Krahn type inequality for unicyclic graphs. Linear Multilinear Algebra, 2012, 60(11-12): 1355-1364.
[9] Guangjun ZHANG, Weixia LI. The Dirichlet spectral radius of trees. Electron. J. Linear Algebra, 2015, 30: 152-159.

[^0]: Received January 20, 2016; Accepted February 27, 2017
 Supported by the National Natural Science Foundation of China (Grant Nos. 11271256; 11601208).

 * Corresponding author

 E-mail address: guangjunzhang@126.com (Guangjun ZHANG); liweixia99@163.com (Weixia LI)

