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Abstract Let G be a simple connected graph with pendant vertex set 9V and nonpendant
vertex set Vp. The signless Laplacian matrix of G is denoted by Q(G). The signless Dirichlet
eigenvalue is a real number A such that there exists a function f # 0 on V(G) such that
Q(G)f(u) = Mf(u) for u € Vo and f(u) = 0 for u € dV. The signless Dirichlet spectral radius
A(G) is the largest signless Dirichlet eigenvalue. In this paper, the unicyclic graphs with
the largest signless Dirichlet spectral radius among all unicyclic graphs with a given degree
sequence are characterized.
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1. Introduction

Let G = (V(G), E(GQ)) be a simple connected graph with vertex set V(G) and edge set
E(G). Let d(z) denote the degree of a vertex z. A non-increasing positive integers sequence
7 = (do,dq,...,dp—1) is called a unicyclic graphic degree sequence if there exists at least a
unicyclic graph with degree sequence w. Denote by A(G) the adjacency matrix of G. The
Laplacian matrix and signless Laplacian matrix of G is defined as L(G) = D(G) — A(G) and
Q(G) = D(G) + A(G), respectively, where D(G) is the diagonal matrix of vertex degrees of
G. For a long time, most scholars have been interested in the spectra of adjacency matrix
and Laplacian matrix of the graphs with a prescribed graphic degree sequence. For example,
Biyikoglu et al. [1] determined the graphs with the maximal spectral radius among all trees with
a given degree sequence. Zhang [2,3] determined the graphs with the largest signless Laplacian
spectral radius among all trees and unicyclic graphs with a given degree sequence, respectively.
Belardo et al. [4] determined the graphs with the largest spectral radius in the set of unicyclic
graphs with a given degree sequence. Huang et al.[5] determined the graphs with the largest
signless Laplacian spectral radius in the set of bicyclic graphs with a given degree sequence.

Recently there is an increasing interest in the Dirichlet eigenvalue of graphs. Friedman in [6]

introduced the idea of a graph with boundary and formulated the Dirichlet eigenvalue problem
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for graphs involving Laplacian. Biyikoglu and Leydold [7] determined the trees with the smallest
first Dirichlet eigenvalue among all the trees with the same degree sequence. Zhang et al. [8]
determined the graphs with the smallest first Dirichlet eigenvalue among the unicyclic graphs
with a given degree sequence under minor conditions. Let 0V be the set of pendant vertices of G
and Vo = V(G)\OV. In this paper, we always assume that V is a nonempty set. A real number
A is called a signless Dirichlet eigenvalue of G if there exists a function f # 0 on V(G) such that
for u € V(QG),
QUG)f(u) = M (w), eV,
{ f(u) =0, u e V.

The largest signless Dirichlet eigenvalue of Q(G), denoted by A(G), is called the signless Dirichlet
spectral radius [9]. Zhang et al.[9] determined the graphs with the largest signless Dirichlet
spectral radius among the trees with a given degree sequence. Let I'; be the set of unicyclic
graphs with a given degree sequence 7. In this paper, we will characterize the graphs with the

largest signless Dirichlet spectral radius in I';. The main result of this paper is as follows:
Theorem 1.1 For a given unicyclic degree sequence 7, I': (see in Section 3) is the unique graph
with the largest signless Dirichlet spectral radius in I';.

2. The signless Dirichlet spectral radius

The Rayleigh quotient of signless Laplacian matrix Q(G) is denoted by

_ <Qfa f> . ZquE(f(u) + f(v))Q
= T T s P

Then we have
Proposition 2.1 ([9]) Let G be a graph such that OV is not empty. Then

_ _ (@QF. 1)

Moreover, if Aq(f) = A(G) for a function f € S, then f is an eigenfunction of A\(G), where S
denote the set of all real-valued functions f on V(G) with f(u) =0 for any u € V.

Lemma 2.2 ([9]) Let G be a graph such that 0V is not empty. Then the signless Dirichlet
spectral radius \(G) of G is positive. Moreover, if f is an eigenfunction of A(G), then f(v) > 0
for all v € Vo(G) or f(v) < 0 for all v € Vu(G).

In [9], the unit eigenvector f of A(G) is called a Dirichlet Perron vector of G if f(v) > 0 for
all v € Vo(G).

3. Main result

Let G — uv denote the graph obtained from G by deleting an edge uv in G and G + uv
denote the graph obtained from G by adding an edge uv.
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Lemma 3.1 ([9]) Let G be a graph such that OV is not empty. Assume u,v,z € V and
y € V(G) such that uwv,zy € E(G) and uz,yv ¢ E(G). Let f be the Dirichlet Perron vector of G
and G' = G —uwv —zy+uz+yv. Then A(G') > X\(G) if f(u) > f(y) and f(z) > f(v). Moreover,
AG") > MG) if one of the two inequalities is strict.

Lemma 3.2 ([9]) Let G be a graph such that OV is not empty, and P be a path from a non-
pendant vertex vy to another non-pendant vertex ve. Suppose that viu; € E(G), vau; ¢ E(G)
and w; is not on the path P for i = 1,2,...,t with t < d(v1) — 2. By deleting the t edges
ViU, V1Us2, - . ., V1Us and adding the t edges vouy, vous, . .., vous we get a new graph G'. Let f be
the Dirichlet Perron vector of G. Then if f(v1) < f(v2), we have A(G') > A(G).

Corollary 3.3 Let G be a graph with the largest signless Dirichlet spectral radius in I'; and f
be the Dirichlet Perron vector of G. If f(x) > f(y) for any x,y € V(G), then d(x) > d(y).

Proof Clearly, the assertion holds for d(y) = 1. If d(y) = 2, then f(x) > f(y) > 0. So x is not
a pendant vertex and d(z) > d(y) = 2. In the following we prove that the assertion holds for
d(y) > 3. Assume d(z) < d(y). Let t = d(y) — d(z) and uy,us, ..., us be the vertices which are
adjacent to y and not in any path from x to y. Let G, = G — Ui:l Yus + Uizl zus. By Lemma
3.2, we have A\(G1) > A(G). It is a contradiction to our assumption. So d(z) > d(y). The proof
is completed. [J

Lemma 3.4 Let G be a graph with the largest signless Dirichlet spectral radius in ', and f be
the Dirichlet Perron vector of G. Then we have f(u) > f(v) for any u € V(C) and v ¢ V(C).

Proof Let C be the cycle of G. Assume the assertion does not hold. Then there exist x € V(C)
and y ¢ V(C) such that f(z) < f(y). Clearly, y is not a pendant vertex. There exists a vertex
w € V(C) such that 2w € E(C) and yw ¢ E(G). There also exists a hanging path yy1y2 - -y,
such that y1,y2,...,yp—1 ¢ V(C) and y, is a pendant vertex. Since G is a unicyclic graph, we
have wy; ¢ E(G) and zy; ¢ E(G) for all 1 <i <p. Let G; = G — wz — yy; + wy + xy1. Then
G € I'x. Furthermore, we have f(w) < f(y1). Otherwise, we have A(G1) > A(G) by Lemma
3.1. It is a contradiction to our assumption that G is the graph with the largest signless Dirichlet
spectral radius in I'y. Let Gy = G — wz — y1y2 + wy2 + zy1. Then Gy € T, If f(x) > f(y2),
we have A(G2) > A(G) by Lemma 3.1, a contradiction. So we have f(z) < f(y2). By repeating
the similar discussion as above, we have f(w) < f(yp) or f(z) < f(yp). Then f(y,) > 0. It is
a contradiction to our assumption that y, is a pendant vertex. So f(x) > f(y). The proof is

completed. [J

Lemma 3.5 Let G be a graph with the largest signless Dirichlet spectral radius in I'; and f
be the Dirichlet Perron vector of G. Let vy, v1 and vy be the three vertices such that f(vg) >
f(v1) > f(v2) > f(x) for any x € V(G). Then we have vyvy, v1v2, vgv2 € E(G).

Proof Let C be the cycle of G. By Lemma 3.4, vy, v1,vs € V(C). Since d(vy) > 3, there exists
x ¢ V(C) such that xzvg € E(G). If vov; ¢ E(G), there exists y € V(C) such that v1y € E(G).
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Let G1 = G — vox — v1y + vov1 + 2y. Note f(vg) > f(y) and f(v1) > f(x) by Lemma 3.4. Then
we have G; € 'z and A(G1) > A(G) by Lemma 3.1. It is a contradiction to our assumption
that G is the graph with the largest signless Dirichlet spectral radius in I'y. So vov1 € E(G).
By similar proof, we have vgvy € E(G). Now assume vivy ¢ E(G). There exists z € V(C) such
that v1z € E(C) and z # vy. Let G3 = G — vox — v12 + voz + av1. Note f(vg) > f(v1) and
f(z) > f(z) by Lemma 3.4. Then we have G5 € I';; and A(G2) > A(G) by Lemma 3.1. It is also
a contradiction to our assumption that G is the graph with the largest signless Dirichlet spectral

radius in T';r. So vivg € E(G). The proof is completed. [

Let m = (dp,d1,...,d,—1) be a unicyclic graphic degree sequence with dg > dq > -+ > d,, 1.
In the following we will construct a unicyclic graph I' with degree sequence 7 by the recursion.
Select n vertices vg,v1,...,v,—1 such that vy is adjacent to vy, ve,...,v4,, and v; is adjacent
to vy. Let v; be adjacent to vy for k = dop + 1,dg + 2,...,dyp + d1 — 2, vo be adjacent to v,
forl =dy+dy — 1, dy+dy,...,dy +dy +do — 4, and vs be adjacent to vy for b = dy + dy +
dy —3,dy +dy +dy —2,...,dp +di +dy +d3 — 5. Now assume that vy is adjacent to vy for
h=cr+1lcr+2,....cr+d,—1, where ¢ = 5" d,, —k—1and 4 < k <i. We let v;1 be
adjacent to vy for g = ¢; +d;, ci +d;i +1,...,¢; +d; +dir1 — 2. In this way we obtain a unicyclic
graph I'Y such that V(I'%) = {vo,v1,...,0p—1} with d(v;) =d; for i =0,1,...,n— L.

Proof of Theorem 1.1 Let G be the graph with the largest signless Dirichlet spectral radius
in I';. We label the vertices of G as V(G) = {vg,v1,...,0n—1} such that f(vg) > f(vy) > -+ >
f(vn—1). Then we have d(vg) > d(vy) > - -+ > d(vp—1) by Corollary 3.3 and vovyv2 is the cycle of
G by Lemma 3.5. If vgvs ¢ E(G), there exists vov, € E(G) with p > 3. Let P; be the path from
vo to vz. If f(vs) = f(vp), we may exchange the labeling of vs and v,. In the following we assume
that f(vs) > f(vp). Then d(vs) > 2. If v, € V(P1), there exists v, such that vsv, € E(G) and
vg € V(P1). Let G1 = G—vyvp —v304 + 0903 +vpve. Then we have G1 € I'; and A(G1) > A(G) by
Lemma 3.1, since f(v3) > f(vp) and f(vo) > f(v,), a contradiction. If v, ¢ V(Py), there exists
vg such that vsvy € E(Pp). Let Gf = G — vgvp, — v3vy + vov3 + vpvy . Note that f(vs) > f(vp)
and f(vo) > f(vgy. Then we have G} € I'x and A(G}) > A(G) by Lemma 3.1, a contradiction.
So vovs € E(G). By the similar discussion as above, we have vov,, € E(G) for m =4,5,...,dp.

If vivg,41 ¢ E(G), there is a vertex v, such that vivs € E(G) and s > dp + 1. Let
P, be the path from vy to vg,4+1. Without loss of generality, assume that f(vg,4+1) > f(vs).
Then d(vg,+1) > 2. If vs € V(P,), there exists vy ¢ V(P,) such that vg,41v; € E(G). Let
G2 = G — 0105 — Vdy+1Vt + V1V4y+1 + Vsvs. Note that f(vg,+1) > f(vs) and f(v1) > f(v). Then
we have Gy € T'; and A(G2) > A(G) by Lemma 3.1, a contradiction. If vy ¢ V(P%), there
exists vy € V(P,) such that vg, 110y € E(G). Let Gy = G — v1vs — Vgy 4100 + V10411 + UsVp.
Since f(vag+1) > f(vs) and f(v1) > f(vr), we have G5 € I'y and A(G3) > A(G) by Lemma
3.1, a contradiction. So v1v4,41 € E(G). By similar proof, we have viv, € E(G) for k =
do+2,do+3,...,do+dy — 2, vou; € E(G) for l =dy+dy — 1,dy+ dy,...,do+dy +da — 4, and
vsvp € E(G) for b=dy+d1 +do —3,do+dy +da —2,...,do +dy + do + d3 — 5.

Let ¢ :an_:lodm—k—l. Now assume vivp, € E(G) for h=cp+1,c,+2,...,cp+dp — 1
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for 4 <k <i. fvi410,44, ¢ E(G), there is a vertex v;y1v, € E(G) such that r > ¢; + d;. Let
P;1 2 be the path from v;41 t0 ve,+q,- Without loss of generality, assume that f(ve,1q,) > f(vr).
Then d(ve,4a;) > 2. If v, € V(P 12), there exists v; ¢ V(P;42) such that ve,1q,v; € E(G). Let
Gita = G — ig1Ur — Ve, +4,Vj + Vit1Ve,4d; + Upv;. Since ve, 14, € E(G) and vg,v1,...,v; have
already been adjacent to the proper vertex, we have j > i+ 1. So f(vi41) > f(v;). Note that

fe,4a,) > f(vr). Then Gi1o € T'y and A(Gi42) > AM(G) by Lemma 3.1, a contradiction. If
vp & V(P;12), there exists vy € V(Pi42) such that v, y4,v;7 € E(Pit2). Then we have j/ > i+1
by the same reason as above. Let G o, = G — Vip1Vr — Ve, 4.4,Vj7 + Vig1Ve, 44, + Vrvj. Since
f(e,va;) > f(ve) and f(vig1) > f(vjr), we have Gj,, € I'x and A(Gj,,) > AG) by Lem-
ma 3.1, a contradiction. So v;11vVc,+4; € E(G). By similar proof, we have v; v, € E(G) for
g=ci+d;+1,¢;+d;+2,...,¢;+d;+d;11—2. So G is isomorphic to I';. The proof is completed.
U
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