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Abstract Let 7 be a subgroup functor and H a p-subgroup of a finite group G. Let G = G/Hg
and H = H/Hg. We say that H is ®-7-supplement in G if G has a subnormal subgroup T
and a T-subgroup S contained in A such that G = HT and HNT < S®(H). In this paper,
some new characterizations of hypercyclically embedability and p-nilpotency of a finite group
are obtained based on the assumption that some primary subgroups are ®-7-supplement in
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1. Introduction

Throughout this paper, all groups considered are finite and G always denotes a group and
p denotes a prime. All unexplained notation and terminology are standard, as in [1,2].

A chief factor L/K of G is called a Frattini (non-Frattini) chief factor if L/K < ®(G/K)
(resp., L/K ¢« ®(G/K)). For a class of groups §, a chief factor L/K of G is said to be F-central
in Gif L/K x G/Cg(L/K) € §. A normal subgroup N of G is said to be §-hypercentral (F®-
hypercentral) in G if either N = 1 or every chief factor (every non-Frattini chief factor) of G below
N is §-central in G. Let Zz(G) and Zz4(G) denote the §-hypercentre (resp., §®-hypercentre)
of G, respectively, that is, the product of all F-hypercentral (FP-hypercentral) normal subgroups
of G. In this paper, we use i to denote the classes of all supersoluble groups. It is well known
that 4l is a saturated formation.

A function 7 which assigns each group G to a set of subgroups 7(G) of G is called a subgroup
functor [3] if 1 € 7(G) and 6(7(G)) = 7(0(Q)) for any isomorphism 6 : G — G*. If H € 7(G),
then we say that H is a 7-subgroup of G.

Recall that a subgroup H of G is S-quasinormal in G if H permutes with every Sylow
subgroup of G. A subgroup H of G is said to be s-semipermutable in G (see [4]) if HG, = G,H
for any Sylow p-subgroup G, of G with (p, |[H|) = 1; weakly s-permutable in G (see [5]) if G has

a subnormal subgroup 7T and an s-permutable subgroup S contained in H such that G = HT
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and HNT < S; weakly SS-permutable in G (see [6]) if G has a subnormal subgroup 7' and
an SS-permutable subgroup S contained in H such that G = HT and H NT < S; weakly
s-semipermutable in G (see [7]) if G has a subnormal subgroup 7' and an s-semipermutable
subgroup S contained in H such that G = HT and HNT < S; weakly s-supplemently embedded
in G (see [8]) if G has a subnormal subgroup T and an S-quasinormal embedded subgroup S
contained in H such that G = HT and HNT < S; I-normal in G (see [9]) if G has a subnormal
subgroup T such that G = HT and HNT < S, where S is a subgroup of GG contained in H and
S satisfied II-property; S®-supplemented [10] in G if there exists a subnormal subgroup T of G
such that G = HT and HNT < ®(H). Naturally, it is necessary to unify the above-mentioned
generalized normal subgroups and discuss the influence on the structure of a finite group by

connecting these subgroups with Frattini subgroup of G. Hence we give the following notion.

Definition 1.1 Let 7 be a subgroup functor and H a p-subgroup of a finite group G. Let
G = G/Hg and H = H/Hg. We say that H is ®-r-supplement in G if G has a subnormal
subgroup T and a T-subgroup S contained in H such that G = HT and HNT < S®(H).

By [11,Examples 1.5, 1.7 and 1.9] and [12, Examples 4.6 and 4.9], we know the above
mentioned p-subgrops are ®-7-supplement in G. Now we introduce some properties of subgroup
functors (also, see [11, Definition 1.3]) which will be used in our results. If 7 is a subgroup functor,
then we say that 7 is:

(1) Inductive if for any group G, whenever H € 7(G) is a p-group and N < G, then
HN/N € 7(G/N).

(2) Hereditary if for any group G, whenever H € 7(G) is a p-group and H < F < G, then
Her(E).

(3) Regular (resp., quasiregular) if for any group G, whenever H € 7(G) is a p-group
and N is a minimal normal subgroup (resp., an abelian minimal normal subgroup) of G, then
|G : No(H N N)| is a power of p.

(4) @-regular (resp., ®-quasiregular) if for any primitive group G, whenever H € 7(G) is
a p-group and N is a minimal normal subgroup (resp., an abelian minimal normal subgroup) of
G, then |G : Ng(H N N)| is a power of p.

2. Preliminaries
In the following section, we will introduce some lemmas used in this paper.

Lemma 2.1 Let H be a p-subgroup of G and T an inductive subgroup functor. Suppose that
H is ®-7-supplement in G.
(1) If N 4G and either N < H or (|H|,|N|) =1, then HN/N is ®-r-supplement in G/N.
(2) If 7 is hereditary and H < K < G, then H is ®-7-supplement in K.

Proof Let G = G/Hg and H = H/Hg. Since H is ®-7-supplement G, G has a subnormal
subgroup T and a 7-subgroup S contained in H such that G = HT and HNT < S®(H).

(1) Let G = G/(HN)g, HN = HN/(HN)g, T = T(HN)g/(HN)g and S = S(HN)¢/(HN ).
Clearly, Hz < (HN)g. Then S € 7(G) for 7 is inductive. It is easy to see that 7' is subnormal
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in G and G = HNT. Since (N|,|H|) =1, (NHNT : TAN|,|[NHNT : TN H|) = 1. Hence
(NHNT) = (NNT)HNT). It follows that AN N T = HN/(HN)g N T(HN)g/(HN)g =
(HNT)(HN)¢/(HN)e < (S(HN)g/(HN)@)®(HN/(HN)g)) = S®(HN). Therefore, HN/N
is ®-7-supplement in G/N.

(2) It is casy to see that Hg < Hy. Let K = K/Hyg, H=H/Hg, T = THy /Hx NK/Hg
and S = SHy /Hy. Since 7 is hereditary and inductive, S € 7(K). Clearly, T is subnormal
in K and K = HT. It is easy to see that HNT = H/Hx NTHy/Hgx = (HNT)Hy/Hg <
(SHy /H)®(H/Hy) = S®(H). Hence H is ®-r-supplement in K. [J

Lemma 2.2 [12, Lemma 2.6] Let § be a nonempty solubly saturated formation and P a normal
subgroup of G. If P/®(P) < Zz(G/®(P)), then P < Zz(G).

The next lemma is clear.

Lemma 2.3 Let p be a prime divisor of |G| with (|G|,p—1) = 1.

(1) If G has a cyclic Sylow p-subgroup, then G is p-nilpotent.

(2) If N is a normal subgroup of G such that |N|, < p and G/N is p-nilpotent, then G is
p-nilpotent.

Let P be a p-group. If P is not a non-abelian 2-group, then we use Q(P) to denote the
subgroup € (P). Otherwise, Q(P) = Qa(P).

Lemma 2.4 ([11,Lemma 4.4]) Let § be a saturated formation, P a normal p-subgroup of G
and C a Thompson critical subgroup of P (see [13,p.186]). If C < Zz(G) or Q(C) < Zz(G),
then P < Zz(Q).

Lemma 2.5([14, Lemma 2.10]) Let C' be a Thompson critical subgroup of a nontrivial p-group
P.

(1) Ifp is odd, then the exponent of Q1 (C) is p.
(2) If P is an abelian 2-group, then the exponent of ;(C) is 2.
(3) If p=2, then the exponent of Q3(C) is at most 4.

Lemma 2.6 ([15, Theorem B]) Let § be any formation and E a normal subgroup of G. If
F*(E) < Zz(Q), then E < Zz(G).

3. Main results

In this section, we will give the main conclusions of this paper.

Proposition 3.1 Let § be a saturated formation containing all supersoluble groups and T
a ®-quasiregular (resp., quasiregular) inductive subgroup functor. Suppose that P is a nor-
mal p-subgroup of G and every maximal subgroup of P is ®-t-supplement in G. Then P <
Zsa(G) (resp., P < Z3(G)).

Proof Suppose that the theorem is false and let (G, P) be a counterexample with |G| + |P)|

minimal. Then:
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(1) G has a unique minimal normal subgroup N contained in P, P/N < Zz5(G/N) (resp.,
P/N < Zz(G/N)) and PN Zz3(G) =1 (resp., PN Z5(G) = 1).

Let N be any minimal normal subgroup of G contained in P. Clearly, by Lemma 2.1(1),
(G/N, P/N) satisfies the hypothesis, and so the choice of (G, P) yields that P/N < Zz4(G/N)
(resp., P/N < Z5(G/N)). If PN Zzs(G) > 1 (resp., PN Zz(G) > 1), without loss of generality,
we may assume that N < PN Zze(G) (resp., N < PN Zz(G)). It induces that P < Zze(G)
(resp., P < Zz(G)), a contradiction. Thus PN Zz4(G) = 1 (resp., PN Z5(G) = 1). Suppose
that G has a minimal normal subgroup R contained in P such that N # R. With a similar
discussion as above, we have that P/R < Zz4(G/R) (resp., P/R < Zz(G/R)). First, assume
that NR/R £ ®(G/R). Then, in the above two cases, we have NR/R < Zz(G/R). Now we
assume that NR/R < ®(G/R). If PN Zz4(G) = 1, then PN ®(G) = 1. By [1, Chap. A,
Lemma 9.1], NR < PN ®(G)R = R, a contradiction. Hence we only consider 7 is quasiregular.
Then P/N < Zz(G/N), and so NR/R < Zz(G/R). From G-isomorphism R = NR/R, we have
N < Zz(G), which is impossible. Thus N is the unique minimal normal subgroup of G contained
in P.

(2) B(P) £ 1.

If ®(P) =1, then P is elementary abelian. Let N7 be a maximal subgroup of N such that
Ny is normal in some Sylow p-subgroup of G, say G,. Then P; = NS is a maximal subgroup
of P, where S is a complement of N in P. Obviously, (P;)¢ = 1 and ®(P;) = 1. Therefore
by hypothesis, G has a subnormal subgroup 7' and a 7-subgroup S contained in P; such that
G=PTand PPNT <S. Then G=PT and P=PNPT =P (PNT). It is easy to see that
1# PNT<G. Hence N < PNT, and so PPNN < PINT < S. It follows that Ny = PLNN = SNN.
If N £ ®(G), then G has a maximal subgroup M such that G = N x M. Clearly by (1),
PNMg = 1. By hypothesis, |G : Ng(N1Mg)| = |G : No((SNN)Mg)| = |G : Na(SMgNNMe)|
is a power of p. This implies that N1 Mg <G and so Ny = Ny MgNP<G, a contradiction. We may,
therefore, assume that N < ®(G). If P/N < Zzs(G/N), then P < Zz¢(G), a contradiction.
Hence we only consider that 7 is quasiregular. It follows that |G : Ng(N1)| = |G : Ng(S N N)|
is a power of p. Thus N7 <G, a contradiction too. Therefore ®(P) # 1.

(3) The final contradiction.

By (1) and (2), N < ®(P). This induces P/®(P) < Zz3(G/®(P)) (resp., P/®(P) <
Zz(G/®(P))) and so P < Zz3(G) (resp., P < Zz(G)) by Lemma 2.2. The final contradiction
ends the proof. [

Theorem 3.2 Let E be a normal subgroup of G and P a Sylow p-subgroup of E such that
(|E|,p—1) = 1. Suppose that 7 is a ®-regular inductive subgroup functor and every T-subgroup
of G contained in P is subnormally embedded in G. If every maximal subgroup of P is ®-7-

supplement in G, then E is p-nilpotent.

Proof Suppose that the theorem is false and let (G, E) be a counterexample with |G| + |E)|
minimal. We now proceed via the following steps:

(1) Op(E) = 1.

Suppose that O, (E) # 1. Let M /O, (E) be a maximal subgroup of PO, (E)/O, (E). Then
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M = P,O, (E) for some maximal subgroup P; of P. By the Lemma 2.1(1) and the hypothesis,
PO,/ (E)/Op (E) is ®--supplement E/O, (E). This shows that (G/O, (E), E/O, (E)) satisfies
the hypothesis of the theorem. The choice of (G, E) implies that E/O,/(E) is p-nilpotent, and
so E is p-nilpotent, a contradiction. Hence Oy (E) = 1.

(2) G has a unique minimal normal subgroup N contained in F, E/N is p-nilpotent and
G = NM, where M is a maximal subgroup of G.

Let N be a minimal normal subgroup of G contained in F and H/N be a maximal subgroup
PN/N. Then there exists a maximal subgroup P; of P such that H = PyN and PN N = PNN.
Set G = G/(P1)g and P, = P;/(P;)g. By the hypothesis, G’ has a subnormal subgroup 7" and
a 7-subgroup S contained in P; such that G = P,T and P, NT < S®(P;), where S = S/(Py)¢q
and T = T/(P1)g. Let G = G/(P\N)q, PLN = P.N/(P\N)g, T = T(PiN)¢/(P.N)¢ and
S = S(P,N)¢/(PIN)g. Since (PPNNT : PLNT|,|[PNNT : NNT|) =1, PNNT =
(PLNT)(NNT). By using a similar discussion as in the proof of Lemma 2.1(1), we have that
H/N is ®-7-supplement in G/N. This shows that (G/N, E/N) satisfies the hypothesis of the
theorem. The choice of (G, F) implies that E/N is p-nilpotent. Since the class of all p-nilpotent
groups is a saturated formation, N is the unique minimal normal subgroup of G contained in F
and N £ ®(G). Then there exists a maximal subgroup M of G such that G = NM.

(3) O,(E)=1.

Suppose that O, (E) # 1. Then by (2), N < Op(E) and G = N xM. Since O,(G) < Ca(N),
0,(G) N M is normal in G and so O,(E) N M is normal in G. If O,(E)NM # 1, then N <
O,(E) N M, a contradiction. Thus O,(E) N M = 1. It follows that O,(E) = O,(E) NNM =N
and it is easy to see that Cg(N) = N. Denote K = M N E. Then E = N x K. Let K, be
a Sylow p-subgroup of K such that P = NK, and M, a Sylow p-subgroup of M containing
K,. Then G, = NM, is a Sylow p-subgroup of G. Let N; be a maximal subgroup of N such
that N; is normal in G,. Then G; = N;M, is a maximal subgroup of G,, P, = N1 K, is a
maximal subgroup of P and P = NP;. If (P;)g # 1, then by (2), N < P, and so P = Py,
a contradiction. Hence (P;)g = 1. By the hypothesis, G has a subnormal subgroup T and a
7-subgroup S contained in P; such that G = P,T and P, NT < S®(Fy).

Since 7 is a ®-regular inductive subgroup functor, |G/Mg : Ng/n, (SMa/McNNMg/Mg)|
is a power of p. If SMg N NMg # Mg, then (SMg/Mg N NMg/Mg)¢/Me = (SMg /Mg N
NMg/Mg)GrMe/Ma < Gy Mg/Mg and so N < GiMg. Hence N = NN G Mg = NN
NiMp,Mg = Ny, a contradiction. Thus SMg N NMg = Mg. Obviously, SN N Mg = 1 be-
cause EN Mg = 1. Hence SMgNNMg = (SNN)Mg = Mg andso SNN < MgnNN = 1.
Assume that S # 1. Since S is subnormally embedded in G, there exists a subnormal subgroup
V of G such that S is a Sylow p-subgroup of V. Without loss of generality, we may assume
that V' < E. Let L be a minimal subnormal subgroup of G contained in V. Since O, (L) is
subnormal in G, O, (L) =1 by (1). By (2), we know that E is p-soluble and so L is p-soluble.
This follows that L = O,(L) < O,(E) = N. It implies that L NS = 1, which is impossible.
Hence S = 1. Since E = ENPT = P(ENT), OP(E) < ENT and so N < T by (2). It
implies that P, N N < ®(P;). This deduces that P, = P, " NK, = K,(P1 N N) = K,. Hence
N1 =P NN =K,NN =1, and thereby |N| = p. By (2) and Lemma 2.3(2), we have that F is
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p-nilpotent, a contradiction. Therefore O,(E) = 1.

(4) NNnP<P.

If not, then P < N. If N < E, then the choice of the (G, E') shows N is p-nilpotent. Then
by (1), N is a p-group, which contradicts (3). Hence F = N. Let P; be a maximal subgroup of
P. Obviously, (P;)g = 1. Hence G has a subnormal subgroup 7" and a 7-subgroup S contained
in P, such that G = P\/T and P, NT < S®(P;). Assume that S # 1. Since 7 is ®-regular and
inductive, |G : Ng(SMg)| is a power of p. It follows that N < S¢Mg = SC Mg < GpMg,
where G, is a Sylow p-subgroup of G containing P. Then N = N NG,Mg = N N G, because
NNMg =1. It follows that N is a p-group. This contradicts (3). Hence S = 1. It is easy to see
that N < OP(G) < T. It follows that P, = ®(P;), a contradiction. Hence NN P < P.

(5) Final contradiction.

By (4), P has a maximal subgroup P; such that NN P < P;. Clearly, (P1)¢ = 1. By
hypothesis, G has a subnormal subgroup 7" and a 7-subgroup S contained in P; such that
G=PTand PLNT < SP(P).

We show that S = 1. Assume that S # 1. By (2), SN N Mg = 1. Thus SMg N NMg =
(SN N)Mg. Since 7 is ®-regular and inductive, |G : Ng(SMg N NMg)| is a power of p. If
SNN #1,then N < (SNN)“Mg = (SNN)“ Mg < G,Mg, where G, is a Sylow p-subgroup
of G contained in P. It follows that N = N N G,Mqg = N N G, that is, N is a p-group, which
contradics (3). Thus SN N = 1. By using a similar dicussion as in (3), let S be a Sylow p-
subgroup of a subnormal subgroup V of G and L a minimal subnormal subgroup of G contained
in V. By (1) and (3), L is a nonabelian simple group. It is easy to see that LNN =1or L < N.
If LN N =1, then by (2), L =2 LN/N < E/N is p-nilpotent, which is impossible. If L. < N, then
SN L=1. It implies that L is a p’-group, a contradiction. Hence S = 1.

Clearly, N < T and so NN P < NN P, < &(P). Then by [16, Chap. IV, Satz 4.7], N is

p-nilpotent, a contradiction too. The proof is completed. [J

Proposition 3.3 Let § be a saturated formation containing all supersoluble groups, E be
a normal subgroup of G and T a regular inductive subgroup functor. Suppose that every T-
subgroup of G contained in E is subnormally embedded in G and every maximal subgroup of

every noncyclic Sylow subgroup of E is ®-t-supplement in G. Then E < Z3(G).

Proof Suppose that the theorem is false and let (G, E) be a counterexample with |G| + |E|
minimal. Let p be the smallest prime divisor of |E| and P a Sylow p-subgroup of X. If P is cyclic,
then FE is p-nilpotent by Lemma 2.3(1). Now assume that P is not cyclic. Then by Theorem 3.2,
E is p-nilpotent. Let V be the normal p-complement of £. Then V is normal in G. If V =1,
then by Proposition 3.1, E < Zz(G), a contradiction. Hence V' # 1. Then it is easy to see that
(G, V) satisfies the hypothesis, so V' < Zz(G). On the other hand, by Lemma 2.1(1), we know
that (G/V, E/V) satisfies the hypothesis. The choice of (G, E) implies that E/V < Zz(G/V).
It implies that E < Zz(G), a contradiction too. OJ

Proposition 3.4 Let 7 be a quasiregular inductive subgroup functor and P a normal p-subgroup

of G. If every cyclic subgroup of P of prime order or order 4 (when P is a non-abelian 2-group)
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is ®-r-supplement in G, then P < Zy(G).

Proof Suppose that the theorem is false and let (G, P) be a counterexample with |G|+ |P|
minimal. Then:

(1) G has a unique normal subgroup N contained in P such that P/N is a chief factor of
G, N < Zy(G) and |P/N| > p.

Let P/N be a chief factor of G. Clearly, (G, N) satisfies the hypothesis. The choice of
(G, P) implies that N < Zy(G). If |P/N| = p, then P/N < Zy(G/N), and so P < Zy(G),
a contradiction. Hence |P/N| > p. Now assume that P/R is a chief factor of G such that
N # R. Then with a similar argument as above, we have that R < Zy(G). It follows that
P = NR < Zy(G), a contradiction. Therefore, N is the unique normal subgroup of G such that
P/N is a chief factor of G.

(2) The exponent of P is p or 4 (when P is a non-abelian 2-group).

Let C' be a Thompson critical subgroup of P. If Q(C) < P, then Q(C) < N < Zy(G) by
(1), and so P < Zy(G) by Lemma 2.4, which is impossible. Thus P = (C'). Then by Lemma
2.5, the exponent of P is p or 4 (when P is a non-abelian 2-group).

(3) The final contradiction.

Since P/N N Z(G,/N) > 1, where G, is a Sylow p-subgroup of G, there exists a subgroup
V/N of order p contained in P/N N Z(G,/N). Let + € VAN and H = (z). Then V = HN.
By (2), |[H| = p or 4 (when P is a non-abelian 2-group). If V< G, then P =V by (1), and so
|P/N| = p, a contradiction. Hence V is not normal in G. Clearly by (1), Hg < Vg = N. By
the hypothesis, G/H¢g has a subnormal subgroup T'/Hg and a 7T-subgroup S/Hg contained in
H/Hg such that G = HT and (H/Hg) N (T/Hg) < (S/Hg)®(H/Hg). Assume that S/Hg =
H/Hg. Since 7 is a quasiregular inductive subgroup functor, SN/N is a 7-subgoup of G/N and
|G : Ne(V)| = |G : Ng(HN)| is a power of p. It follows that V <G, a contradiction. Therefore,
we assume that S/Hg # H/Hg. Then H/HeNT/He < ®(H/Hg). Obviously, Hg # H. Hence
HNT < ®H). In this case, PNT < P, and so (PNT)% = (PNT)" < P. This means from
(1) that (PNT)% < N, and so P = H(PNT) = HN = V. The final contradiction completes
the proof of the theorem. [

Theorem 3.5 Let 7 be a regular inductive subgroup functor. Suppose that E is a normal
subgroup of G and P is a Sylow p-subgroup of E such that (|E|,p — 1) = 1. If every cyclic
subgroup of P of prime order or order 4 (when P is a non-abelian 2-group) is ®-7-supplement

in G, then F is p-nilpotent.

Proof Suppose that it is false and let (G, E) be a counterexample for which |G|+ |E| is minimal.
We prove theorem via the following steps.

(1) Op(E) =1

See step (1) in the proof of Theorem 3.2.

(2) E/O,(E) is a chief factor of G and O,(E) < Z(E).

Let N be a normal subgroup of G such that N < E. It is easy to see that (G, N) satisfies
the hypothesis of the theorem, hence by the choice of (G, E), N is p-nilpotent. It follows from



288 Xiaogian MA and Yuemei MAO

(1) that N is a p-group and so N < O,(E). It shows that E/O,(E) is a chief factor of G.

Since (|E|,p — 1) = 1, Zy(E) = Z(E). It follows from Proposition 3.4 that O,(E) <
Zy(GYNE < Zy(F) = Zs(E).

(3) p=2and E/O3(FE) is a non-abelian chief factor of G.

If pt|E/Op(E)|, then E/O,(E) is p-nilpotent, and so by (2), E is p-nilpotent, a contra-
diction. Hence p|E/O,(FE)|. Since E/O,(E) is a chief factor of G, E/O,(E) is non-abelian, and
thereby E is not soluble. Since (|E|,p — 1) = 1, by Feit-Thompson Theorem, we have p = 2.

(4) Final contradiction.

By [16, Chap. IV, Satz 5.4], F has a 2-closed minimal non 2-nilpotent subgroup A. Let A
be a Sylow 2-subgroup of A contained in P. Then by [1, Chap. VII, Theorem 6.18], Ay/®(As2)
is a chief factor of A; ®(A) = Z(A); P(A2) = Az N P(A) and the exponent of Ay is p or
4 (when P is a non-abelian 2-group). By (2), A2 N O2(F) < Ay N Zoo(E) < A2 N Zx(A) =
Ay N ®(A) = ®(Ay). Hence there exists an element x € As\Oz(E). Let H = (z). Then
|[H| = p or 4 (when P is a non-abelian 2-group). By hypothesis, G/H¢ has a subnormal
subgroup T/H¢g and a 7-subgroup S/Hg contained in H/Hg such that G = HT = AT and
(H/He)N(T/Hg) < (S/Hg)®(H/Hg). f H/Hg = S/Hg, then HO2(E)/O2(E) is a T-subgroup
of G/O3(FE) because 7 is inductive. Since 7 is regular and E/O3(FE) is a minimal normal subgroup
of G/O(E), |G/O2(E) : Ngjo,(g)(E/O2(E)NHO2(E)/O2(E))| = |G : Ng(HO2(E))| is a power
of 2. Hence (HO9(E))¢ is a 2-group, and so H < O5(FE), a contradiction. Therefore, we assume
that S/Hg < H/Hg. Then HNT < ®(H), and so A £ T. Since A = Ay(ANT), ANT #1. It
implies that ANT is a 2-nilpotent group because that A is a minimal non 2-nilpotent group. Let
Ay be a normal 2-complement of ANT. Since Ay is a subnormal Hall subgroup of A, Ay < A.
It implies that Ao/ is a normal 2-complement of A, which is impossible. The proof of the theorem
is completed. O

Proposition 3.6 Let E be a normal subgroup of G and 7 a regular inductive subgroup functor.
Suppose that every cyclic subgroup of P of prime order or order 4 (when P is a non-abelian
2-group) is ®-r-supplement in G. Then E < Zy(G).

Proof See the proof of Proposition 3.3 and use Proposition 3.4 and Theorem 3.5 instead of
Proposition 3.1 and Theorem 3.2. [

Theorem 3.7 Let § be a formation containing all supersoluble groups, T a regular inductive
subgroup functor and E a normal subgroup of G such that G/E € §. Suppose that X = E or
X = F*(E). If one of the following holds:

(i) Every T-subgroup of G contained in E is subnormally embedded in G and every maximal
subgroup of every noncyclic Sylow subgroup of X is ®-r-supplement in G;

(ii) For every noncyclic Sylow subgroup P of X, every cyclic subgroup of P of prime order
or order 4 (when P is a non-abelian 2-group) is ®-7-supplement in G.

Then G € §.

Proof By Propositions 3.3 and 3.6, we have that X < Zy(G) < Zz(G). Therefore, by Lemma
2.6, F < Zz(G). Consequently, G € §. O
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4. Further applications

In view of [11, Examples 1.5, 1.7 and 1.9] and [12, Examples 4.6 and 4.9], many results in
former literatures can be generalized by our theorem. For example, [17, Theorems 3.2 and 3.7];
[18, Theorems 3.1 and 3.3]; [19, Theorem 3.3]; [20, Theorems 3.4, 3.7 and Corollary 3.5]; [21,
Theorems 3.2, 3.5 and Corollary 3.2]; [10, Lemmas 2.2, 2.3 2.4 and Theorem 3.1]; [22, Theorems
3.1 and 3.2]; [23, Theorem]; [24, Theorems 3.2, 3.3, 3.6 and 3.7] and so on.
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