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Abstract Let G be a simple connected graph with pendant vertex set ∂V and nonpendant

vertex set V0. The signless Laplacian matrix of G is denoted by Q(G). The signless Dirichlet

eigenvalue is a real number λ such that there exists a function f ̸= 0 on V (G) such that

Q(G)f(u) = λf(u) for u ∈ V0 and f(u) = 0 for u ∈ ∂V . The signless Dirichlet spectral radius

λ(G) is the largest signless Dirichlet eigenvalue. In this paper, the unicyclic graphs with

the largest signless Dirichlet spectral radius among all unicyclic graphs with a given degree

sequence are characterized.
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1. Introduction

Let G = (V (G), E(G)) be a simple connected graph with vertex set V (G) and edge set

E(G). Let d(x) denote the degree of a vertex x. A non-increasing positive integers sequence

π = (d0, d1, . . . , dn−1) is called a unicyclic graphic degree sequence if there exists at least a

unicyclic graph with degree sequence π. Denote by A(G) the adjacency matrix of G. The

Laplacian matrix and signless Laplacian matrix of G is defined as L(G) = D(G) − A(G) and

Q(G) = D(G) + A(G), respectively, where D(G) is the diagonal matrix of vertex degrees of

G. For a long time, most scholars have been interested in the spectra of adjacency matrix

and Laplacian matrix of the graphs with a prescribed graphic degree sequence. For example,

Biyikoğlu et al. [1] determined the graphs with the maximal spectral radius among all trees with

a given degree sequence. Zhang [2,3] determined the graphs with the largest signless Laplacian

spectral radius among all trees and unicyclic graphs with a given degree sequence, respectively.

Belardo et al. [4] determined the graphs with the largest spectral radius in the set of unicyclic

graphs with a given degree sequence. Huang et al. [5] determined the graphs with the largest

signless Laplacian spectral radius in the set of bicyclic graphs with a given degree sequence.

Recently there is an increasing interest in the Dirichlet eigenvalue of graphs. Friedman in [6]

introduced the idea of a graph with boundary and formulated the Dirichlet eigenvalue problem
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for graphs involving Laplacian. Biyikoğlu and Leydold [7] determined the trees with the smallest

first Dirichlet eigenvalue among all the trees with the same degree sequence. Zhang et al. [8]

determined the graphs with the smallest first Dirichlet eigenvalue among the unicyclic graphs

with a given degree sequence under minor conditions. Let ∂V be the set of pendant vertices of G

and V0 = V (G)\∂V . In this paper, we always assume that ∂V is a nonempty set. A real number

λ is called a signless Dirichlet eigenvalue of G if there exists a function f ̸= 0 on V (G) such that

for u ∈ V (G), {
Q(G)f(u) = λf(u), u ∈ V0,

f(u) = 0, u ∈ ∂V.

The largest signless Dirichlet eigenvalue of Q(G), denoted by λ(G), is called the signless Dirichlet

spectral radius [9]. Zhang et al. [9] determined the graphs with the largest signless Dirichlet

spectral radius among the trees with a given degree sequence. Let Γπ be the set of unicyclic

graphs with a given degree sequence π. In this paper, we will characterize the graphs with the

largest signless Dirichlet spectral radius in Γπ. The main result of this paper is as follows:

Theorem 1.1 For a given unicyclic degree sequence π, Γ∗
π (see in Section 3) is the unique graph

with the largest signless Dirichlet spectral radius in Γπ.

2. The signless Dirichlet spectral radius

The Rayleigh quotient of signless Laplacian matrix Q(G) is denoted by

∆G(f) =
⟨Qf, f⟩
⟨f, f⟩

=

∑
uv∈E(f(u) + f(v))2∑

v∈V f2(v)
.

Then we have

Proposition 2.1 ([9]) Let G be a graph such that ∂V is not empty. Then

λ(G) = max
f∈S

∆G(f) = max
f∈S

⟨Qf, f⟩
⟨f, f⟩

.

Moreover, if ∆G(f) = λ(G) for a function f ∈ S, then f is an eigenfunction of λ(G), where S
denote the set of all real-valued functions f on V (G) with f(u) = 0 for any u ∈ ∂V .

Lemma 2.2 ([9]) Let G be a graph such that ∂V is not empty. Then the signless Dirichlet

spectral radius λ(G) of G is positive. Moreover, if f is an eigenfunction of λ(G), then f(v) > 0

for all v ∈ V0(G) or f(v) < 0 for all v ∈ V0(G).

In [9], the unit eigenvector f of λ(G) is called a Dirichlet Perron vector of G if f(v) > 0 for

all v ∈ V0(G).

3. Main result

Let G − uv denote the graph obtained from G by deleting an edge uv in G and G + uv

denote the graph obtained from G by adding an edge uv.
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Lemma 3.1 ([9]) Let G be a graph such that ∂V is not empty. Assume u, v, x ∈ V0 and

y ∈ V (G) such that uv, xy ∈ E(G) and ux, yv /∈ E(G). Let f be the Dirichlet Perron vector of G

and G′ = G−uv−xy+ux+ yv. Then λ(G′) ≥ λ(G) if f(u) ≥ f(y) and f(x) ≥ f(v). Moreover,

λ(G′) > λ(G) if one of the two inequalities is strict.

Lemma 3.2 ([9]) Let G be a graph such that ∂V is not empty, and P be a path from a non-

pendant vertex v1 to another non-pendant vertex v2. Suppose that v1ui ∈ E(G), v2ui /∈ E(G)

and ui is not on the path P for i = 1, 2, . . . , t with t ≤ d(v1) − 2. By deleting the t edges

v1u1, v1u2, . . . , v1ut and adding the t edges v2u1, v2u2, . . . , v2ut we get a new graph G′. Let f be

the Dirichlet Perron vector of G. Then if f(v1) ≤ f(v2), we have λ(G′) > λ(G).

Corollary 3.3 Let G be a graph with the largest signless Dirichlet spectral radius in Γπ and f

be the Dirichlet Perron vector of G. If f(x) ≥ f(y) for any x, y ∈ V (G), then d(x) ≥ d(y).

Proof Clearly, the assertion holds for d(y) = 1. If d(y) = 2, then f(x) ≥ f(y) > 0. So x is not

a pendant vertex and d(x) ≥ d(y) = 2. In the following we prove that the assertion holds for

d(y) ≥ 3. Assume d(x) < d(y). Let t = d(y) − d(x) and u1, u2, . . . , ut be the vertices which are

adjacent to y and not in any path from x to y. Let G1 = G−
∪t

s=1 yus +
∪t

s=1 xus. By Lemma

3.2, we have λ(G1) > λ(G). It is a contradiction to our assumption. So d(x) ≥ d(y). The proof

is completed. �

Lemma 3.4 Let G be a graph with the largest signless Dirichlet spectral radius in Γπ and f be

the Dirichlet Perron vector of G. Then we have f(u) > f(v) for any u ∈ V (C) and v /∈ V (C).

Proof Let C be the cycle of G. Assume the assertion does not hold. Then there exist x ∈ V (C)

and y /∈ V (C) such that f(x) ≤ f(y). Clearly, y is not a pendant vertex. There exists a vertex

w ∈ V (C) such that xw ∈ E(C) and yw /∈ E(G). There also exists a hanging path yy1y2 · · · yp
such that y1, y2, . . . , yp−1 /∈ V (C) and yp is a pendant vertex. Since G is a unicyclic graph, we

have wyi /∈ E(G) and xyi /∈ E(G) for all 1 ≤ i ≤ p. Let G1 = G − wx − yy1 + wy + xy1. Then

G1 ∈ Γπ. Furthermore, we have f(w) ≤ f(y1). Otherwise, we have λ(G1) > λ(G) by Lemma

3.1. It is a contradiction to our assumption that G is the graph with the largest signless Dirichlet

spectral radius in Γπ. Let G2 = G − wx − y1y2 + wy2 + xy1. Then G2 ∈ Γπ. If f(x) > f(y2),

we have λ(G2) > λ(G) by Lemma 3.1, a contradiction. So we have f(x) ≤ f(y2). By repeating

the similar discussion as above, we have f(w) ≤ f(yp) or f(x) ≤ f(yp). Then f(yp) > 0. It is

a contradiction to our assumption that yp is a pendant vertex. So f(x) > f(y). The proof is

completed. �

Lemma 3.5 Let G be a graph with the largest signless Dirichlet spectral radius in Γπ and f

be the Dirichlet Perron vector of G. Let v0, v1 and v2 be the three vertices such that f(v0) ≥
f(v1) ≥ f(v2) ≥ f(x) for any x ∈ V (G). Then we have v0v1, v1v2, v0v2 ∈ E(G).

Proof Let C be the cycle of G. By Lemma 3.4, v0, v1, v2 ∈ V (C). Since d(v0) ≥ 3, there exists

x /∈ V (C) such that xv0 ∈ E(G). If v0v1 /∈ E(G), there exists y ∈ V (C) such that v1y ∈ E(G).
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Let G1 = G− v0x− v1y + v0v1 + xy. Note f(v0) ≥ f(y) and f(v1) > f(x) by Lemma 3.4. Then

we have G1 ∈ Γπ and λ(G1) > λ(G) by Lemma 3.1. It is a contradiction to our assumption

that G is the graph with the largest signless Dirichlet spectral radius in Γπ. So v0v1 ∈ E(G).

By similar proof, we have v0v2 ∈ E(G). Now assume v1v2 /∈ E(G). There exists z ∈ V (C) such

that v1z ∈ E(C) and z ̸= v2. Let G2 = G − v0x − v1z + v0z + xv1. Note f(v0) ≥ f(v1) and

f(z) > f(x) by Lemma 3.4. Then we have G2 ∈ Γπ and λ(G2) > λ(G) by Lemma 3.1. It is also

a contradiction to our assumption that G is the graph with the largest signless Dirichlet spectral

radius in Γπ. So v1v2 ∈ E(G). The proof is completed. �
Let π = (d0, d1, . . . , dn−1) be a unicyclic graphic degree sequence with d0 ≥ d1 ≥ · · · ≥ dn−1.

In the following we will construct a unicyclic graph Γ∗
π with degree sequence π by the recursion.

Select n vertices v0, v1, . . . , vn−1 such that v0 is adjacent to v1, v2, . . . , vd0 , and v1 is adjacent

to v2. Let v1 be adjacent to vk for k = d0 + 1, d0 + 2, . . . , d0 + d1 − 2, v2 be adjacent to vl

for l = d0 + d1 − 1, d0 + d1, . . . , d0 + d1 + d2 − 4, and v3 be adjacent to vb for b = d0 + d1 +

d2 − 3, d0 + d1 + d2 − 2, . . . , d0 + d1 + d2 + d3 − 5. Now assume that vk is adjacent to vh for

h = ck + 1, ck + 2, . . . , ck + dk − 1, where ck =
∑k−1

m=0 dm − k − 1 and 4 ≤ k ≤ i. We let vi+1 be

adjacent to vg for g = ci + di, ci + di +1, . . . , ci + di + di+1 − 2. In this way we obtain a unicyclic

graph Γ∗
π such that V (Γ∗

π) = {v0, v1, . . . , vn−1} with d(vi) = di for i = 0, 1, . . . , n− 1.

Proof of Theorem 1.1 Let G be the graph with the largest signless Dirichlet spectral radius

in Γπ. We label the vertices of G as V (G) = {v0, v1, . . . , vn−1} such that f(v0) ≥ f(v1) ≥ · · · ≥
f(vn−1). Then we have d(v0) ≥ d(v1) ≥ · · · ≥ d(vn−1) by Corollary 3.3 and v0v1v2 is the cycle of

G by Lemma 3.5. If v0v3 /∈ E(G), there exists v0vp ∈ E(G) with p > 3. Let P1 be the path from

v0 to v3. If f(v3) = f(vp), we may exchange the labeling of v3 and vp. In the following we assume

that f(v3) > f(vp). Then d(v3) ≥ 2. If vp ∈ V (P1), there exists vq such that v3vq ∈ E(G) and

vq /∈ V (P1). Let G1 = G−v0vp−v3vq+v0v3+vpvq. Then we have G1 ∈ Γπ and λ(G1) > λ(G) by

Lemma 3.1, since f(v3) > f(vp) and f(v0) ≥ f(vq), a contradiction. If vp /∈ V (P1), there exists

vq′ such that v3vq′ ∈ E(P1). Let G
′
1 = G− v0vp − v3vq′ + v0v3 + vpvq′ . Note that f(v3) > f(vp)

and f(v0) ≥ f(vq′). Then we have G′
1 ∈ Γπ and λ(G′

1) > λ(G) by Lemma 3.1, a contradiction.

So v0v3 ∈ E(G). By the similar discussion as above, we have v0vm ∈ E(G) for m = 4, 5, . . . , d0.

If v1vd0+1 /∈ E(G), there is a vertex vs such that v1vs ∈ E(G) and s > d0 + 1. Let

P2 be the path from v1 to vd0+1. Without loss of generality, assume that f(vd0+1) > f(vs).

Then d(vd0+1) ≥ 2. If vs ∈ V (P2), there exists vt /∈ V (P2) such that vd0+1vt ∈ E(G). Let

G2 = G− v1vs − vd0+1vt + v1vd0+1 + vsvt. Note that f(vd0+1) > f(vs) and f(v1) ≥ f(vt). Then

we have G2 ∈ Γπ and λ(G2) > λ(G) by Lemma 3.1, a contradiction. If vs /∈ V (P2), there

exists vt′ ∈ V (P2) such that vd0+1vt′ ∈ E(G). Let G′
2 = G − v1vs − vd0+1vt′ + v1vd0+1 + vsvt′ .

Since f(vd0+1) > f(vs) and f(v1) ≥ f(vt′), we have G′
2 ∈ Γπ and λ(G′

2) > λ(G) by Lemma

3.1, a contradiction. So v1vd0+1 ∈ E(G). By similar proof, we have v1vk ∈ E(G) for k =

d0 + 2, d0 + 3, . . . , d0 + d1 − 2, v2vl ∈ E(G) for l = d0 + d1 − 1, d0 + d1, . . . , d0 + d1 + d2 − 4, and

v3vb ∈ E(G) for b = d0 + d1 + d2 − 3, d0 + d1 + d2 − 2, . . . , d0 + d1 + d2 + d3 − 5.

Let ck =
∑k−1

m=0 dm − k− 1. Now assume vkvh ∈ E(G) for h = ck +1, ck +2, . . . , ck + dk − 1
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for 4 ≤ k ≤ i. If vi+1vci+di /∈ E(G), there is a vertex vi+1vr ∈ E(G) such that r > ci + di. Let

Pi+2 be the path from vi+1 to vci+di . Without loss of generality, assume that f(vci+di) > f(vr).

Then d(vci+di) ≥ 2. If vr ∈ V (Pi+2), there exists vj /∈ V (Pi+2) such that vci+divj ∈ E(G). Let

Gi+2 = G− vi+1vr − vci+divj + vi+1vci+di + vrvj . Since vci+divj ∈ E(G) and v0, v1, . . . , vi have

already been adjacent to the proper vertex, we have j > i + 1. So f(vi+1) ≥ f(vj). Note that

f(vci+di) > f(vr). Then Gi+2 ∈ Γπ and λ(Gi+2) > λ(G) by Lemma 3.1, a contradiction. If

vr /∈ V (Pi+2), there exists vj′ ∈ V (Pi+2) such that vci+divj′ ∈ E(Pi+2). Then we have j′ > i+1

by the same reason as above. Let G′
i+2 = G − vi+1vr − vci+divj′ + vi+1vci+di + vrvj′ . Since

f(vci+di) > f(vr) and f(vi+1) ≥ f(vj′), we have G′
i+2 ∈ Γπ and λ(G′

i+2) > λ(G) by Lem-

ma 3.1, a contradiction. So vi+1vci+di ∈ E(G). By similar proof, we have vi+1vg ∈ E(G) for

g = ci+di+1, ci+di+2, . . . , ci+di+di+1−2. So G is isomorphic to Γ∗
π. The proof is completed.

�
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